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Abstract: Breast cancer has historically been one of the leading causes of death for women worldwide.
As of 2020, breast cancer was reported to have overtaken lung cancer as the most common type of
cancer globally, representing an estimated 11.3% of all cancer diagnoses. A multidisciplinary approach
is taken for the diagnosis and treatment of breast cancer that includes conventional and targeted
treatments. However, current therapeutic approaches to treating breast cancer have limitations,
necessitating the search for new treatment options. Cancer cells require adequate iron for their
continuous and rapid proliferation. Excess iron saturates the iron-binding capacity of transferrin,
resulting in non-transferrin-bound iron (NTBI) that can catalyze free-radical reactions and may lead to
oxidant-mediated breast carcinogenesis. Moreover, excess iron and the disruption of iron metabolism
by local estrogen in the breast leads to the generation of reactive oxygen species (ROS). Therefore,
iron concentration reduction using an iron chelator can be a novel therapeutic strategy for countering
breast cancer development and progression. This review focuses on the use of iron chelators to
deplete iron levels in tumor cells, specifically in the breast, thereby preventing the generation of free
radicals. The inhibition of DNA synthesis and promotion of cancer cell apoptosis are the targets of
breast cancer treatment, which can be achieved by restricting the iron environment in the body. We
hypothesize that the usage of iron chelators has the therapeutic potential to control intracellular iron
levels and inhibit the breast tumor growth. In clinical settings, iron chelators can be used to reduce
cancer cell growth and thus reduce the morbidity and mortality in breast cancer patients.

Keywords: breast cancer; oxidative stress; iron overload; iron chelator; estrogen

1. Introduction
1.1. Importance of Iron in Human Health

Iron is a trace element that is essential for its important physiological roles in regulating
the biochemical pathways of different cellular processes [1–3], including the oxidative
response of neutrophils [4], cytokine production as part of cell-mediated immunity, the
proliferation of B-lymphocytes, and the generation of humoral immune responses [2]
(Figure 1). Almost two-thirds of the iron in the body is found in the hemoglobin present in
erythrocytes. The remaining iron in the body is bound to the myoglobin in muscle tissue,
as well as different iron-containing enzymes [5].
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Usually, iron concentration is stabilized at the physiological level by a liver-derived 
hormone called hepcidin. When iron concentration is increased in the plasma, there is 
increased release of hepcidin. This, in turn, brings down the iron level by reducing its 
release from the iron storage sites by promoting the degradation of the iron exporter pro-
tein ferroportin [6]. Similarly, when iron concentration is decreased for any reason, hep-
cidin expression is reduced. Consequently, iron absorption is restored, resulting in in-
creased iron levels in the plasma. It is established that iron deficiency or the accumulation 
of excess iron has significant health effects. Hypoferraemic conditions induced by infec-
tion and inflammation serve as a host defense mechanism since microorganisms such as 
siderophilic bacteria and malarial parasites (Plasmodium sp.) are unable to thrive at low 
iron levels [1]. Iron also serves as a regulator of the immune system. For example, iron 
overload can decrease the humoral immune response, attenuate phagocytosis, and affect 
the function of T lymphocytes [7,8]. Macrophages are responsible for iron recycling by 
phagocytosing old and damaged erythrocytes, followed by the release of iron in heme by 
heme oxygenase-1 (HO-1) [9]. Proinflammatory cytokines are produced as part of the in-
flammatory response during infection. Inflammatory responses are usually mediated by 
pathogen (PAMPs) and damage (DAMPs) -associated molecular patterns. PAMPs serve 
as exogenous signals coming from the microbes and alert the immune system to the pres-
ence of pathogens. In contrast, DAMPs serve as endogenous signals to the innate immune 
system, indicating any unscheduled cell death, microbial invasion, or stress [10]. As a con-
sequence of cytokine-mediated signaling, iron is sequestered within cells through the 
modulation of the expression of iron regulatory proteins, such as divalent metal trans-
porter 1, ferroportin1, ferritin, and hepcidin [11]. Moreover, the iron-containing enzyme 
cytochrome P450 has a role in the synthesis of steroid hormones and bile acids and the 
detoxification of toxic chemicals [12]. Iron–sulfur clusters are crucial parts of many en-
zymes mandatory for redox reactions involved in respiration and ATP generation [13].  

