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Abstract

importance in the coming era of personalized medicine.

clinical diagnostic results.

Background: With the surge of translational medicine and computational omics research, complex disease
diagnosis is more and more relying on massive omics data-driven molecular signature detection. However, how to
detect and prevent possible diagnostic biases in translational bioinformatics remains an unsolved problem despite its

Methods: In this study, we comprehensively investigate the diagnostic bias problem by analyzing benchmark gene
array, protein array, RNA-Seq and miRNA-Seq data under the framework of support vector machines for different
model selection methods. We further categorize the diagnostic biases into different types by conducting rigorous
kernel matrix analysis and provide effective machine learning methods to conquer the diagnostic biases.

Results: In this study, we comprehensively investigate the diagnostic bias problem by analyzing benchmark gene
array, protein array, RNA-Seq and miRNA-Seq data under the framework of support vector machines. We have found
that the diagnostic biases happen for data with different distributions and SVM with different kernels. Moreover, we
identify total three types of diagnostic biases: overfitting bias, label skewness bias, and underfitting bias in SVM
diagnostics, and present corresponding reasons through rigorous analysis. Compared with the overfitting and
underfitting biases, the label skewness bias is more challenging to detect and conquer because it can be easily
confused as a normal diagnostic case from its deceptive accuracy. To tackle this problem, we propose a derivative
component analysis based support vector machines to conquer the label skewness bias by achieving the rivaling

Conclusions: Our studies demonstrate that the diagnostic biases are mainly caused by the three major factors, i.e.
kernel selection, signal amplification mechanism in high-throughput profiling, and training data label distribution.
Moreover, the proposed DCA-SVM diagnosis provides a generic solution for the label skewness bias overcome due to
the powerful feature extraction capability from derivative component analysis. Our work identifies and solves an
important but less addressed problem in translational research. It also has a positive impact on machine learning for
adding new results to kernel-based learning for omics data.
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Background

With the surge of translational medicine and computa-
tional omics research, complex disease diagnosis tends
to more and more rely on disease signatures discov-
ered from the sheer enormity of high-throughput omics
data [1-4]. Identifying disease molecular signatures from
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different pathological states not only captures the subtlety
between disease subtypes and controls, but also provides
disease gene hunting, related pathway query, genome wide
association (GAWS) investigations, and following drug
target identification [5-7]. The translational technologies
in medicine along with the exponential growth of high-
throughput data in genomics, transcriptomics, and pro-
teomics are preparing for the coming era of personalized
medicine to customize medical decisions and practices to
individual patients [6, 8].
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Although different state-of-the-art classifiers have been
widely employed in such a massive data driven disease
diagnostics to enhance diagnostic accuracy, there was
almost no investigation on their diagnostic biases that are
essential for the success of translational medicine [9, 10].
A diagnostic bias simply refers that a classifier cannot
unbiasedly conduct diagnosis for a given input omics data
in our context. Instead, it may tend to favor some pheno-
type or even totally ignore the other, even if the diagnostic
accuracy appears to be reasonable sometimes.

In other words, given a training data consisting of
m normalized omics samples x; and its correspond-
ing labels y; € {—1,4+1}, ie. {x;,%;}",, the decision
function f(x|x1,%5---xy,,) inferred from the clas-
sifier demonstrates some bias in determining the
class type (phenotype) of a new sample x*, which
is assumed to follow a same normalization pro-
cedure as the training data, due to inappropriate
parameter choice, model selection, biased label distribu-
tion, or even some special characteristics of input data. It
is noted that we generally assume all training and testing
samples are chosen from a normalized population data
for the convenience of diagnosis in our context, which
avoids possible renormalization and classifier retraining
overhead for the following diagnosis. For example, a
diagnostic results: f(x*|x1,x2---%,,) = 1 is probably
obtained because almost all training samples are labeled
with’ + 1/, even if the true label of x* is y* = —1.

As a result, inaccurate or even deceptive diagnostic
results would be produced and lead to an inaccurate or
even totally wrong clinical decision making. In particular,
such a diagnostic bias can happen to any classifiers due to
different decision models, input data distributions, and/or
model selection choices.

As such, a comprehensive and rigorous investigation on
the diagnostic bias problem are an urgent demand from
translational research. This is because a robust disease
diagnostic requires a classifier achieves both efficiency
and security. The efficiency means the classifier can attain
a high-level diagnostic accuracy with a good generaliza-
tion capability. The security refers to the classifier can
unbiasedly recognize each label type by avoiding possible
biases in the classifier ’s decision function inference. There
are quite a lot previous studies done on the efficiency
problem, but almost no previous literature addressed the
security issue, i.e. the diagnostic bias problem in trans-
lational research. In particular, we need to answer the
following diagnostic bias related queries: when will it hap-
pen, why does it happen, and how to conquer it and achieve
efficiency?

To answer these key questions, we employ support
vector machines (SVM) as a representative in this
study to investigate disease diagnostic bias for its rigor-
ous decision model, good scalability, and popularity in
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translational medicine [11-13]. We present the following
novel findings from using benchmark gene array, protein
array, RNA-Seq and miRNA-Seq data in this work.

First, diagnostic biases can happen for an SVM clas-
sifier under any kernels in different model selections,
whereas it is more likely to occur under nonlinear kernels.
Given input data with two different phenotypes, diagnos-
tic biases usually reflect as extremely imbalanced sensitiv-
ity and specificity values, even if they appear to achieve
a reasonable diagnostic accuracy. Moreover, it seems that
diagnostic biases are irrespective of data distributions:
we have observed it happens to normally distributed and
negative binomial distributed data.

Second, there are three types of diagnostic biases: over-
fitting bias, label skewness bias, and underfitting bias
in SVM diagnostics. The overfitting and label skew-
ness biases both demonstrate a majority-count phenotype
favor mechanism, i.e., only majority-count samples can
be recognized in diagnosis. They are mainly caused by
a built-in molecular signal amplification mechanism in
omics data profiling, data label skewness, and inappropri-
ate kernel selection respectively.

The built-in signal amplification mechanism is mainly
responsible for the overfitting biases. It refers that all
high-throughput omics profiling systems employ real-
time PCR or similar approaches to amplify gene or protein
expression levels exponentially [14, 15]. The data label
skewness, which is mainly responsible for the label skew-
ness biases, means that class label distributions are skewed
to some specific type of samples (e.g., positive). We define
the type of samples with more counts in the label set as the
majority-count type for the convenience of description.
The inappropriate kernel selection simply means a wrong
kernel selection lets the corresponding SVM classifier lose
diagnostic capability and result in the underfitting biases.

Third, the label skewness bias is more challenging to
detect and conquer because it can be easily confused as
a normal diagnostic case from its deceptive accuracy. To
tackle this problem, we propose a derivative component
analysis based support vector machines (DCA-SVM) to
conquer the label skewness bias by comparing its per-
formance with those of the state-of-the-art peers. The
proposed DCA-SVM diagnosis not only conquers the
label skewness bias but also achieves rivaling clinical diag-
nostic results by leverage the powerful feature extraction
capabilities of derivative component analysis [16].

It is noted that our studies comprehensively identify
different diagnostic biases and present novel effective
solutions for the important but less addressed problem,
Compared with our previous work in conquering SVM
overfitting [10], this study provides more systematic and
novel results to kernel-based learning for omics data
and translational bioinformatics. In particular, our stud-
ies firstly identify the label skewness bias that is usually
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confused as a normal diagnostic case in the past literature
and provides a rivaling clinical bias overcome method.
As such, it will have positive impacts on translational
research and machine learning fields.

Methods

As a widely used diagnostic method for its good scalabil-
ity, support vector machines (SVM) can be described as
follows. Given a training data set {(x;, y;})[" 1, x; € R" with
labels y; € {—1,+1}, an SVM computes an optimal sepa-
rating hyperplane: (w - x) + b = 0 to attain the maximum
margin between the positive and negative observations
(samples), where w is the normal and bias vector of the
hyperplane respectively. The margin refers to the maximal
width of two boundary hyperplanes parallel to the optimal
separating hyperplane.

