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ABSTRACT

The objective of this new paper was to evaluate the enzymatic esterification reaction conducted in
supercritical or near-critical CO,, catalyzed by immobilized lipase B from Candida antarctica (CALB). The
biocatalyst was prepared through the immobilization of CALB by covalent attachment using chitosan
sequentially activated with Glycidol, ethylenediamine (EDA) and glutaraldehyde as support. In order to
determine the best operational conditions of the esterification reaction (1: 1 (alcohol-acid); biocatalyst
content, 10% (by substrate mass); 45 °C), an experimental design (23) was conducted to evaluate the
effects of the following parameters: alcohol to oil molar ratios, reaction time and temperature. The
maximum loading of chitosan was 20 mg protein/g support, and the thermal and solvent stability of the
new biocatalyst was higher than that of the CALB-GX (by a 26-fold factor), CALB-OC (by a 53-fold factor)
and Novozym 435 (by a 3-fold factor). The maximum conversion was 46.9% at a temperature of 29.9 °C,
ethanol to oleic acid molar ratio equal to 4.50:1, and a reaction time of 6.5 h. Additionally, the removal of
water from the medium, by using molecular sieves, promoted a 16.0% increase in the conversion of oleic
acid into ethyl esters.
© 2017 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Over the past three decades, the use of carbon dioxide as

to obtain these compounds is by transesterification process, e.g.,
the most popular method of producing biodiesel (mixture of
mono-alkyl esters) from vegetable oils (triglycerides) [10].

supercritical media (ScCO;) has been pointed out as an alternative
to the use of conventional solvents in the production of compounds
of high economic value [1-4]. Carbon dioxide presents interesting
characteristics, such as being nontoxic, nonflammable, low cost,
available in large quantities, tunable between solvent properties
and solvation, and relative low critical properties [5,6]. Addition-
ally, ScCO, has a high diffusivity, for this reason it could be easily
separated from the reaction media [7,8].

Esters are compounds obtained usually by esterification
reaction from a carboxylic acid (organic or inorganic) and an
alcohol (low or high molecular weight) [9]. Another important way
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Esterification and transesterification processes use chemical or
enzymatic methods to obtain esters. In this work, the enzymatic
method was analyzed, as this permitted to label these as green
products.

Esters production is widely distributed in many fields, like
fragrances and flavors used in the food [11], cosmetic [12],
pharmaceutical (acetylsalicylic acid, benzocaine, etc.), resin,
solvents and biolubricant industries [13].

The yield of production of esters via esterification by enzymatic
protocols depends of several parameters, such as, the enzyme itself
(determine the feasibility of the process), the type of support and
immobilization method, as well as medium reaction conditions
[14]. Main reaction conditions are temperature, pH, acid-alcohol
ratio, enzyme concentration and water content (subproduct of the
reaction).
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The enzymatic synthesis of esters of fatty acids using
supercritical CO, is an environmentally friendly strategy [15].
With this in mind, in this work, the synthesis of ethyl-oleate, which
is a model system [16,17], was investigated using lipases. Lipases
are one of the most important enzymes in biocatalysis [18], since
they can be used in a wide range of industrial applications:
modification of oils and fats, synthesis of organic compounds[19],
supplements and detergents [20], in analytical procedures [21],
foods and pharmaceutical processing [22,23], and in the produc-
tion of biofuels (transesterification and/or esterification processes)
[24].

It is important to mention that the use of enzymes in industrial
applications could be enhanced by immobilization onto a solid
supports [25-27]. A proper immobilization may improve enzyme
stability, and also some other parameters like activity, selectivity,
etc., [28-30], sometimes coupling immobilization to purification
[31].

For these goals, the support surface is very relevant to
determine the final properties of the immobilized enzyme [32].
In light of this, lipase B from Candida antarctica (CALB) has been
selected, due to its spread use in processes involving enzymatic
synthesis [33,34]. The enzyme has a small lid that does not fully
seclude the active center from the medium [35].

In this work, we have explored the possibility of using the
chitosan (partially deacetylated chitin) as a support of enzyme
immobilization[36-39]. Chitin is the second most important
natural polymer in the world [40]. The main sources of this
polymer are two marine crustaceans, shrimp and crabs [40].