In normal cells, excess iron is toxic and can induce oxidative stress that causes DNA 
damage. Oxidative stress, via the activation of mitogen-activated protein kinase (MAPK) 
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Usually, iron concentration is stabilized at the physiological level by a liver-derived
hormone called hepcidin. When iron concentration is increased in the plasma, there is
increased release of hepcidin. This, in turn, brings down the iron level by reducing its
release from the iron storage sites by promoting the degradation of the iron exporter protein
ferroportin [6]. Similarly, when iron concentration is decreased for any reason, hepcidin
expression is reduced. Consequently, iron absorption is restored, resulting in increased
iron levels in the plasma. It is established that iron deficiency or the accumulation of excess
iron has significant health effects. Hypoferraemic conditions induced by infection and
inflammation serve as a host defense mechanism since microorganisms such as siderophilic
bacteria and malarial parasites (Plasmodium sp.) are unable to thrive at low iron levels [1].
Iron also serves as a regulator of the immune system. For example, iron overload can
decrease the humoral immune response, attenuate phagocytosis, and affect the function of
T lymphocytes [7,8]. Macrophages are responsible for iron recycling by phagocytosing old
and damaged erythrocytes, followed by the release of iron in heme by heme oxygenase-1
(HO-1) [9]. Proinflammatory cytokines are produced as part of the inflammatory response
during infection. Inflammatory responses are usually mediated by pathogen (PAMPs)
and damage (DAMPs) -associated molecular patterns. PAMPs serve as exogenous signals
coming from the microbes and alert the immune system to the presence of pathogens.
In contrast, DAMPs serve as endogenous signals to the innate immune system, indicat-
ing any unscheduled cell death, microbial invasion, or stress [10]. As a consequence of
cytokine-mediated signaling, iron is sequestered within cells through the modulation of
the expression of iron regulatory proteins, such as divalent metal transporter 1, ferroportin
1, ferritin, and hepcidin [11]. Moreover, the iron-containing enzyme cytochrome P450 has
a role in the synthesis of steroid hormones and bile acids and the detoxification of toxic
chemicals [12]. Iron–sulfur clusters are crucial parts of many enzymes mandatory for redox
reactions involved in respiration and ATP generation [13].

In normal cells, excess iron is toxic and can induce oxidative stress that causes DNA
damage. Oxidative stress, via the activation of mitogen-activated protein kinase (MAPK)
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and NF-kappa B (NF-κB)-associated signal transduction pathways, can regulate cell growth
and cellular proliferation. In the mitochondria, reactive oxygen species (ROS) such as
superoxide (O2

•−) and hydrogen peroxide (H2O2) are produced from oxygen [7]. Increased
iron levels in macrophages also lead to ROS-mediated damage to intracellular systems [14].

1.2. Iron Overload and Its Implication on Breast Cancer

Iron overload due to increased absorption or other disorders can be detrimental and
may lead to pathological conditions that include diabetes, cardiomyopathy, neurological
disorders, and various types of human cancers such as colorectal, lung, and breast carcino-
mas [14,15]. In the case of iron overload, the capacity of transferrin to bind iron becomes
saturated, causing iron to accumulate as nontransferrin-bound iron (NTBI). The accumu-
lation of NTBI may have significant health hazards as NTBI has the ability to catalyze
free-radical reactions [16]. In this way, iron overload may predispose to oxidant-mediated
breast carcinogenesis [17,18]. In breast cancer, the iron-binding as well as iron-transporting
proteins are often dysregulated. For example, hepcidin is found to downregulate ferro-
portin levels by the post-transcriptional modification of the later. The higher hepcidin and
hence lower ferroportin levels, i.e., a high hepcidin/ferroportin ratio, eventually leads to
an increase in ferritin expression and consequent iron overload [19,20]. Transferrin levels
were also found to be altered in breast cancer cases [8,21,22]. Elevated concentrations of
estrogen in breast tissue, which disrupts intracellular iron metabolism, results in excess iron
that can initiate the generation of superoxide anions and the conversion of ferritin-bound
Fe3+ to Fe2+, leading to estrogen-induced oxidative stress on nucleic acids followed by
carcinogenesis (Figure 2) [23–25]. In addition, higher levels of free iron combined with
other risk factors such as genotoxic metabolites of estradiol, alcohol consumption, and
ionizing radiation can increase the likelihood of breast carcinogenesis [26]. Importantly,
iron overload renders postmenopausal women more susceptible to breast cancer develop-
ment by initiating and promoting oxidative stress [25,27]. A recent study has shown that
an elevated iron levels within the inflammatory microenvironment of breast tissue may
contribute to the progression and metastasis of breast cancer [28].