If the training data are linearly separable, it is equivalent
to finding w and b that minimize the quadratic program-
ming (QP) problem arg min,, ; % [|w||> under the condition
yi(w-x; +b) — 1 > 0, for each observation x; in the train-
ing data [13]. The QP problem can be solved by seeking
solutions of Lagrange multipliers o; > 0,i = 1,2---m, in
the following dual problem,

m m m
1
made(oz) = E o — i E E aiajyiyj(xi -x/) (1)
i=1

i=1 j=1

where w and b can be calculated by w = Y, ajyix;
and y;(w - x; + b) — 1 = 0 respectively. As a result, the
class type of an unknown sample x’ can be determined as
f&) = sign(Q_1L, ai(x; - &) + b). That is, the support
vectors, which are the training samples x; correspond-
ing to o; > 0, totally determine diagnostics according to
the spatial locations of test samples with respect to them.
Geometrically, the support vectors are the data points that
are closest to the optimal separating hyperplane and can
be usually identified in corresponding visualization.

If the training data are not linearly separable, it means
the SVM classifier can find only the optimal separat-
ing hyperplane that separates many but not all training
samples. In other words, the SVM classifier permits mis-
classification errors in this soft margin case [12]. Mathe-
matically, it is equivalent to adding slack variables &; and
a penalty parameter C to the original problem under L;
or Ly norms. The penalty parameter C, also called the box
constraint parameter, is the upper bound of all Lagrange
multipliers ¢; in the corresponding dual problems.

For example, the original problem is updated as
argmin,, ;¢ (51/wll* + CY /2, &) under the conditions
yiw - x; +b) —1 > &, and & > 0 under the L; norm
regularization. Similarly, the original problem is updated
as arg minwybygl.(% [lw]|?> + C > 51.2) under the same con-
ditions for the L, norm regularization. The w, b and
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corresponding support vectors can be obtained by solving
its corresponding dual problems [12].

If the training data do not have a simple hyperplane as
an effective separating criterion, they can be mapped to
a higher or even infinitely dimensional feature space f
using a mapping function ¢ : x; — F, and constructing
an optimal nonlinear decision boundary in F to achieve
more separation capabilities. Correspondingly, the deci-
sion function for an unknown sample «’ is formulated as
f&) = sign ((Zl’il a; (¢ (x;) - ¢(x/)) + b) . Note that the
inner product (¢ (x;) - ¢(xj)) in F can be evaluated by any
kernel (¢ (x;) - ¢(xj)) = k(x;, ;) implicitly in the input
space N if its corresponding kernel matrix is positive
definite, that is, f(x) = sign ((Zl’il aik(x', %) + b) .

Kernel selection

Although there are a class of kernel functions available, we
mainly focus on the following kernels: a Gaussian radial
basis function (‘7bf’) kernel: k(x,x') = exp(||x—«'||2/2052),
quadratic kernel (quad’) : k(x,x') = (1 + (x; - x'))?, multi-
layer perceptron kernel (‘mip’): k(x,x") = tanh((x;-x")—1)
kernel, and a widely-used linear kernel: k(x,x") = (x; - &),
in our experiment. In addition, we design an adjusted
Gaussian kernel function: 7bf2’, which is obtained by tun-
ing the bandwidth parameter as the total variations of all
m training samples: 0% = ﬁ Zi,j [lo; — 9c,»||2 in the
original Gaussian kernel, to demonstrate the impact of
parameter tuning in enhancing SVM diagnosis under the
Gaussian 7bf” kernel.

In practice, there are different SVM variants applied in
disease diagnosis for its advantages in modeling or imple-
mentation. Least-Sequare SVM (LS-SVM) is one of those
methods [12, 17]. It only employs equality constraints to
reformulate the standard SVM (C-SVM). As a result, the
normal w and bias b of the optimal separating hyper-
plane are calculated by solving linear systems instead of a
quadratic programming problem [18].

Previous results have reported that LS-SVM is compa-
rable to the classic SVM in terms of performance and
generalization [12, 18]. In this work, we employ LS-SVM
to substitute the classic SVM in disease diagnosis for its
efficiency and simplicity [17, 18]. The detailed LS-SVM
implementations are chosen from Matlab R2012b bioin-
formatics Toolbox, which implements the Ly soft-margin
SVM classifier [19].

SVM classifier parameterization

Since we aim at addressing generic diagnostic biases prob-
lems in translational bioinformatics through support vec-
tor machines, we do not tend to employ an SVM model
with too many parameters or seek very special values in
parameter setting to prevent the loss of generalization of
results. As such, we employ the LS-SVM model for its
built-in advantage in simplifying parameter setting than
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the other models [17]. Moreover, we choose to set the
default parameters generically in the SVM diagnosis to
guarantee the reproducibility and generalization of our
results.

The most important parameter in our context will be the
penalty parameter C, which affects the training errors and
generalization somewhat directly. A large C may produce
better diagnostic results but risk the loss of the generaliza-
tion of the classifier; A small C may lead to low diagnostic
results but enhance the classifier’s generalization. In our
context, the penalty parameter C is chosen as 1.0 uni-
formly in all diagnoses instead of rescaled values for dif-
ferent groups of samples to guarantee comparable results
for different data sets that have skewed or balanced label
distributions. In particular, such a parameter choice will
contribute to more comparable and easily interpretable
Lagrange multipliers «; values that are weights of the sup-
port vectors. Although a grid-search way can be employed
to seek ‘optimal’ C parameters by trying a geometric
sequence suchas 2719,272, .20, 210 ynder a specified
cross validation for each data set [13], such an approach
may not contribute to generalizable diagnostic results and
possible prohibitive training time demand.

Furthermore, we choose to automatically scale the train-
ing samples to zero mean and unit variance data before
training, which is equivalent to corresponding feature
scaling [13], to optimize the kernel matrix’s structure for
the sake of learning efficiency and the following diagnostic
generalization.

Model selection

We employ widely-used cross-validation methods for
model selection that include k-fold cross-validation (k-
fold CV) and independent training and test set approach
for the sake of comprehensive diagnostic bias inves-
tigation, in addition to leave-one-out cross validation
(LOOCYV). The k-fold CV randomly partitions the train-
ing data to form k disjoint subsets with approximately
equal size, removes the i" subset from the training data
and employs the the remaining k—1 subsets to construct
the decision function and infer the class types of the sam-
ples in the removed subset. Moreover, in the independent
training and test set approach, we randomly select 50 %
of input omics data for training and another 50 % for test,
and repeat such a process 500 times for each data to fully
investigate different diagnostic biases and validate the
effectiveness of our proposed bias-conquering algorithm.

Data selection and preprocessing

We firstly choose three benchmark omics data sets:
BreastIBC, Hepatocellular carcinoma (HCC), and Kidney
in our experiment, which are produced by state-of-the-
art gene array, protein array and RNA-Seq technolo-
gies respectively [20-22]. Table 1 illustrates the detailed
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information of the three data sets in platforms, sample dis-
tributions, and feature numbers, where a feature refers a
gene (probe), m/z ratio, or transcript in our context.

It is noted that these data are normalized and pro-
cessed by different methods. For example, robust multi-
array average (RMA) method is applied to normalize the
BreastIBC data and Reads Per Kilobase per Million
mapped reads (RPKM) is used to normalize Kidney the
data [23-25]. The original rawBreastIBC data set has
been retrieved from the NCBI Gene Expression Omnibus
(GEO) series data with accession number GSE5847, which
consists of 13 inflammatory breast cancer (IBC’) and
34 non-inflammatory breast cancer (‘NIBC’) stromal cell
samples across 22,283 probes [21, 26]. We have further
filtered small-variance genes and obtained our Breast/BC
data set with 18,995 probes. The Hepatocellular carci-
noma (HCC) data is a mass spectral proteomic data set
generated from the MALDI-TOF platform and its detailed
normalization process can be found in Ressom et al.’s
work [20].