As immobilization method, we have selected the activation of
the primary amino groups of the support with glutaraldehyde. This
is a very popular and versatile method for enzyme immobilization,
mainly in the case of lipases [41,42]. We have compared this
biocatalyst with two others. The first one, the support was octyl
agarose, a support that immobilizes lipases via interfacial
activation [43] and provides a simple method for the immobiliza-
tion, purification, stabilization and hyperactivation of the lipases
[44]. Finally, glyoxyl-agarose was utilized. This support immo-
bilizes protein via their amino groups and requires the immobili-
zation at alkaline pH values [45], being recognized as one of the
most effective for enzyme stabilization via multipoint covalent
attachment [46].

The resulting biocatalyst was then evaluated in the production
of ethyl oleate in ScCO,. In order to develop a sustainable and
technologically efficient process, the response surface methodolo-
gy (RSM) was used to investigate the effect of operational
parameters (temperature, substrates molar ratios and reaction
time) in the enzymatic synthesis. This statistical method is
specially adequate when some interactions between the different
variables are expected [47-49].

2. Materials and methods
2.1. Materials

Soluble lipase B from Candida antarctica (CALB) (10.9 mg of
protein/mL) was purchased from Codexis (Redwood, USA).
Powdered chitosan, 85.2% deacetylation degree, was purchased
from Polymar Ind. Ltda (Cear4, Brazil). Glycidol 96% GC (2,3-epoxy-
1-propanol), p-nitrophenyl butyrate (pNPB) and p-nitrophenol
(pNP), 4BCL agarose beads and octyl-agarose beads were
purchased from Sigma-Aldrich (St. Louis,USA). Oleic acid and
anhydrous ethanol 99.9% were used as substrates, ethylenedi-
amine and glutaraldehyde solution Grade Il 25% were purchased
from Vetec (S3o Paulo, Brazil). Molecular sieve 4A (Na,O
[Al,05(5-0Si0,)]12H,0) was purchased from W.R. Grace & Co,
(Massachusetts, USA). Carbon dioxide (99.9% purity in the liquid

phase) was purchased from White Martins S.A. (Cear4, Brazil). All
reagents and solvents were of analytical grade, and it they have
been used without any further purification.

2.2. Preparation and modification of chitosan support for enzyme
immobilization

In this work, 4.0 wt.% chitosan was used for CALB immobiliza-
tion [50], after being activated with glycidol, oxidized with
sodium periodate, modified with ethylenediamine (EDA) and
finally activated with glutaraldehyde (Silva et al., 2012; Neta et al.,
2012). The support prepared by using this procedure was here
named chitosan-glyoxyl-EDA-glu. Activation of chitosan with
glycidol was carried out by etherification and further oxidation
with sodium periodate [51]. Then, 10g of Chitosan-Glyoxyl gel
was reacted with 40 mL of a 2M ethylenediamine solution, pH
10.0 [52]. Finally, 9 mL of sodium bicarbonate buffer, pH 10.0 [38],
containing 5% (v/v) of glutaraldehyde [38], was added to 1g of
chitosan-Glyoxyl-EDA. The mixture was kept under agitation for
60 min at 25°C. After this time, the support was washed with
distilled water to remove the excess of activating agent.

2.3. Preparation of glyoxyl-agarose beads

The activation of agarose beads was performed according to the
procedure described in [45]. The gel was suspended in 1 M NaOH
and 0.5M NaBH4 2:1 (v/v). These reducing conditions prevent
uncontrolled oxidation of the gel by the alkaline conditions. While
keeping this mixture in an ice bucket, glycidol was added drop wise
in order to reach a final concentration of 2M. The obtained
suspension was gently stirred overnight at 22 °C. The modified gel
was then washed with abundant distilled water, filtered and then
incubated in an aqueous solution (300 mL) containing 60 pmol
NalOy4/g gel in order to achieve glyoxyl groups. This oxidative
reaction was allowed to proceed for 2-3 h under mild stirring at
room temperature [53]. Finally, the support was washed with
distilled water and stored at 4°C.

2.4. Immobilization of CALB on chitosan-GLYOXYL-EDA-GLU

CALB immobilization onto chitosan-GLYOXYL--EDA-GLU
(CALB-CH) was carried out in a batch reactor, under gentle
agitation, at 25°C, by contacting the enzyme in 100 mM
bicarbonate buffer, pH 10.0, and the previously activated support,
for 5 h. Initially, the immobilization was carried out using 20 U/g of
support (1 mg of protein per g of wet support) to prevent diffusion
limitations that could alter the results. Immobilization parameters
were calculated by determining hydrolytic activities of superna-
tant during the process. A blank assay was also conducted to
evaluate a possible enzyme deactivation under the immobilization
conditions. For this purpose, a solution of CALB was placed in a
reactor under the same conditions of immobilization, but in the
absence of support.