Heme iron, exclusively obtained in animal flesh, is found to have a more damaging
effect on human health. A systematic review and meta-analysis by Chang and collaborators
(2019) [21] showed a significant association between intake of heme iron and increased
risk of breast cancer with a pooled relative risk (RR) of 1.12 (Pheterogeneity = 0.15; 95%
confidence interval (CI): 1.04–1.22). Each 1-mg/day increase of heme iron was also sig-
nificantly associated with an 8% increased risk of breast cancer with a pooled RR = 1.08
(Pnonlinearity = 0.41 and 0.46 for dietary and total iron, respectively; 95% CI: 1.002–1.17). Ad-
ditionally, heme iron intake showed a marginally stronger association with premenopausal
(pooled RR = 1.21, Pheterogeneity = 0.05, 95% CI: 0.97–1.51) breast cancer when compared
with postmenopausal (pooled RR = 1.08, Pheterogeneity = 0.28, 95% CI: 0.99–1.18) cancer.
However, significance was not achieved between the groups.
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Figure 2. The relationship between estrogen and iron in breast cancer development. Superoxide
radicals are formed during the redox cycling of estrogens to semiquinones and quinones, which
reduce ferritin bound Fe3+ to Fe2+, thus releasing iron from ferritin storage sites. This free iron is
responsible for creating oxidative DNA damage and breast carcinogenesis by creating hydroxyl free
radical (OH.) from H2O2. The use of iron chelators like deferoxamine (DFO) and deferasirox (DFX)
may halt the generation of oxidative stress followed by breast carcinogenesis [21,27].

1.3. Breast Cancer and Organotrophic Metastasis

Breast cancer has emerged as a prominent global health concern because of its preva-
lence among women. According to data from the International Agency for Research on
Cancer (IARC), 2.3 million new cases of female breast cancer have been reported with a
death rate that is also higher than other cancers. With the advancement of science and
technology, early diagnosis and effective treatment strategies have been shown to combat
this disease. However, 5–10% of breast cancer patients at their early diagnosis are found to
have metastatic disease, and 20–30% of patients have an increased chance of breast cancer
recurrence over time [29,30].

There are several risk factors that can contribute to breast cancer. These include
ethnicity; hormones; and reproductive, genetic, and environmental factors as well as
lifestyle factors [31,32]. Research focusing on the genetics of breast cancer has found that
cell proliferation-governing genes such as TP53, MYC, RB1, JUN, BRCA1, BRCA2, and
CDK2A are associated with this disease [32,33]. Morphological and biological studies on
breast cancer cells have also revealed that the tumors are heterogeneous in nature, hence,
the differentiation in clinical symptoms and treatment strategies that are observed [34].

Distinct cellular subtypes of breast cancer, according to latest intrinsic molecular sub-
typing based on gene expression profiling [35], are presented in Figure 3. All of these
subtypes can metastasize from the primary tumor to other target organs. This process,
termed ‘organotrophic metastasis’, depends on the tumor subtype and the microenviron-
ment of the tumor and the other target organs. This metastasis can affect bone, liver, and
lungs as well as remote lymphatic glands. The prediction of biological indication, the devel-
opment of therapeutic strategies, and, ultimately, ensuring patient survival depend on an
understanding of organotrophic metastasis. A pre-metastatic niche (PMN) is created when
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the host microenvironment adapts to changes in order to facilitate tumor growth. Moreover,
this interaction of tumor cells with distant tissues also involves the host’s extracellular
matrix (ECM) [33].
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1.4. Global Trends in Breast Cancer Rates

According to the World Health Organization (WHO), breast cancer was the leading
cause of mortality (a total of 10 million deaths in 2020) with a 2.3 million new cases [37].
Female breast cancer has exceeded lung cancer as the most frequently detected cancer,
with an estimation of 2.3 million new cases (11.7%). The global breast cancer mortality is
685,000 [30].