It is noted that both BreastIBC and HCC data are
subject to normal distributions, and the Kidney data are
subject to negative binomial (NB) distributions approxi-
mately [25]. In addition, the sample label distributions of
these data are also different. The HCC data have an almost
balanced distribution: 78 Hepatocellular carcinoma vs 72
normal samples. But the BreastIBC and Kidney data have
obviously skewed label distributions, where the majority
count samples are much more than the minority count
samples (e.g. 13 IBC’ vs 34 ‘NIBC’ in the BreastIBC data;
68 normal vs 475 renal cell carcinormal tumor samples in
the Kidney data).

Results

We introduce the following set of measures for the sake
of diagnostic bias investigations: diagnostic accuracy, sen-
sitivity, specificity, positive predictive ratio (PPR), and
negative predictive ratio (NPR). The diagnostic accuracy
is the ratio of the correctly diagnosed test samples (tar-
gets) over total test samples (targets), i.e. accuracy =
%, where TP (TN) is the number of posi-
tive (negative) samples correctly diagnosed, and FP (FN)
is the number of negative (positive) samples incorrectly
diagnosed. The sensitivity, specificity, and positive predic-
tive ratio (PPR) are defined as sensitivity = TPYJ;%, and

specificity = %, PPR = %, and NPR = %
respectively. It is noted that we use targets and samples
interchangeably in this study.

We conduct SVM diagnosis under a 5-fold cross valida-
tion for the three data sets under the following kernels:
linear’, quad’, ‘mlp’, rbf’, and rbf2’, where the bandwidth
parameter o2 in the 7bf’ and ‘rbf2’ kernels are selected as
1 and the total variations of all training samples respec-
tively. It is noted that each sample in the training data
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Table 1 Benchmark data
Data #Feature #Sample Technology Platform
BreastIBC 18,995 13 inflammatory breast cancer (1BC) +

34 non-inflammatory breast cancer (NIBC)) Gene array Affymetrix GeneChip
HCC 23,846 78 Hepatocellular carcinoma+ 72 normal Protein array MALDI-TOF
Kidney 20,531 68 normal + 475 kidney renal cell carcinormal tumor RNA-Seq llluminaGA_RNASeq

is scaled as a zero mean sample with variance 1.0 before
building the optimal separation plane in SVM diagnostics.
Table 2 illustrates the SVM diagnoses for the three bench-
mark data sets with five kernels under the 5-fold cross val-
idation. We have the following interesting findings about
diagnostic biases.

Three diagnostic biases

The diagnostic biases would take place in an SVM classi-
fier with any kernels, but it is more likely to occur under
nonlinear kernels. In fact, they can happen for almost all
SVM classifiers under three different scenarios: overfit-
ting bias, label skewness bias, and underfitting bias. It is
worthwhile to point out that the overfitting bias and label
skewness bias may demonstrate similar diagnostic results,
whereas they are caused by different reasons.

Overfitting biases

The overfitting bias demonstrates the majority-count phe-
notype favor mechanism in diagnosis under the nonlinear
kernels like 7rbf’. That is, the SVM classifier will always

diagnose an unknown sample as the type of the sam-
ples with the majority-count in the training data (e.g.,
‘NIBC’ type for the BreastIBC data). Finally, its diag-
nostic accuracy will equal or approximate the majority-
count ratio of the input data. For example, the SVM with
the 7bf” kernel (SVM-rbf) has the diagnostic accuracies
that approximate or totally equal to their corresponding
majority-count ratios for the three data sets : 72.56 % ~
3 =72.34%,52.00% = 2>, and 87.48% = i

34+13 78472 475+68
respectively.

Why does NaN appear in diagnostic results?

The question is why the corresponding NPR is NaN in
diagnostics (Table 2)? The reason is that the classifier can
only recognize the majority-count samples that are speci-
fied as the positive type target in our experiment. That is,
each trial of diagnoses has a zero count for true negative
and false negative, i.e. TN = 0 and FN = 0, because all
negative targets, which are minority-count samples in our
experiment, are diagnosed as the positive type. As a result,
NPR = % will be NaN. So are the corresponding

Table 2 SVYM diagnosis for benchmark data under 5-fold cross validation

Algorithm Accuracy = std (%) Sensitivity & std (%) Specificity = std (%) NPR = std (%) PPR = std (%)
BreastIBC data
SVM-linear 74.56 £ 04.52 97.14 £ 06.39 16.67 &+ 23.67 NaN 75.70 £ 06.52
SVM-rbf 72.56 £ 03.63 100.0 £ 00.00 00.00 £ 00.00 NaN 72.56 £ 03.63
SVM-quad 74.56 £ 04.52 97.14 £ 06.39 16.67 & 23.67 NaN 75.70 £ 06.52
SVM-rbf2 72.83 £1092 85.71£ 14.29 40.00 £ 09.13 63.33 £ 34.16 78.65 £ 05.88
SVM-mip 45.67 +18.09 481042299 40.00 +09.13 2567 £ 14.02 6533 +£12.16
HCC data
SVM-linear 94.02 £ 0143 95.81 £03.83 9242 £ 05.21 96.17 £ 03.50 92.39 £ 05.00
SVM-rbf 52.00 £ 00.75 100.0 £ 00.00 00.00 £ 00.00 NaN 52.00 £ 00.75
SVM-quad 82.05 £ 10.66 77.00 £ 10.77 8752 £ 1221 77.87 £10.32 87.38 £11.89
SVM-rbf2 89.90 & 04.32 92.86 £ 08.75 87.17 £ 06.48 93.60 £ 07.25 8733 £05.32
SVM-mip 51.87 £10.96 46.00 = 15.80 5829 £ 10.06 5043 £08.72 5344 £ 1468
Kidney data
SVM-linear 90.23 £ 02.35 96.84 £ 03.07 44.07 £ 06.63 7146 £ 16.90 92.38 £ 00.71
SVM-rbf 8748 £+ 00.44 100.0 4+ 00.00 00.00 £ 00.00 NaN 8748 £ 00.44
SVM-quad 8747+ 01.70 94.47 £01.20 1747 £ 07.89 50.00 £ 21.21 89.21 £00.80
SVM-rbf2 87.48 £ 0044 100.0 £ 00.00 00.00 £ 00.00 NaN 8748 £+ 00.44
SVM-mip 5339+ 06.79 5432 £07.79 46.92 +£10.08 13.02+ 02.95 87.67 £0247
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sensitivity values always 100 % (Tl,i% = % = 1.0) and

the specificity values 0% (mTifFP = F% = 0.0, where
FP is actually totally number of negative samples that
appear as the minority-count samples in our diagnostic
experiments).

Similarly, the SVM with the 7bf2’ kernel also demon-
strates similar diagnostic results as before, where 7bf2’
is obtained by tuning the bandwidth parameter in the
original Gaussian kernel. Although they may show some
improvements for the protein array data (HCC data), they
still demonstrate the major-phenotype favor mechanism
for the gene array and RNA-Seq data. Alternatively, it
indicates that simply tuning the bandwidth parameter
may not be a good way to conquer such an diagnostic
bias.

Label skewness biases

Unlike the overfitting bias, the label skewness bias demon-
strates two different cases. The first is that the SVM
classifiers with a linear or nonlinear kernel (e.g., quad’)
demonstrate an explicit label skewness diagnostic bias by
presenting a diagnostic accuracy close to the majority-
count ratio and a pair of unbalanced sensitivity and speci-
ficity. For example, Table 1 shows that both SVM-linear
and SVM-quad classifiers achieve a 74.56 % accuracy that
is close to the majority-count ratio: 72.34 % with an imbal-
anced sensitivity 97.14 % and specificity 16.67 % respec-
tively for the BreastIBC data. This indicates such a model
can recognize few negative targets in one or more diag-
nostic trials in addition to diagnosing all positive targets
and most of negative targets to the positive target type,
which is the majority-count type specified in our imple-
mentations.