After measuring the initial (Ati) and the final (Atf) enzyme
activity in the supernatant, the immobilization yield was
calculated by using Eq. (1), as indicated by [38].

At; —

Aty
A 100 (1)

IYimob(%) =

The theoretical activity (At,) of immobilized lipase on the
support could be calculated by using the amount of enzyme
offered/g of support (At — U/g support) and the immobilization
yield, as can be seen in Eq. (2). After measuring the activity of the
immobilized enzyme (Atq — U/g support), the recovery activity was
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calculated by using Eq. (3):

Ate = IY - Aty (2)
Aty
Atr_A—tt-100, 3)

2.5. Immobilization on glyoxyl-agarose beads (GLX-support)

A 10 g of support was suspended in 100 mL of CALB solution
(20U/g support) (1 mg of protein per g of wet support) in 100 mM
sodium carbonate at pH 10 and 25 °C for 72 h [54]. Derivatives were
then reduced by addition of solid NaBH4 (0.1% (m/v)) [54]. After
gentle stirring for 30 min at room temperature, the resulting
derivatives were washed with abundant distilled water to
eliminate residual sodium borohydride.

2.6. Immobilization of CALB on octyl-agarose beads (OC-support)

The immobilization was performed using 1 mg of protein per g
of wet support as previous described [44]|. The commercial
samples of the enzymes were diluted in the corresponding volume
of 5mM sodium phosphate at pH 7. Then, the support was added.
The activity of both supernatant and suspension was followed
using pNPB. After immobilization the suspension was filtered and
the supported enzyme was washed several times with distilled
water.

2.7. Lipase activity and protein concentration

The hydrolytic activity of soluble and immobilized CALB was
determined according to a methodology previously described by
Bhatnagar [55] with slight modifications pointed below. Assays
were performed in a spectrophotometer (Thermo Scientific-
Analytics) at 400nm with temperature and agitation control.
Activity measurements were performed in 25mM sodium
phosphate at pH 7.0 and 25°C, determining the released p-
nitrophenol in the hydrolysis of 0.4 mM pNPB (¢=10.052M~'cm™!
under these conditions). To start the reaction, 30-200 L of lipase
solution or suspension was added to 2.5 mL of substrate solution.
One international unit of activity (U) was defined as the amount of
enzyme that hydrolyzes 1 mol of pNPB per minute under the
conditions described previously. Protein concentration was deter-
mined using Bradford's method [56] and bovine serum albumin
was used as the reference.

2.8. Thermal inactivation of derivatives

To check the stability of the different enzyme derivatives, 1 g of
biocatalyst was suspended in 5 mL of 10 mM of sodium acetate at
pH 5, sodium phosphate at pH 7 or sodium carbonate at pH 9 at
different temperatures. Periodically, samples were withdrawn and
the activity was measured using pNPB. The deactivation constant
and half-life time for each immobilized derivative were calculated
according to the Sadana and Henley model [57] using Microcal
Origin version 8.1.

2.9. Stability assays of derivatives in the presence of dioxane

Enzyme preparations were incubated in mixtures of 70%
dioxane/30% 100 mM Tris at pH 7 and at different temperatures
to proceed to their inactivation. Periodically, samples were with-
drawn and the activity was measured using pNPB. The deactivation
constant and half-life time for each immobilized derivative was

calculated according to the Sadana and Henley model [57] using
Microcal Origin version 8.1. The dioxane present in the measure-
ment samples had not a significant effect on enzyme activity
determination.

2.10. Support CALB loading capacity

The loading capacity of the support was investigated by offering
different amounts of protein per g of support. The amount of
protein ranged from 0.5 to 25 mg protein/g support.

2.11. Supports scanning electron micrographs

The morphology surface of the supports were observed by
scanning electron microscopy (SEM) using the JEOL equipment
(JSM 35C model). In this stage, drops of suspension in water of each
sample were placed on sample holders (metallic stubs) and dried
within silica gel dryer at room temperature for 24 h, followed by
coating with gold using a standard sputtering technique.