The incidence rate of breast cancer is documented to be 20 times greater in higher-
income countries compared with low- to middle-income countries. During the year 2016,
there were approximately 719,000 cases of breast cancer in high-income countries compared
with the 37,000 cases reported in the low- to middle-income countries [38]. This study used
data from 1990 to 2016, comprising 195 countries that were categorized into five Sustainable
Development Index (SDI) levels. However, women in higher-income countries have access
to increased mammographic screening, which increases the rate of early cancer detection.
The National Comprehensive Cancer Network suggests annual mammography as well as
clinical breast examinations every six months [39].

North America, Australia, New Zealand, and parts of Europe have an 88% higher
incidence of breast cancer than other regions, yet lower- and middle-income countries have
a 17% higher mortality rate due to a lack of medical resources [30]. Women living in urban
areas with better socioeconomic standing will have more treatment options in comparison
with women living in rural areas.

In South America, breast cancer is the leading cause of death, with over 30,000 cases
a year, and it is considered a public health crisis. This is due to gaps in breast cancer
awareness and low mammography screening [40]. In the Asia-Pacific region, countries
such as China, Mongolia, and Vietnam have lower mortality rates compared with Singapore
and Malaysia, which have rates comparable with the US and Australia [41]. In India, cases
of breast cancer are diagnosed at a later stage. Much of the care a woman will receive
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in India also depends on her access to an oncologist [40]. Similarly, in Bangladesh, most
patients are diagnosed when the cancer has reached an advanced stage due to the lack of
awareness and inadequate access to health care facilities. Such late-stage presentation leads
to increased rate of morbidity and mortality [42]. A great number of Bangladeshi women
are completely ignorant to and unaware of their disease and subsequent health information
due to cultural and societal norms that consider it a social disgrace to talk about sexual
organs and diseases related to such organs [43]. This is also the case in Africa, where there
are large rural populations with limited access to health care facilities. Many communities
in South Africa attach a social stigma to breast cancer. Because of the strong community ties
in many rural areas, screening, diagnosis, and treatment are often community decisions [40].
This is significant because from the 1990s to the 2010s, sub-Saharan Africa saw a rapid
increase in breast cancer rates and mortality [30].

1.5. General and Targeted Therapies of Breast Cancer

The treatment options (Table 1) for breast cancer are commonly dependent on the pres-
ence of tumor, lymph node involvement, metastasis, staging, histological grade, hormone
receptor status, ERBB2 (formerly HER2 or HER2/neu) overexpression, and menopausal
status. Different groups of antineoplastic agents are used for treating breast or other can-
cers. These include alkylating agents, antimetabolites, cytotoxic antibiotics, and mitotic
inhibitors. The categories of alkylating agents include nitrogen mustards, nitrosoureas,
alkylsulfonates and platinum coordination complexes. Methotrexate and 5-flurouracil are
antimetabolites that are widely used for the treatment of cancers. Several anthracycline
antibiotics (doxorubicin, bleomycin, dactinomycin, etc.) are also used as anticancer drugs.
Taxanes such as docetaxel and paclitaxel are the mitotic inhibitors most often used to treat
breast and other cancers [44].

Early-stage breast cancer treated by radiation therapy followed by breast-conserving
surgery has the highest success rates in women [45]. Many countries rarely treat post-
menopausal women with endocrine therapy because of its undesirable side effects. How-
ever, in the USA, the hormone therapy rate is higher [46]. Randomized controlled clinical
trials have shown that the use of tamoxifen or aromatase inhibitors is beneficial for women
who have a high risk of breast cancer [47].

Table 1. Treatment Options for Breast Cancer.

Cancer Stage Stage 0 Stage I &
Stage II Stage III Stage IV Reference(s)

Cancer Type
Lobular
carcinoma
(in situ).

Ductal
carcinoma
(in situ).

Early stage
invasive
carcinoma.

Locally
advanced
noninflammatory
carcinoma.

Locally
advanced
inflammatory
carcinoma.

Initial or recurrent
metastatic
condition.

[45]

Primary Therapy NT or PT +
TXF. BCS&RT BCS & RT.

Ind. Chemo. +
BCS.
& RT.

Ind. chemo. +
mastecto
my
& RT.

RT. [45,51]

Adjuvant
Therapy

Negative
hormone
receptor

Chemotherapy. Ind. chemo.
& ET. Chemotherapy. [45]

Positive
hormone
receptor

Chemotherapy
& ET.