The second is that a linear kernel SVM demonstrates
an implicit label skewness diagnostic bias by presenting
a normal diagnostic accuracy but with a pair of imbal-
anced sensitivity and specificity. For example, the SVM-
linear classifier achieves 90.23 % accuracy with sensitivity
96.84% and specificity 44.07 %. Such a result indicates
there are a large number of false positives than those of
false negatives due to the dominance of the positive type
in the training data.

It is noted that not all linear kernels would encounter
diagnostic bias. Instead, the SVM-linear classifier achieves
94.02% accuracy with 95.81% sensitivity and 94.21 %
specificity for the Hepatocellular carcinoma (HCC) data
with 78 HCC and 72 normal samples that have a more bal-
anced label distribution than those of the Breast/BC and
Kidney data.

Underfitting biases

The underfitting bias refers that an SVM classifier with
a nonlinear kernel such as ‘milp’ leads to an underfitting
model in diagnostics. The model itself is inappropriate
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for disease diagnostics because the high-dimensional fea-
ture selection space generated from the kernel function
may distort the information conveyed by the original data
[12, 27]. As a result, the SVM classifier will have a quite
low diagnostic performance due to the underfitting. For
example, the SVM-mlp classifier has about 50 % level diag-
nostic accuracy for all the three data sets. That is, the
classifier is equivalent to a random classifier that con-
ducts almost ad-hoc diagnosis because of the underfitting
bias.

Finally, it is clear that the diagnostic biases seem to
be irrespective of data distributions. They happen for
the gene and protein array data that are subject to
normal distributions and RNA-Seq count data that are
subject to negative binomial (NB) distributions in our
experiment [25].

Diagnostic biases under other cross validations

It is worthwhile to point that diagnostic biases can also
happen in other cross validations such as independent
training and test set approach and leave-one-out cross val-
idation (LOOCYV) besides the k-fold cross validation. This
is because diagnostic biases may occur in each diagnostic
trial under a specific kernel due to the built-in character-
istics of input data we will mention in the next section. For
example, we generate 100 independent training and test
sets for the BreastIBC data, where each sample has a 50 %
likelihood to be selected in the training and test set. The
SVM-rbf and SVM-linear classifiers has the almost same
performance as illustrated in Table 2. For example, the
former has the average accuracy: 72.70 % £ 6.48 % with
sensitivity: 100.00 &£ 0.00 % and specificity: 00.00 % 0.00 %;
the latter has the average accuracy: 73.83 % + 7.02 % with
sensitivity: 92.87% + 6.58 % and specificity: 25.45% +
15.82 %. It is noted that similar results can be also found
for this data set under the LOOCV.

What are the reasons for diagnostic biases?

The are different reasons for the three different diagnostic
biases, though the overfitting bias and label skewness bias
may demonstrate similar diagnostic results.

The reason for the overfitting bias is rooted in the
large or even huge pairwise distances d;; = [|x; — x;] 11/2
between omics samples, which implies that the corre-
sponding distances in the feature space under the rbf’
kernel k(x;, x;) = exp(—||x; — x;l 2/2) will be a zero or tiny
value approximate to zero. As a result, it leads to an iden-
tity or approximately identity kernel matrix that causes
the SVM classifier to recognize the majority-count type
samples only.

Figure 1 illustrates the box-plots of all pairwise sample
distance squares dl.zj, (i #j) in each data set in the first row
of plots and kernel matrices of the three data sets under
the 7bf” kernel in the second row of plots by viewing each
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Fig. 1 The kernel matrices of the overfitting bias. The first row illustrates the box-plots of all pairwise sample distance squares in each data. The
second row lists the kernel matrices of the three data sets under the 7bf kernel (o=1), where each data is viewed as the population of training data,
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data set as the population of training data. It is interest-
ing to see that the the minimum dl.zj are greater than 102,
which means the distance between any two samples in
the feature space will be approximately zero: k(x;,%;) <
exp(—102/2) ~ 10722, As a result, the corresponding ker-
nel matrix will be an identity matrix as illustrated by the
corresponding plot in the second row.

It is noted that the large or even huge pairwise sam-
ple distances in each omics dataset are actually rooted
in the molecular signal amplification mechanism in high-
throughput profiling, where gene array, protein array and
RNA-Seq technologies all employ real-time PCR or sim-
ilar approaches to amplify gene and protein expression
levels exponentially [14, 15]. As a result, the molecular sig-
nals greatly increase the sensitivity of disease phenotype
and corresponding genotypes in diagnostics [28]. On the
other hand, the pairwise distances between two samples
are large or even huge mathematically, even if each sample
is standardized as a zero-mean point with unit standard
deviation.

The label skewness bias is due to the skewness of the
label distributions that lead to there are more support vec-
tors from the majority-count type samples and the class
type of an unknown sample is more likely to be deter-
mined as the majority-count type. Figure 2 shows the
distributions of « values, i.e., the Lagrange multipliers’ val-
ues: a1,y - - - oy, in the dual problem, in each diagnostic
trial in the 5-fold cross validation. As the weights of cor-
responding support vectors, its values are always positive
or zero as we pointed out before. However, the sign of

a weight is assigned in our SVM implementation for the
convenience of indicating its class property, i.e. a posi-
tive (negative) sign means this weight (e.g. 1) is for the
support vector belonging to the positive (negative) target
group. It is easy to detect that the distributions of « val-
ues are nearly balanced for the Hepatocellular carcinoma
(HCC) data that has a relatively balanced sample label dis-
tributions, where the number of positive signs are almost
equal as that of the negative signs. However, the the dis-
tributions of « values of the BreastIBC and Kidney data
are obviously skewed to the positive targets, which are the
majority-count samples in each data set. In other words,
more support vectors can be found for the majority-count
type, which will increase the likelihood of an unknown
sample to be detected as the majority-count type in the
following decision making. For example, since there are
256 and 178 « values carrying the positive and negative
signs respectively in the 57 trial of diagnosis for the Kid-
ney data, there will be a more likelihood for a test sample
to be detected as a positive target.

On the other hand, the corresponding b values, which
are the intercepts of the hyperplane that separates the
two groups in the normalized data space, are all pos-
itive in each trial. For example, the b values of the
five diagnostic trials for the Kidney and BreastIBC data
are [0.7425, 0.7603, 0.7333, 0.7649, 0.7465] and [0.4594,
0.4210, 0.4594, 0.4594, 0.4359] respectively. As such,
given a test sample &', the decision function f(x') =
sign((Zf=1 aik(x',x;) + b) is more likely to determine it
as the positive type, because most support vectors are
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from the positive type (the majority-count type) and the
intercept value b is positive.

The underfitting bias is caused by the inappropriate ker-
nel function such as mlp’ that results in a kernel matrix
with all entries are ‘1’s that has no any capability to distin-
guish different samples. To some degree, it corresponds
an extreme case for an SVM classifier under the Gaus-
sian kernel with a too large bandwidth parameter that also
leads to the kernel matrix with all ‘1’ entries. It is noted
that the underfitting bias is also independent of input data
label distributions as the overfitting and label-skewness
bias, though it corresponds to a kernel matrix with all ‘1’
entries instead of an identity kernel matrix as the former
or a normal kernel matrix as the latter.

Figure 3 shows the ‘mlp’ and ‘linear’ kernel matrices of
the three data sets, where each data is treated as a training
population. It is clear to see that the kernel matrices under
the underfitting bias are flat matrices with all ‘1’ entries,
but the kernel matrices under the linear kernel appear to
be normal for all three data sets, even if there are explicit

and implicit label skewness biases for the BreastIBC and
Kidney data respectively.

Diagnostic bias conquering
There are no systematic approaches available to conquer
diagnostic biases due to the gap between machine learning
and translational bioinformatics [10]. Although previously
related work has been proposed to investigate imbalanced
data in SVM classification in data mining, all of these work
mainly focus on the ‘imbalanced data’ where the sample
label distributions are extremely imbalanced (e.g., 99.5%
positive labels and 0.5 % negative labels) [29, 30]. More-
over, these imbalanced data are not high-through omics
data that do not have Targe number of variables but small
number of observations’ characteristics shared by all high-
throughput omics data [11]. Thus, a more general but
omics data focused algorithm is needed to overcome the
diagnostic biases.