2.12. Esterification reactions in supercritical carbon dioxide

The enzymatic production of ethyl oleate from oleic acid and
ethanol in supercritical carbon dioxide was conduceted in batch
mode, using a 13 mL stainless steel reactor placed in a thermostatic
bath. For each run, the reactor was packed with 10% w/w of
immobilezed enzyme, based on the mass of fatty acid used [6],10 g
of oleic acid and the desired amount of ethanol. First, the system
was pressurized to an initial pressure of 100 bar at 25 °C, using CO».
After that, the temperature was adjusted according to the desired
reaction conditions and the reaction was initiated. Samples were
withdrawn from the reactor at the end of pre-determined times in
order to calculate oleic acid conversion.

A central composite rotatable design (CCRD) was used to
evaluate the effects of temperature, molar ratio of substrates and
reaction time on fatty acid ethyl ester conversion (response). The
variables and their levels were selected based on the literature
[58-61], as it could be observed in Table 1.

The removal of water during the esterification of oleic acid by
CALB immobilized on chitosan was also evaluated under the
optimized reaction conditions. The synthesis of ethyl oleate in the
presence or absence of the molecular sieve as a function of time
was compared.

2.13. Analysis

2.13.1. Physical and chemical characterization of oleic acid and ethtyl
oleate

The characterization of oleic acid (substrate) and ethyl esters
(product) obtained by esterification was carried out by different
analytical methods, suggested by the American Oil Chemists
Society (AOCS) and the American Society for Testing Materials
(ASTM), as well as by gas chromatography (GC-MS).

The analysis of GC-MS was performed with a Thermo Trace GC
Ultra instrument coupled with a Thermo DSQ Il mass spectrometer
Saturn 2000 MS/MS, equipped with a flame ionization detector
(Thermo Fisher Scientific, Texas, USA). A capillary column BPX5

Table 1

Experiments design. Experiments were performed as described in Section 2.
Variables Code - 168 -1 0 +1 +1.68
Temperature (°C) X1 29.9 35 425 50 55.1
Reaction time (hours) X2 0.6 3 6.5 10 124
Molar ratio ethanol: fatty acid x3 1.1 25:1 451 651 79
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SGE (30m x 0.25mm x 0.25 um) was used to separate the fatty
acid ethyl esters. The injector and detector temperature was set to
250°C and the column temperature was programmed to increase
from 110 °C to 215 °C (at rate of 5°C min~') remaining at 215 °C for
24 min.

Free fatty acids were determined by using the AOCS official
method Ca-5a-40 [62]. The determination of the iodine index was
conducted by Winkler's Bromate Method, AOCS Cd1-25 [62].
Density and viscosity was determined according to ASTM D-4052
[63], while moisture has been determined in according to ASTM D-
1744A [63]. Acidity was determined by the method AOCS Cd3d-63
[62].

2.13.2. Substrate conversion

The acidity index is an indication of the reaction performance,
corresponding to the decrease of fatty acids concentration in the
oil, due to the esterification|61].Therefore, substrate conversion
was calculated using this index, determined by the AOCS method
described in 2.4.1, see Eq. (4).

) - (M2 109

where [A, and IAr are the initial and final acidity indexes,
respectively.

4)

2.14. Reuse of the immobilized enzyme

After the esterification reaction in ScCO,, the immobilized
enzymes were separated from the reaction medium by vacuum
filtration using a sintered glass funnel. The biocatalyst was washed
3 times with hexane to dissolve and remove any residual reaction
product from the support, and allowed to stay in the vacuum
system for 30 min to ensure its dryness.

e
Image 6000x ™

3. Results and discussion
3.1. Scanning electron microscopy of supports

The analysis in scanning electron microscopy highlights the
details of the surface texture of support before and after treatment
and CH-CALB preparation as can be seen in Fig. 1. In panel A, it is
possible to notice an irregular surface of the initial chitosan support,
with few pores. After treatment with glycidol, EDA and glutaralde-
hyde, panel B, there is a distinct surface with larger pores. After
enzyme immobilization, panel C, the support surface is covered with
small beads, very likely formed by protein aggregates confirming the
presence of high amounts of immobilized enzyme on the support.

3.2. Biocatalyst preparation: lipase immobilization

In this work, different biocatalysts were prepared by the
immobilization of soluble enzymes. The advantage of the
immobilization of the enzymes for the heterogeneous catalysis
is a probable increase of the catalytic area.