Ind. chemo.
& ET. ET+/chemotherapy. [45,51]

ERBB2 Overex-
pression

Chemotherapy.
&TRA
(Herceptin).

Ind. Chemo.
& TRA. TRA+/chemotherapy. [45,52]

Here, NT = No Treatment; PT = Prophylaxis Treatment; TXF = Tamoxifen; BCS = Breast conserving surgery;
RT = Radiation Therapy; Ind. Chemo. = Induction Chemotherapy; ET = Endocrine Therapy; TRA = Trastuzumab;
ERBB2 = Erythroblastic Oncogene-B 2, a gene isolated from avian genome.

Targeted cancer therapies are used when breast tumor cells exhibit particular charac-
teristics, for example, a gene or a factor that allows the cancer cells to grow in a rapid or
irregular way [48]. These therapies are less likely to damage healthy cells in comparison
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with conventional chemotherapy. Several targeted therapeutic agents have already shown
their effectiveness and are widely used as targeted treatments for the treatment of breast
cancer [49,50]. The following medications have already shown their effectiveness as a
targeted treatments:

1. Inhibitors Targeting Protein Kinase B (Akt)/Phosphatidylinositol 3-Kinase (PI3K)/
Mammalian Target of Rapamycin (mTOR) Pathway

2. Cyclin-Dependent Kinases 4 and 6 Inhibitors (CDK 4/6 Inhibitors)
3. Poly (ADP ribose) Polymerase (PARP) Inhibitors
4. Tyrosine Kinase Inhibitors
5. Vascular Endothelial Growth Factor-A Inhibitors

The current multimodal approach employed for breast cancer treatment has undoubt-
edly improved the overall survival of patients and has greatly improved their quality of
life [53]. However, be it conventional chemotherapy, targeted therapy, or immunother-
apy, none are free from limitations. The conventional chemotherapeutic agents, including
platins, anthracyclins, and taxanes, apart from causing blood and bone marrow toxicities,
can also give rise to various types of cardiotoxicity, thus limiting their use, particularly
in patients with cardiac dysfunction [54]. Trastuzumab is only effective for the treatment
of ERBB2-overexpressing tumors, which are a minority of breast cancer cases [55]. Tar-
geted cancer therapy including tyrosine kinase inhibitors (e.g., gefetinib, erlotinib) and
aromatase inhibitors (e.g., anastrozole, letrozole and exemestane) have shown toxicities
and low clinical efficacy, thus necessitating the use of combination therapy [56]. Cancer
immunotherapies, including immune checkpoint inhibitors such as pembrolizumab, ipili-
mumab, and atezolizumab, only demonstrate clinical usefulness for a few specific types of
breast cancer [53].

Considering the limitations of current therapeutic approaches, it is important to
develop alternative therapies that would give additional benefit to breast cancer patients
without serious toxic side effects. Therefore, in this review, we present iron chelators
as an effective alternative treatment modality for breast cancer alongside conventional
chemotherapeutic agents.

2. A Summary of a Search of Literatures/Records

The PubMed and Google Scholar search parameters were set to the last 20 years.
The search was performed from March 2021 to May 2022, with the last search being
performed on 28 May 2022. The strategy involved searching the databases using the
following Medical Subject Heading (MeSH) terms: ‘breast cancer’, ‘invasive breast cancer’,
‘targeted therapy’, ‘cancer stages’, ‘cancer type’, ‘primary therapy’, ‘iron overload’, ‘iron
chelator’, ‘deferoxamine’, ‘deferasirox’, ‘NF-κB’, and ‘ROS’. A total of 333 records were
identified. After the removal of 249 records due to irrelevant study design and duplication
of information, 84 papers were included for this review (Figure 4). The inclusion criteria
for the records were original articles, review articles, and websites focused on breast cancer
diagnosis, prognosis, treatment, recent discoveries, and clinical case studies.
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Figure 4. A summary of the literature search.