The overfitting and underfitting biases can be ‘con-
quered’ by avoiding using the corresponding kernels that
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Kidney

lead to the identity, nearly identity, or all ‘1’ entries ker-
nel matrices. However, it can be challenging to conquer
the label skewness bias, especially the implicit diagnos-
tic bias case that has ‘reasonable’ diagnostic accuracy but
unbalanced sensitivity and specificity.

In this work, we propose a derivative component analy-
sis (DCA) based support vector machines (DCA-SVM) to
conquer the label skewness bias by extracting true signals
by digging latent data characteristics from an input data
[16]. The true signals share the same dimensionally with
the original data but capture essential data characteris-
tics. We introduce DCA briefly as follows and more details
about this algorithm can be found in Han’s previous work
on DCA [16].

Derivative component analysis (DCA)

1. Input: X! =[x1,%0 - - x,], % € R, DWT level J;
cutoff 7; wavelet ¥, variability explanation threshold
o

2. Output: true signals: X*

3. Step 1: Conduct/-level DWT with wavelet v for Xt
to obtain coefficient detail cD; and approximation
matrix cA :[ ¢Di,cDa, - - - ,cDy; cAj], where
cDj € Wi, cA; € W, pi = [p/V].

4. Step 2: Extract subtle data characteristics, remove
system noise and retrieve global data characteristics

(@) Conduct PCA for ¢Dj,1 < j < 7 to obtain its
PC matrix U and score matrix S:
U =[uy,u,--- upj] ,u; € RN and score matrix
S =[s1,80-" ~sp1.] i €N, i=1,2--p;.

(b) Identify PCs u;, uy - - - ty,, such that its
variability explanation ratio p,, > p

(c) Reconstruct
Dj « LDy (D) + X wixsT, (1) € W
with all entries being ‘1’s

(d) Reconstruct cDj, T <j <] and cA; under the
variability explanation ratio at least 95 %

5. Step 3: Approximate the original data by the
corresponding inverse DWT with the wavelet
X* < inverseDWT ([ cD1,cDs - - - cDy; cAj] ).

In our implementation, we uniformly set the transform
level ] = 7 for the wavelet ‘db8’, cutoff T = 2, and apply
the first PC-based detail coefficient matrix reconstruction
in DCA for the convenience of implementations [16, 31].

Derivative component analysis based support vector
machines (DCA-SVM)

Given training data X =[x1,x2-- -xp]T and their labels
{xi, ci}le,ci € {—1,1}, its corresponding true signals ¥ =
[y1,y2 - -yp]T are computed by using DCA, Then, a
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maximum-margin hyperplane: Oy, : w ¢ (y) +b = 0 in the
feature space is constructed to separate the ‘+1’ (‘cancer’)
and -1’ (‘control’) types of the samples in true signals Y,
which is equivalent to solving the following optimization
problem with a parameter p > 0,

. 1 1 2
mmwyb,eijw + 5 le (ci —wlo®y) — b)

: , )
steg=ci—wo@l)—bi=12---p

The dual problem of this constrained minimization
problem can be formulated as follows, where k(y;,y;) =

(CICHRACH)!
Zf:laik(yi:yj) +b+/.L = Cl',i = 1,2[)

3)
st.Y? ;=0

The b and o, i = 1,2 - - p can be obtained by solving
the corresponding linear system of the dual problem. The
decision rule f(x') = sign (3°4_, @ik (y;,y') + b) is used to
determine the class type of a testing sample x', where ¥’ is
its corresponding vector computed from DCA. The func-
tion k(y;,y’) is a kernel function mapping y; and ¥’ into
a same-dimensional or high-dimensional feature space,
which is chosen as the linear kernel k(y;,¥') = (y; - ¥) in
our experiment.

Random undersampling Boost (RUBoost)

To demonstrate the effectiveness of the proposed algo-
rithm, we include an ensemble learning method: random
undersampling Boost (RUBoost) as well as the origi-
nal SVM as comparison algorithms [29]. The reason we
choose the ensemble learning method is because it is
believed to perform well for imbalanced data [29, 30, 32].
We employ an ensemble of 1000 deep trees that have min-
imal leaf size of 5 with a learning rate 0.1 in RUBoost
learning to attain a high ensemble accuracy.

Table 3 compares the performance of the proposed
DCA-SVM with those of SVM and RUBoost under the
5-fold cross validation. It is interesting to see that our algo-
rithm not only fully conquer the label skewness biases for
the BreastIBC and Kidney data, but also achieve excep-
tional diagnostic results for all three data sets for its latent
data characteristics extraction that forces a data character-
istics driven diagnosis. It is noted that the extracted latent
data characteristics contribute to the structure optimiza-
tion of the kernel matrices that enhance the classifier’s
detectability [31, 33, 34].

For example, the explicit label skewness diagnostic bias
illustrated in the BreastIBC data is overcome by achiev-
ing 97.78 % diagnostic accuracy with 100 % sensitivity and
90 % specificity. Unlike all negative targets are recognized
as the positive targets in some diagnostic trial, the total
negative prediction rate (NPR) is 100% and the posi-
tive prediction rate (PPR) is 97 %. Moreover, the implicit
label skewness diagnostic bias illustrated in the Kidney
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data is overcome by achieving 99.81 % diagnostic accuracy
with 99.79 % sensitivity and 100 % specificity, compared
to the original 90.23 % diagnostic accuracy with 96.84 %
sensitivity and 44.07 % specificity.

Furthermore, DCA-SVM achieves the exceptional diag-
nostics on the HCC data by attaining 99.33 % diagnos-
tic accuracy with 100 % sensitivity and 98.57 % speci-
ficity compared to the original 94.02% accuracy with
95.81 % sensitivity and 92.42 % specificity. Alternatively,
the RUBoost diagnosis has some improvements in bal-
ancing the sensitivity and specificity, whereas it has rel-
atively low diagnostic accuracy, especially for balanced
HCC data, and needs a long learning time.

Figure 4 compares the ROC plots of DCA-SVM, SVM,
PCA-SVM, ICA-SVM diagnoses under the 5-fold cross
validation for the BreastIBC and Kidney data [16, 33].
It is easy to see that the proposed DCA-SVM diagnosis
conquers the label skewness bias by achieving the best
performance, which prepares itself as a good candidate
in personalized diagnostics in the coming personalized
medicine for its unbiased exceptional diagnostic perfor-
mance for different omics data. It is worthwhile to point
out that such a rivaling clinical-level diagnosis is mainly
because the true signals extraction in DCA that forces
the SVM hyperplane construction to rely on both subtle
and global data characteristics of the whole profile in a
de-noised feature space, which seems to contribute to a
robust and consistent high-accuracy diagnosis greatly. In
fact, since such a consistent performance applies to dif-
ferent data sets rather than work only on an individual
data set, it almost prevents from any overfitting possi-
bility. Moreover, the following two subsections further
demonstrate such an exceptional performance is impos-
sible from overfitting because our proposed algorithm
works well consistently for different data sets with differ-
ent training and test data selection methods. Especially,
the phenotype separation results in Fig. 5 strongly val-
idate the effectiveness from a biomarker discovery and
visualization standing point.