CALB was immobilized onto chitosan-GLYOXYL-EDA-GLU
(CALB-CH) and the results obtained in the immobilization process
are shown in Table 2. A high immobilization yield was achieved
(94.7%). According to the literature [41], glutaraldehyde activated

Table 2

Immobilization parameters of CALB-chitosan derivatives: recovery activity (At;),
immobilization yield (1Y), enzyme activities of the supernatant (soluble enzyme)
before (At;) and after (Atg) immobilization, and derivative activity (Atq). Experiments
were performed as described in Section 2.

At (U/g) At (U/g)
1895+0.92  0.85+0.07

Atq (U/g) 1Y (%)
573+059  94.70+137

Aty (%)
30.20+2.86

Fig. 1. Scanning electron micrographs of support. (A) Support chitosan no treatment; (B) Support chitosan-glyoxyl-EDA-glu. (C) Preparation Chitosan-glyoxyl-EDA-glu-

CALB. Experiments were performed as described in Section 2.
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supports may immobilize CALB via a triple mechanism: ion
exchange, interfacial activation and covalent attachment and, so a
large amount of enzyme rapidly binds to the support, promoting an
increase in the IY and in the activity of the immobilized enzyme.
Nevertheless, it is important to stress that a moderate value of
recovered activity (30.2%) was obtained. Several possibilities may
be used to explain this result. For instance, the enzyme, by binding
to the CALB-CH, may suffer distortions in its structure (Fig. 2),
leading to a decrease of catalytic activity [64]. Fig. 2 shows the
model structure of the open form of CALB in the area surrounding
the active center, with all the reactive groups marked. It is clear
that CALB has many reactive groups on this area that may provide
the enzyme covalent immobilization. On the other hand, it is
possible that some protein molecules may still be desorbed during
washes from the support by not reacting in a covalent way with the
glutaraldehyde molecules.

The use of GX-agarose to immobilize proteins requires the
simultaneous involvement of several amino groups of the protein
[45,51]. Using this support to immobilize CALB, around 45% of the
offered activity was immobilized after 72 h, while the activity of
the suspension remained almost unaltered. Therefore, GLX-CALB
was prepared for further comparisons with chitosan biocatalysts.

Using OC-agarose beads, immobilization was very fast [44].
CALB activity remained almost unaltered after immobilization on
octyl, very likely due to the very small lid that does not fully
seclude the active center from the reaction media [35].

The properties of CALB-CH preparation were compared to those
of CALB-OC and CALB-GX derivatives.

3.3. Thermal stability of different CALB preparations under different
experimental conditions

Table 3 shows the half-lives of soluble CALB, CALB-CH, CALB-
0C, CALB-GX and Novozym 435 at pH5.0, pH7.0 and pH9.0 at 65 °C.
All immobilized preparations are more stable than the soluble
enzyme.

The covalently immobilized preparations were less thermosta-
ble than CALB-OC, this fact is associated with the high stability of
the open form of the immobilized enzyme stabilized by adsorption
|65,66] and the low density of lysine on the surface of the enzyme
(Fig. 2). Similar results were found using this lipase and supports

Lys-271

activated with divinylsulfone, even although an intense multipoint
covalent attachment could be expected using this support [67,68].

Focusing on the chitosan preparations, at pH 5 the CALB-CH
preparations were more stable than CALB-GX one by a 4-fold
factor, however, as can be seen in Table 3, they were two times less
stable than CALB-OC preparation. When compared with Novozym
435 they were three times more stable. At pH7, the CALB-CH
preparations were twice more stable than the CALB-GX, but when
compared with CALB-OC preparations, this preparation was less
stable by a factor of 2. When compared with Novozym 435 they
have similar stability. The CALB-CH preparations showed similar
stability when comparing the preparations of CALB-GX and CALB-
OC at pH 9. When compared with Novozym 435 they were four
times more stable.

These differences in relative stability may be related to the
implication of different areas of the enzyme in the immobilization
on the different supports, most considering that at each pH value
the conformational changes involved in enzyme inactivation have
been shown to be very diverse [69].

The different immobilization strategies must be evaluated for
stability results. Focusing on the data Novozym 435, is a
commercially available heterogeneous biocatalyst system that
consists of (CALB) immobilized within a macroporous resin
(Lewatit VP OC 1600) poly(methyl methacrylate-co-divinylben-
zene). Comparing with the biocatalyst prepared in our manuscript,
first, the immobilization strategy that we use in this work, the
multi-point covalent bond to stabilize the enzyme in the support,
and this technique is considered as the best strategy of
immobilization of enzymes by many authors [28,29,70,71], since
it allows the stabilization of the enzyme in the open conformation.
More active, providing greater rigidification in the enzyme in the
support, avoids leaching, keeps the enzyme active for longer, this is
important for the reuse of the biocatalyst.