3. Iron Chelation in Treating Cancers

Neoplastic/cancer cells have a higher requirement for iron due to their continuous
and rapid proliferation [57]. In order to do that, the cancer cells alter iron homeostasis for
encountering this excessive demand [4]. Compared with the untransformed cells, cancer
cells require an increased amount of iron for their metabolic functions. They use several
mechanisms to maintain or increase the amount of iron. The mechanisms include (i) the
upregulation of transferrin receptors which bind with the transferrin binding iron (ferric
iron), (ii) the transportation of ferrous iron into cytosol via divalent metal-ion transporter,
which joins the labile iron pool, and (iii) the decreased expression of ferroportin, which is
associated with the anaplasia of the cancer tissues with the reduction of metastasis-free
survival of patients with breast cancers [19]. This excess iron catalyzes the synthesis of ROS,
which may result in DNA damage, the subsequent loss or inactivation of tumor suppressor
genes, and/or the activation of oncogenes [11]. ROS contributes to the activation of NF-κB,
which is responsible for regulating inflammatory mediators such as TNFα [58]. Addition-
ally, ferritin has a critical role in the mechanism of tumor progression, and the suppression
of ferritin levels thus can kill cancer cells and disrupt the tumor microenvironment [59].
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The increased iron environment safeguards cancer cells from the cytolysis by natural
killer cells, and thereby, apoptosis of the cancer cells is protected. Jiang and Elliott (2017) [60]
reported that an increased iron environment antagonizes NO- and TNFα-associated cyto-
toxicity. Ferritin expression in breast cancer cells is also upregulated. This process can be
reversed if the iron concentration is decreased in the cancer cells. In their experiment, natu-
ral killer cell lines (NK-92MI) were used to co-culture human breast cancer cell lines (MCF-7
and MDA-MB-231) to determine their cytolysis. Increased NO and TNFα were found
during the co-culturing of human breast cancer cell lines with the NK-92MI. Cytolysis in
these cell lines was inhibited after the addition of more iron.

Therefore, iron chelation could be a promising approach to reducing the generation
of ROS and its associated carcinogenicity. Iron chelators such as deferoxamine (DFO) and
deferasirox (DFX) have shown potential antineoplastic activity by limiting iron bioavail-
ability to the malignant cells [9,61,62]. Iron chelators may exert their anticancer potential
by depleting intracellular iron levels, inhibiting DNA synthesis, promoting cancer cell
apoptosis, or causing oxidative stress in the tumor microenvironment [63–65]. Further-
more, the reduction of intracellular iron by iron chelation is able to sensitize breast cancer
cells to chemotherapeutic agents [66]. A recent study in iron-deficient rats reported a
significant reduction in mammary cancer incidence [67]. The effect of iron withdrawal by
chelation has been investigated in triple-negative (TNBC) and hormone-receptor-positive
breast cancer cell lines [68]. Breast cancer cell proliferation was inhibited by iron chelation;
however, iron removal also produces hypoxia and angiogenesis that may promote tumor
progression. The combination of eribulin and iron chelation inhibited the growth of breast
cancer xenografts in mice to a greater extent than monotherapy with eribulin or the iron
chelator. A synergistic effect of DFX is also observed with other chemotherapeutic agents
like cisplatin, carboplatin, and doxorubicin, resulting in the inhibition of cell proliferation,
the induction of apoptosis, and the autophagy of TNBC cells [69]. Another study demon-
strated a disruption of intracellular iron homeostasis when breast cancer cells were treated
with a high dose of the iron chelator DFO [70], resulting in a reduction in cell viability
and growth. In this regard, DFO inhibits DNA synthesis in several cancer cell lines [9].
High-dose DFO also induces apoptosis in both metastatic and nonmetastatic breast cancer
cell lines [71]. It has also been reported that the treatment with DFO increased the NK-92MI
cytolysis in human breast cancer cells [60]. Importantly, monotherapy with desferal (DFO)
at physiologically achievable concentrations significantly inhibits breast cancer cell growth
in vitro, as well as the breast tumor xenograft growth in mice.

Orally active DFX is superior to DFO because of its longer plasma half-life and higher
affinity for iron [72]. Due to its effectiveness and low toxicity, a number of preclinical
and clinical studies have investigated the effectiveness of iron chelation with DFX in
the treatment of cancer [61,72,73]. DFX inhibits DNA synthesis and cellular metabolism,
induces DNA fragmentation, and blocks cell cycle progression during S-phase, as well as
suppressing ROS generation [74,75]. Although there are limited clinical data on the use
of DFX, it is a safe and effective iron chelator and could be a potential chemotherapeutic
candidate [76]. Both DFO and DFX reduce levels of ROS, NF-κB, and ferritin in association
with a reduction in the labile iron pool [9,77]. Therefore, iron chelators may have potential
benefits in decreasing the uptake of iron by breast cancer cells along with other cancer cell
types. However, as iron withdrawal tends to inhibit intracellular ROS production, it is
important to exercise caution when using iron chelators in combination with treatment
modalities that rely on the ROS-mediated destruction of cancer cells.