Independent data sets: brain low grade glioma (LGG) TCGA
data

To further demonstrate the effectiveness of our proposed
algorithm, we have retrieved level-3 TCGA data for brain
low grade gliomas (LGG) from the TCGA portal that
include gene expression, protein expression, RNA-Seq
and miRNA-Seq data [22, 35]. The LGG refers to the grade
I and grade II glioma tumors that are usually considered as
benign brain tumors compared with those grade I and IV
glioma tumors. Since the gene and protein expression data
only contain grade-I glioma samples that prevent us doing
diagnostics from a translational bioinformatics viewpoint,
we include the RNA-Seq and miRNA-Seq data as the inde-
pendent data sets: GliomaRNASeq and GliomaMiRNASeq
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Table 3 The three diagnostics under 5-fold cross validation
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Algorithm Accuracy = std (%) Sensitivity & std (%) Specificity = std (%) NPR = std (%) PPR = std (%)
BreastIBC data

DCA-SVM 97.78 £ 04.97 100.0 4 00.00 90.00 £ 22.36 100.0 £ 00.00 97.50 £ 05.59

SVM-linear 74.56 £ 04.52 97.14 £ 06.39 16.67 & 23.67 NaN 75.70 £ 06.52

RUBoost 73.33 £ 00.00 5333 +£44.72 82.86 £ 18.63 83.17 £ 15.86 54.67 £ 44.07
HCC data

DCA-SVM 99.33£0149 100.0 £ 00.00 9857 £03.19 100.0 & 00.00 98.82 £ 02.63

SVM-linear 94.02£0143 95.81 £ 03.83 9242 £05.21 96.17 £ 03.50 92.39 £ 05.00

RUBoost 85.23 4 00.00 82.08 £ 11.98 88.76 £ 06.30 82.56 £ 10.14 88.64 £+ 06.54
Kidney data

DCA-SVM 99.81 £ 0041 99.79 £ 0047 100.0 4 00.00 98.57 £ 03.19 100.0 4 00.00

SVM-linear 90.23 £ 0235 96.84 £ 03.07 44,07 £ 06.63 7146 £ 16.90 92.38 £ 00.71

RUBoost 87.47 £ 00.00 90.95 £ 03.54 63.08 £ 11.17 51311217 94.55 £ 01.42

for our algorithm testing. The detailed information about
the two data sets can be found in the Table 4, where each
feature refers to a gene or microRNA.

Normalization

It is noted that both are ‘imbalanced data’, where 96.63 %
and 95.88 % samples are grade-1I tumors respectively, and
follow the negative binomial (NB) distribution approxi-
mately. The raw GliomaRNASeq data, a big data that asks
14.5 Gigebytes storage, is normalized by dividing each
sample with a scale factor s = Q3/1000, where Qs is the
75-percentile of each sample. The raw data is normalized

by the count-per-million method, in which all counts in
a sample are adjusted to reads per million to facilitate
comparison between samples [36].

Monte Carlo simulation oriented training and test data
selection

Different from the previous k-fold cross-validation, we
randomly select 50 % of Glioma RNA-Seq (miRNA-Seq)
samples for training and another 50 % for test, and repeat
such a process 500 times in our diagnostic experiments.
It is noted that such a Monte Carlo simulation oriented
independent training and test data choice will have an
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Fig. 4 ROC plots. The ROC plots of DCA-SVM, SVM, PCA-SVM, ICA-SVM diagnoses under the 5-fold cross validation for the Breast/BC and Kidney data
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advantage to evaluate the effectiveness of the proposed
algorithm than the previous k-fold cross-validation. This
is because it reduces the dependence between training and
test data by fully leveraging the two omics data sets with a
large number of observations.

Table 5 compares the diagnostic results of DCA-SVM,
with SVM under four different kernels: Tinear’, ‘rbf’,
quad’ and ‘mip’ for the two data sets. It is not a surprise
that the SVM-mlp classifier encounters the underfitting
bias for both LGG data sets by demonstrating quite low
diagnostic accuracy values. Similarly, the SVM-rbf clas-
sifier still suffers from the overfitting bias by only recog-
nizing the majority count phenotypes. That is, its aver-
age diagnostic accuracy closely approximates the majority
count ratios of the GliomaRNASeq and GliomaMiRNASeq
data sets 96.68 % ~ % and 96.63 % ~ % respec-
tively. For the same reason, its average positive prediction
rate will just be its diagnostic accuracy because the SVM-
rbf classifier diagnoses all samples into the positive sam-
ples. Alternatively, the corresponding negative prediction
ratio NPR = % is NaN because of TN = FN = 0

Table 4 Brain Low grade Glioma (LGG) TCGA data

in each diagnostic case, and the sensitivity and specificity
are 100 % and 0 % respectively.

Also like the previous cases, the SVM-linear and SVM-
quad classifiers both encounter the explicit label skewness
bias because both data sets are imbalanced where the
GliomaRNASeq data has 18 grade I and 516 grade II
gliomas and the GliomaMiRNASeq data has 18 grade I and
512 grade II gliomas respectively.

The explicit label skewness bias demonstrates a decep-
tive diagnostic accuracy that is close to the majority-count
ratio for each data. For example, the SVM-linear classi-
fier achieves an average accuracy 95.87 % and 93.78 % for
the two data sets respectively, both of which are close to
the majority-count ratios 96.68 % and 96.63 %. However,
both diagnostic results are characterized by imbalanced
sensitivity & specificity, and positive & negative predic-
tion rates. For example, the SVM-linear classifier achieves
98.77 % sensitivity and 12.10 % specificity.

Although its average negative predication ratio (NPR)
appears to be NaN, such an exception is caused by the fact
that both TN and FN are zero counts in some trials of

Data #Feature #Sample Technology Platform
GliomaRNASeq 20,531 18 grade-I Glioma tumors +

516 grade-Il Glioma tumors RNA-Seq llluminaHiSeq_RNASeqV2
GliomaMiRNASeq 1046 18 grade-1 Glioma tumors +

512 grade-Il Glioma tumors miRNA-Seq llluminaHiSeq_miRNASeq
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Table 5 The diagnostic results with independent training and test sets for LGG data

Algorithm Accuracy = std (%) Sensitivity & std (%) Specificity = std (%) NPR = std (%) PPR = std (%)
GliomaRNASeq
DCA-SVM 99.52 £ 00.58 99.64 £ 00.53 97.00 £ 08.08 91.18 £ 11.05 99.87 £ 00.36
SVM-linear 95.87 £ 00.84 98.77 £ 00.00 1210+ 1146 NaN 97.02 £ 00.85
SVM-rbf 96.68 £ 00.78 100.0 £ 00.00 00.00 £ 00.00 NaN 96.68 £ 00.78
SVM-quad 96.53 £ 00.75 99.60 £ 0040 07.40 £ 08.67 NaN 96.91 £ 00.79
SVM-mip 56.28 £ 05.61 56.73 £ 05.95 4377 £1861 03.34 £01.53 96.70 £01.31
GliomaMiRNASeq
DCA-SVM 99.63 4 00.52 99.73 +00.39 97.52 £ 08.21 93.13 £ 09.40 99.89 + 00.39
SVM-linear 93.78 £01.27 96.68 £ 01.58 1093 +£10.04 10.89 £+ 11.08 96.89 £ 00.84
SVM-rbf 96.63 £ 00.81 100.0 4+ 00.00 00.00 £ 00.00 NaN 96.63 £ 00.81
SVM-quad 95.65 £ 00.97 98.76 £ 00.87 06.14 £ 07.39 NaN 96.80 £ 00.79
SVM-mip 56.62 £ 06.31 58.16 £ 06.69 4251 £18.98 03.45£01.74 96.68 £ 01.30

diagnosis, due to the major-count phenotype favor mech-
anism. In fact, it is easy to estimate that its average NPR
should be a small percentage, because the correspond-
ing average PPR is 97.02 %, i.e. very few negative targets
or even none are correctly diagnosed in each diagnosis.
As such, the ‘high’ diagnostic accuracy does not mean
the classifiers have high detection capabilities. Instead, the
high’ diagnostic accuracy is from the high majority-count
ratio.

However, the proposed DCA-SVM algorithm suc-
cessfully overcomes the diagnostic biases and achieves
rivaling-clinical diagnostic accuracy and balanced sensi-
tivity and specificity for the two data sets. In particular, we
still employ the transform level /] = 7 and cutoff 7 = 2,
in addition to keeping the first PC-based detail coefficient
matrix reconstruction in DCA for the sake of consistence.