3.4. Stability in organic solvents

Table 3 shows the stability of soluble CALB, CALB-CH, CALB-OC
and CALB-GX in 70% dioxane. The soluble enzyme exhibits very low
stability, and after about 1 min under the experimental conditions
the activity was full destroyed.

Lys-308

Active site

Fig. 2. 3D surface structure model of open form of CALB (PDB code 1TCA). The 3D surface structure was obtained using PyMol vs 0.99.
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Table 3

Half-lives (expressed in minutes) of the different CALB preparations under different inactivation conditions. Experiments were performed as described in Section 2.

Preparation pH 5.0, 65°C pH 7.0, 65°C pH 9.0, 65°C 70% Dioxane, 25°C, pH 7.0
Soluble enzyme 5.0+1.0 3.0+£0.5 2.0+0.5 1.5+0.5

CALB- CH 42+2.0 23+15 12+3.0 8.0+1.0

CALB-GX 10+15 11+15 12+15 0.28 +£0.03

CALB-OC 77+3.0 47+2.0 15+1.0 0.15+0.03

Focusing on the chitosan-preparations, CALB-CH was more 26
times more stable than CALB-GX. When compared to CALB-OC,
CALB-CH was more stable by a factor of 53 times, and was more
stable by a factor of three times than Novozym 435. The low
stability of OC-CALB and Novozym 435 in organic medium has
been explained by the weakening of adsorption interactions
between enzyme and support in the presence of the organic
medium, that may permit the enzyme desorption [54].

3.5. Loading capacity

Fig. 3 shows that CH allows immobilizing approximately
20.0 mg of CALB/g of support. Using enzyme loading lower than
20mg/g support of the enzyme, the enzyme is almost fully
immobilized. The loading capacity of the new support was the
same than using octyl agarose support (20 mg per wet gram using
CALB). In any case, the loading capacity of the chitosan is
satisfactory.

3.6. Reactions in ScCO,

The literature reports different temperatures for the use of
lipases in the synthesis of ethyl oleate: 37 °C[38],40°C[72], among
others. Therefore, the reaction was conducted at a two different
temperatures (30 and 50°C). The conversion values for the
synthesis of ethyl oleate are given in Fig. 4. A negligible influence
of temperature on the ethyl oleate synthesis rate could be
observed. In addition, after 10h of reaction, when the reaction
seems to be in equilibrium, the conversion achieved at 50°C was
only 1.13-fold higher than the one achieve at 30°C.

Afterwards, the effect of ethanol to oleic acid molar ratio (2.5:1,
4.5:1, 6.5:1) was investigated at the two temperatures (35 and
50°C) and results are depicted in Fig. 5(A) and (B). It is important to
mention that alcohol in excess (stoichiometric ratio of 3:1) has
been used to ensure a high reaction rate and minimize the
limitations of diffusion using organic solvent or solvent free
medium [73,74]. However, it could be observed that conversion
values are very close, almost independent of the molar ratio
using supercritical medium. In fact, the lowest molar ratios

100
75 1
50 A

25 A

Immobilized Yield, (%)

0 T T r
0 5 10 15 20 25
mg protein / g support

allow achieving the highest conversion rates, suggesting a negative
effect of the alcohol on enzyme activity under these conditions.
This result could indicate that there is no need for a stoichiometric
excess in order to promote the reaction. Similar results were
observed in the literature. For instance, Madras et al. [75] observed
that as the amount of alcohol increased, the conversion into esters
progressed more slowly in the balance and the conversion
increased. These authors also found the existence of an optimum
molar ratio and above that value, the initial rate of reaction was
lower. Wang [76] studying the enzymatic production of biodiesel
from waste oil acids, also found that an excessive amount of alcohol
decreased the initial rate of reaction. This behavior could be
explained by the alcohol inhibition effect [77-79]. Due to high
polarity of short-chain alcohols, such as ethanol, the alcohol can be
adsorbed on the carrier on which the enzyme was immobilized,
removing the layer of hydration of the enzyme, which can promote
its inactivation [58].