4. Dual Roles of Iron in Cancer

The potential use of iron modulation as a treatment for breast cancer, although promis-
ing, is not at all straightforward. Iron withdrawal via selective chelation and the subsequent
decrease in intracellular iron inhibits cancer cell growth and spread to distant parts of the
body, as well as inducing cancer cell death by apoptosis, since the increased uptake and
reduced export of iron are a requirement for the rapid division and metastasis of cancer
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cells, as well as their survival [78]. On the other hand, intracellular iron levels that allow
for the generation of toxic levels of ROS determine whether a cancer cell is susceptible
to a form of iron-dependent regulated cell death known as ferroptosis [79]. Moreover,
under some conditions, iron deficiency can promote cancer cell invasion and migration
by mimicking hypoxia [80], and certain types of ROS can also promote metastasis [81].
The subcellular localization of iron within cancer cells may contribute to the diverse and
sometimes conflicting effects of iron modulation.

The primary route for the transport of iron into cancer cells is via the endocytosis of
transferrin receptors that have bound iron-carrying transferrin. The acidic environment of
the endosomes causes iron to dissociate from transferrin followed by divalent metal ion
transporter 1-mediated export into the intracellular labile iron pool, where it is available for
use, storage, or export by ferroportin. Intracellular iron is utilized within the mitochondria,
nucleus, and cytoplasm. Mitochondrial iron is required for the synthesis of heme and
Fe-S clusters involved in ATP production [82]. In the cytoplasm and nucleus, iron is a
critical cofactor for the activity of many enzymes, including deoxyhypusine hydroxylase
and ribonucleotide reductase [83,84]. Excess iron is safely stored in different cellular
compartments, primarily in the form of ferritin, until released as required. Intracellular
iron that exceeds the cell’s storage capacity leads to the Fenton reaction-induced generation
of ROS that can promote cancer-causing mutations, leading to cancer progression or, if ROS
levels are high enough, cytotoxicity. Restricting the availability of extracellular iron via
chelation causes a reduction in the intracellular labile iron pool, leading to mitochondrial
dysfunction and the impaired activity of enzymes involved in cancer cell survival, growth,
and metastasis. Iron deficiency will also inhibit ROS generation by the Fenton reaction,
thereby interfering with carcinogenesis and cancer progression, although at the same time
rendering the cancer cell less susceptible to ferroptosis. In addition, iron deficiency can
promote neo-vascularization due to hypoxia-inducible factor 1a (HIF1a) expression and
stabilization [80], as well as causing the production of mitochondrial ROS that enhances
cancer cell invasion and migration [81]. In this way, limiting iron availability to cancer cells
has the potential to promote metastasis.

Although the use of iron chelators to restrict cancer cells’ utilization of iron clearly
shows potential as a treatment for breast cancer and other cancers, a case can also be made
for iron-loading to induce ferroptosis in cancer cells. A better understanding of altered iron
metabolism in breast cancer cells is needed to effectively implement iron modulation as a
strategy for cancer treatment.

5. Conclusions

To decrease breast cancer morbidity and mortality, proper management and treatment
should be provided to patients following early diagnosis. Conventional and targeted
treatment of breast cancer may reduce patient morbidity; however, the cost of breast cancer
management can be very high, particularly with the targeted treatments. The expense of
breast cancer treatment serves as a barrier to pursuing medical intervention, particularly
in patients who live in developing countries. It is therefore important to pursue a simple
strategy for treating patients with breast cancer. Iron is a precipitating factor in breast
cancer cell growth and multiplication, which may lead to metastasis. Excess iron along
with the disruption of intracellular iron metabolism by estrogen also plays a major role in
the development and progression of breast cancer. Iron withdrawal may have the benefit
of preventing cancer cell growth, as well as reducing inflammation by suppressing the
generation of ROS. Therefore, iron chelators can have a major role in addition to other
therapeutic approaches for the management of breast cancer. However, iron chelation can
only be considered as a therapeutic strategy after the confirmation of its efficacy and safety
in randomized controlled trials.
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