Such a result is consistent with the previous results
from gene/protein expression and RNA-Seq data with
k-fold cross validation. For example, our DCA-SVM clas-
sifier achieves 99.52% (sensitivity: 99.64 %, specificity:
97.00 %, NPR: 91.98 %, PPR: 99.87 %) and 99.63 % (sen-
sitivity: 99.73 %, specificity: 97.52 %, NPR: 93.13 %, PPR:
99.89 %) average diagnostic accuracy for the GliomaR-
NASeq and GliomaMiRNASeq data. Considering different
types of omics data and different training and test data
selections, such a result strongly suggests the effective-
ness of our proposed method in conquering the diagnostic
biases.

Diagnostic index

We create a diagnostic index § = —log,a — log, HTP,
where 4, s, and p represent accuracy, sensitivity and speci-
ficity to evaluate if a classifier is subject to any diagnostic
biases. A small diagnostic index value (e.g., 8 = 0.01)
means the classifier achieves a good accuracy with a
light degree diagnostic bias. The smallest diagnostic index

refers to the perfect diagnosis for a classifier:a =s=p =
100 %. Alternatively, a large B (e.g., 2.0) means classifier
achieves a poor diagnostic accuracy or a high degree diag-
nostic bias. Table 6 compares the diagnostic index values
of the proposed DCA-SVM with those of the other classi-
fiers. It is interesting to see that its 8 values are the lowest
among all diagnostic index values, which validate again
the effectiveness of the proposed algorithm in conquer-
ing the label skewness bias and achieving rivaling clinical
diagnostic results.

Derivative component analysis based phenotype separation

We create a diagnostic index § = —log,a — log, HTP,
where a, s, and p represent accuracy, sensitivity and speci-
ficity to evaluate if a classifier is subject to any diagnostic
biases. A small diagnostic index value (e.g., 8 = 0.01)
means the classifier achieves a good accuracy with a
light degree diagnostic bias. The smallest diagnostic index
refers to the perfect diagnosis for a classifier:a =s=p =
100 %. Alternatively, a large B (e.g., 2.0) means classifier
achieves a poor diagnostic accuracy or a high degree diag-
nostic bias. Table 6 compares the diagnostic index values
of the proposed DCA-SVM with those of the other classi-
fiers. It is interesting to see that its 8 values are the lowest
among all diagnostic index values, which validate again

Table 6 The diagnostic index

Diagnostic index

Algorithm GliomaRNASeq GliomaMiRNASeq
DCA-SVM 0.0314 0.0235
SVM-linear 0.9123 0.9868
SVM-rbf 1.0487 1.0495
SVM-quad 0.9533 0.9951
SVM-mip 1.8221 1.7857
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the effectiveness of the proposed algorithm in conquering
the label skewness bias and achieving rivaling clinical
diagnostic results.

Derivative component analysis based phenotype separation
The diagnostic results from the proposed DCA-SVM clas-
sifier indicates that the high-dimensional omics data in
our experiment are linear separable after derivative com-
ponent analysis. In other words, it means that support
vectors can be found to separate the two groups of sam-
ples geometrically according to the definition of linear
separability [12]. On the other hand, it suggests that dis-
ease biomarkers can be identified from the omics data to
discriminate different phenotypes in such a translational
bioinformatics based disease diagnostics. As such, we
demonstrate the following biomarker discovery method
that captures disease biomarkers and a visualization tech-
nique that show the possible support vectors in phenotype
separation, that is to further ‘prove’ and validate the effec-
tiveness of our proposed algorithm.

Our biomarker discovery method assumes the nor-
mal distribution of input data. If an input data is
not normally distributed, we conduct a transform
Y = E(log(X + 1))/var(log(X + 1)) to covert it to a cor-
responding normally distributed data approximately. It
is noted that log(X + 1) is obtained by element-wisely
applying the log transform to X 4 1, which adds each
entry in input data X by 1. Similarly, E(log(X+ 1))
updates log(X + 1) by adjusting its column with its cor-
responding mean, and var(log(X + 1)) is the matrix,
each column of which is a vector consisting of the vari-
ance of log(X + 1) at the column, and Y is obtained
by the element-wise division between E(log(X + 1)) and
var(log(X + 1)).

Then, derivative component analysis (DCA) is applied
to the normally distributed omics data to retrieve its true
signals by using the same parameter setting in the previ-
ous experiments. Finally, the classic two-sample t-test is
employed to identify the differentially expressed features
(e.g. genes) with the smallest p-values from the extracted
true signals as potential biomarkers. It is worthwhile to
point out that a large amount of tiny p-values will come
from the ¢-test due to the de-noising process in DCA.
Although we can get a set of well-supported biomark-
ers from the statistical test applied to the true signals,
we prefer to employ the top three biomarkers to conduct
phenotype separation and corresponding support vector
finding for the convenience of visualization.

Figure 5 shows the corresponding phenotype separa-
tions for four data sets from different high-throughput
technologies and platforms: GliomaRNASeq (LGG RNA-
Seq), GliomaMiRNASeq (LGG MiRNA-Seq), Kidney (Kid-
ney (KIRC) RNA-Seq), and HCC (HCC MALDI-TOF),
by using its top three biomarkers. Each yellow/red dot in
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the visualization represents a corresponding sample. For
example, the 18 yellow dots represent 18 grade I glioma
samples in the NW plot for LGG RNA-Seq data. It is inter-
esting to see that the three biomarkers discovered from
each data set demonstrate the linear-separability very well
and corresponding support vectors can be easily found
from each phenotype separation.

Such results strongly suggest the effectiveness of our
proposed algorithm and provides a visualization support
for DCA-SVM'’s rivaling clinical diagnostic performance.
Furthermore, it provides more insights to elucidate the
latent structures of the omics data, which can contribute
to deciphering the different pathological sub-states of
tumors. For example, the NE sub-figure discloses that 512
grade II tumors of the GliomaMiRNASeq data span three
different clusters, which may indicate that grade II tumors
may have different pathological sub-states due to different
genetic alternations [35]. It is also noted that such results
also apply to the BreastIBC data though it is not included
in Fig. 5.

Discussion

In this work, we comprehensively investigate diagnostic
bias in translational bioinformatics by using support vec-
tor machines (SVM). It is worthwhile to point that the
overfitting bias and underfitting bias can be viewed as
special diagnostic biases associated with the kernel-based
learning, though they still happen in the other classifier-
based diagnosis. However, the label skewness bias can be
found widely found in the other classifiers, because the
SVM classifiers with different kernels can be viewed as
the ‘simulations’ of different classifiers [12]. For example,
an SVM-linear classifier can be viewed as a simulation
of linear discriminant analysis (LDA), because they usu-
ally have a similar or same level performance [37]. In fact,
LDA does demonstrate label skewness diagnostic bias on
the BreastIBC data under the same cross validation by
achieving 71.83 % accuracy with 94.17 % sensitivity and
15 % specificity.

We also have employed a multi-layer perceptron (MLP)
classifier to the five data sets used to investigate the occur-
rence of diagnostic biases for its comparable performance
with respect to SVM and other classifiers such as deci-
sion trees [38, 39]. We still use the 5-fold cross validation
is still for the convenience of comparisons. The MLP clas-
sifier has 10 neurons in its input layer, two hidden layers,
each of which has 5 neurons, and two neurons in its
output layer. The Levenberg-Marquardt optimization is
employed to train the network, in which the maximum
number of epochs and minimum performance gradient
in training are set as 10% and 10~ respectively [40]. We
are interesting to find that it encounters different diagnos-
tic biases on almost all data sets under the 5-fold cross
validation except the Hepatocellular carcinoma (HCC)
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data, where it has an accuracy 85.91% with sensitivity
90.29 % and specificity 81.92 %. For example, it achieves
92.18 % accuracy (sensitivity 95.40 %, specificity: 0.0 %) for
the GliomaRNASeq data, and 96.07 % accuracy (sensitivity
99.40 %, specificity: 1.08 %) for the GliomaMiRNASeq data
respectively. Obviously, it encounters overfitting diagno-
sis by diagnosing all test samples as the majority count
samples with an approximately zero specificity. In addi-
tion, it demonstrates the explicit label skewness biases for
the Kidney and BreastIBC data with low diagnostic accu-
racy: 79.73 % (sensitivity: 14.45 %, specificity: 89.09 %) and
65.78 % (sensitivity: 85.71 %, specificity: 13.33 %) respec-
tively. All these results strongly demonstrate the general-
ization of our proposed diagnostic biases.