3.7. Effect of the operational conditions (temperature, molar ratio and
reaction time) on the enzymatic esterification of oleic acid using
ethanol in ScCO,

In order to find out the influence of the operational conditions
(temperature, molar ratio and reaction time) on the enzymatic
esterification of oleic acid using ethanol in ScCO,, a factorial design
was conducted and the complete design matrix and the results are
shown in Table 4. A Pareto chart is given in Fig. 6. The influence of
the variables and their interactions at a significance level of 85%
could be seen. It could be observed that the reaction time (x,) and
quadratic molar ratio (x32) has significantly influence in the
conversion. Reaction time (x;) is the most significantly variable
among the evaluated ones for the production ethyl esters in
relation to the molar ratio (x3). In the absence of an interaction
effect, the variables can be analyzed separately, so the application
of statistical method revealed that the interactions x;X;, X1X3, X2X3,
are not significant. By multiple regression analysis, using the

50

40

)

204

Conversion (%

0 T T T T T
0 2 4 6 8 10

Time (hours)

Fig. 4. Influence of temperature on enzymatic esterification of oleic acid with
ethanol by supercritical alcohol molar ratio: 6,5:1 oil. Legends: (l) 35°C and (@)
50°C. Experiments were performed as described in Section 2.

Fig. 3. Loading capacity of CHITOSAN-GLYOXYL-EDA-GLU support. Experiments
were performed as described in Section 2.
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Fig. 5. Panel (A): Influence of molar ratio alcohol: acid in the enzymatic esterification of oleic acid with ethanol by means of supercritical fluid at a temperature of 35 °C. Panel
(B): Influence of molar ratio alcohol: acid in the enzymatic esterification of oleic acid with ethanol by means of supercritical fluid at a temperature of 50 °C. Legends: molar
ratio (M) 2.5:1, (@) 4.5:1 and (A) 6.5:1. Experiments were performed as described in Section 2.

experimental results of the full factorial design, a model was set up
for representing the production of ethyl esters, as a function of the
variables, see Eq. (8). In this model, (x1), (x3) and (x3), represents
temperature, reaction time and molar ratio, respectively, as
follows:

Yethylesters = 32.8X1 — 1.47x; +0.94x,% + 10.16x; — 3.41x,% +0.11
X3+3.9X52 +0.21X:X5 — 0.24X1X3 + 0.81X5X5 (8)

The model presented a reasonable coefficient of determination
(R%=0.87), indicating that 87% of the variability of response may be
explained by the previous model. The F value of 122.6 is much
larger than F (2.11), indicating that the model is significant at
confidence level of 85%. The results of the Analysis of Variance
(ANOVA) are given in Table 5. It is possible to see that the
probability p-value is low (0.0001), indicating the accuracy of the
model.

The model was then used to plot the surface response (Fig. 7)
representing the dependent variable conversion as a function of
reaction time and molar ratio at a fixed temperature. By analyzing
the response surface, it can be seen that, independent of the molar
ratio, enhancing reaction time, conversion is enhanced up to10h,

Table 4
Experimental design and results. Experiments were performed as described in
Section 2.

Run Coded Variables Responses
X1 Xo X3 Ethyl esters (%)

1 -1 -1 -1 23.82+1.7
2 -1 -1 1 22.74+1.6
3 -1 1 -1 3944+ 1.6
4 -1 1 1 4117 +14
5 1 -1 -1 28.08 +1.7
6 1 -1 1 25,57+ 1.7
7 1 1 -1 44.09 + 1.8
8 1 1 1 4529+19
9 -1,68 0 0 46.87+19
10 1,68 0 0 2549+1.7
11 0 -1,68 0 335+1.8

12 0 1,68 0 4437 +1.7
13 0 0 -1,68 43.97 + 1.6
14 0 0 1,68 45.26 +1.4
15 0 0 0 3243+1.2
16 0 0 0 32.95+1.2

where it could be supposed that a steady state reaction was
reached. Regarding molar ratio, it is possible to see that higher
values of conversion were achieved at low (more than 50%) or at
high levels of oil/alcohol molar ratio (more than 60%). Therefore,
considering the results obtained, the optimized conditions were
defined as being: temperature of 29.9 °C, molar ratio ethanol: oil
equal to 4.5:1 and reaction time of 10 h. These results showed a
satisfactory representation of the process model and a good
correlation between the experimental results and the theoretical
values predicted by the model equation.

3.8. Influence of water removal

Aiming to improve the conversion, esterification reaction was
conducted in the absence and in the presence of zeolite, which has
been used for water removal [61,80]. Experiments were performed
using the optimized conditions (29.9 °C, and molar ratio equal to
4.5:1) and reaction was monitored up to 6.5h (see Fig. 8). It is
possible to notice an increase in conversion when the zeolite was
used, from 46.9% to 56.5% (more than 16%). This result thus
confirms the efficiency of the use of zeolite as an agent to remove

iz
2Lby3L 7

1Lby3L

1Lby2L

(BIRM(L) 7

p=0.15
Effect Estimate (Absolute Value)

Fig. 6. Pareto chart of standardized effects on ethyl esters production. (L) is the
linear and (Q) is the quadratic interaction of variables. Experiments were performed
as described in Section 2.
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Table 5
Statistical analysis. Experiments were performed as described in Section 2.

Sources of variation

Sum of squares Degrees of freedom Mean squares Fualue Probability P
Model 1885.27 9 209.47 4.55 <0.0001
Residual 276.26 6 46.04
Total 2161.53 15
Z
—
A
14
w
ll 60
Bl 50
[ 40
[ 130
[ 20
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Fig. 7. Response surface contour for interaction on ethyl esters production between time and molar ratio. Experiments were performed as described in Section 2.

water from the reaction medium, so contributing to increase of
conversion on ethyl esters.

3.9. Reuse of the immobilized enzyme

The preparation immobilized was reused for five cycles in the
performing of synthesis of ethyl oleate in supercritical carbon
dioxide, in the conditions of substrate molar ratio, 1: 1 (alcohol-
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Fig. 8. Comparison of conversion values obtained with the use and without the use
of zeolite type A. The tests were carried out varying reaction times between 1 and
10 h, with a temperature of 29.9 °C, molar ratio ethanol: oil equal to 4.5: 1. Legends:
with zeolite (M) and without zeolite (@). Experiments were performed as
described in Section 2.

acid); biocatalyst content, 10% (by substrate mass); 45°C;
molecular sieves, 20% (by oleic acid mass). The lipase was vacuum
filtered using a vacuum system and washed thoroughly with
hexane at the end of each reaction cycle.

The reuse of the immobilized preparation at the optimal
conditions is shown in Fig. 9. It was possible to reuse the
biocatalyst for 1 cycle keeping 90% of its initial activity, fast losing
activity in the following cycles, suggesting the very negative effect
of supercritical CO, on enzyme stability [81-84]. In fact, some

35
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0 T r
1 2 3 4 5
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Fig. 9. Reuse of the immobilized enzyme in the synthesis of ethyl oleate in
supercritical carbon dioxide. Reaction conditions: substrate molar ratio, 1: 1
(alcohol-acid); biocatalyst content, 10% (by substrate mass); 45°C; molecular
sieves, 20% (by substrate mass) oleic acid. Experiments were performed as
described in Section 2.
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authors suggest the combined use of supercritical media and ionic
liquids to prevent these problems [85,86].

4. Conclusions

The support CH has shown to be very useful to immobilize
CALB. This support produces a biocatalyst that is more thermosta-
ble and stable in the presence of organic solvents than the soluble
CALB (8-folds), or GLX-CALB, while improve the performance of
OC-CALB in organic media. The new biocatalyst showed a
maximum loading of 20 mg protein/g support, similar to octyl-
agarose.

This catalyst was employed in the esterification of ethanol and
oleic acid in supercritical CO,. Temperature and molar ration, on
the tested domain, present a negligible influence on the enzymatic
synthesis of ethyl oleate in using supercritical carbon dioxide.
Nevertheless, we suggest the following operational conditions:
T=30°C and molar ratio (ethanol: fatty acid) of 2.5:1. From
experimental design analysis, reaction time and quadratic molar
ratio influence the conversion of fatty acid to ethyl oleate, with an
optimal operational condition of 46.87% at T=29.9 °C, molar ratio
ethanol: fatty acid equals 4.5:1 and reaction time of 6.5 h. The use
of zeolite could enhance the conversion by removing water from
the medium. This new strategy to obtain ethyl oleate using a
biocatalyst from renewable polymeric matrixes can be considered
environmentally benign, low cost, commercially available, and
stable. The low stability of the immobilized CALB under the
experimental conditions constitutes a break to the implementa-
tion of this medium, even although it may have some environ-
mental advantages. Strategies to improve enzyme stability in these
conditions are under development in our research group.
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