Unlike other ad-hoc diagnostic bias conquering by tun-
ing parameters, the proposed DCA-SVM demonstrates
rivaling-clinical level diagnostic results by overcoming
both explicit and implicit label skewness biases. Although
some statistical test-based feature selection can conquer
some diagnostic bias well for some data, it may not be
generalized to other data with different distributions. For
example, the SVM-linear classifier can achieve a quite
excellent diagnostic performance on the Breast/BC data
with an average diagnostic accuracy 98.00 % (sensitivity:
100 %, specificity: 93.33 %) under the 5-fold cross valida-
tion, if we only pick the top-ranked 200 genes (features)
from this data by using Bayesian ¢-test [41]. However,
if we apply the same feature selection approach to the
Hepatocellular carcinoma (HCC) data, the classifier only
attains a mediocre performance with an average diag-
nostic accuracy 88.03% (sensitivity: 84.76 %, specificity:
91.08 %), which is far from the more than 94 %-level diag-
nostic accuracy achieved by the same classifier without
using any feature selection. On the other hand, such a
normal distribution assumed feature selection method
can not apply to the RNA-Seq and MiRNA-Seq data
directly, because these data are not normally distributed.
Thus, such a feature filtering approach can not be a good
choice for overcoming diagnostic biases. Alternatively,
our derivative component analysis (DCA) is a generic fea-
ture extraction algorithm that does not have special data
distribution requirements but retrieve true signals from
each omics data by capturing essential data behaviors. As
such, the proposed DCA-SVM diagnosis can be viewed
as a generic solution for the diagnostic bias problem in
translational bioinformatics.

Although we assume training and testing samples are
picked from a normalized population in our context, our
method can still work well provide the testing samples are
not normalized or normalized with a different approach
as the training ones. The renormalization process will
be required but it can be different for different types of
omics data. For example, the renormalization for microar-
ray data is usually done by normalizing all the training
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and testing samples before retraining the classifier in diag-
nostics [42, 43]. This is mainly because microarray data
generally has strong background-signals that make the
comparisons of expression levels between genes within a
single sample impossible [44, 45]. Due to its fundamen-
tally different data generation mechanism as microarray
data, RNA-Seq or MiRNA-Seq data can compare differ-
ent genes’ expression levels within a single sample [44].
As such, the renormalization for such type of data can be
done by only conducting normalization for each testing
sample by using corresponding normalization methods
(e.g. DESeq-normalization) before the proposed diagnosis
[24, 46).

Conclusions

Our studies comprehensively investigate the diagnostic
bias problem in translational bioinformatics by analyz-
ing benchmark gene array, protein array, RNA-Seq and
miRNA-Seq data. We identify three types of diagnostic
biases: overfitting bias, label skewness bias, and underfit-
ting bias in SVM diagnosis, and disclose the reasons for
its occurrence through rigorous analysis. As we pointed
out before, the diagnostic biases, which happen at almost
all kernels and data with different distributions, are actu-
ally caused by three major factors, that is, kernel selec-
tion, special signal amplification mechanism in the high
throughput profiling, and training data label distribution.

Interestingly, the overfitting bias and label skewness
bias both demonstrate a majority-count phenotype favor
mechanism in diagnosis, which means that only majority-
count samples can be recognized in diagnosis. However,
the former is rooted in the molecular signal amplification
mechanism in high-throughput profiling that leads to the
large or even huge pairwise distances in the training data.
The latter is caused by the unbalanced label distributions
in the training data.

Unlike other diagnostic biases, the label skewness bias
is hard to detect and conquer, especially the implicit label
skewness bias that usually demonstrate quite normal or
even some good diagnostic accuracy but with imbalanced
sensitivity and specificity. Our studies propose a DCA-
SVM that not only conquer the bias but also achieve
rivaling clinical diagnostic results by leverage the power-
ful feature extraction capabilities of derivative component
analysis. Our work is not only significant in translational
bioinformatics by identifying and solving an important
problem, but also has a positive impact on machine learn-
ing for adding new results to kernel-based learning for
omics data.

In our further studies, we plan to investigate the label
skewness bias for the multi-class diagnostics, which can
be more complicate and applied in medical informatics
than the current binary type diagnostics [47]. Moreover,
we are interested in investigating diagnostic biases in deep
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learning methods for its importance in big omics data
oriented diagnostics [48, 49], in addition to integrating
different types of omics data sets to conduct differential
expression analysis [50].

Availability of supporting data
All data sets used in this paper are publicly available from
https://sites.google.com/site/tbdiagnosticbiases/.

Competing interests
The author declares that he has no competing interests.

Authors’ contributions
Han does all the work for this study.

Acknowledgements
This work was partially supported by the start-up funding package provided to
Han by the Fordham University.

Received: 29 December 2014 Accepted: 7 July 2015
Published online: 01 August 2015

References

1. Berger B, Peng J, Singh M. Computational solutions for omics data. Nat
Rev Genet. 2013;14(5):333-46.

2. HanH, Li XL, NgSK, Ji Z. Multi-resolution-test for consistent phenotype
discrimination and biomarker discovery in translational bioinformatics.

J Bioinformatics Comput Biol. 2013;11(06):1343010.

3. Nepomuceno-Chamorro |, Azuaje F, Devaux Y, Nazarov PV, Muller A,
Aguilar-Ruiz JS, et al. Prognostic transcriptional association networks: a
new supervised approach based on regression trees. Bioinformatics.
2011;27(2):252-8.

4. Nepomuceno-Chamorro |, Aguilar-Ruiz JS, Riquelme JC. Inferring gene
regression networks with model trees. BMC Bioinformatics. 2010;11:517.

5. Shah NH, Tenenbaum JD. The coming age of data-driven medicine:
translational bioinformatics’ next frontier. J Am Med Inform Assoc.
2012;19:e2—e4.

6. Canuel V, Rance B, Avillach P, Degoulet P, Burgun A. Translational
research platforms integrating clinical and omics data: a review of
publicly available solutions. Brief Bioinform. 2015;16(2):280-90.

7. LaiY, Zhang F, Nayak TK, Modarres R, Lee NH, McCaffrey TA. Concordant
integrative gene set enrichment analysis of multiple large-scale
two-sample expression data sets. BMC Genomics. 2014;15(Suppl 1):S6.

8. ChenR, MiasGl, Li-Pook-Than J, Jiang L, Lam HY, Chen R, et al. Personal
omics profiling reveals dynamic molecular and medical phenotypes. Cell.
2012;148(6):1293-307.

9. ChienS, BashirR, Nerem RM, Pettigrew R. Engineering as a new frontier
for translational medicine. Sci Transl Med. 2015;7(281):281fs13.

10. HanH, Jiang X. Overcome support vector machine diagnosis overfitting.
Cancer Inform. 2014;SI:1145-158.

11. HanH, Li X. Multi-resolution independent component analysis for
high-performance tumor classification and biomarker discovery. BMC
Bioinformatics. 2011;12(S1):57.

12. Shawe-Taylor J, Cristianini N. Support Vector Machines and other
kernel-based learning methods. New York NY: Cambridge University
Press; 2000.

13. Hastie T, TibshiraniR, Friedman J. The Elements of statistical learning,
Second edition. New York: Springer; 2008.

14. Blomquist TM, Crawford EL, Lovett JL, Yeo J, Stanoszek LM, Levin A, et al.
Targeted RNA-sequencing with competitive multiplex-PCR amplicon
libraries. PLoS ONE. 2013;8(11):279120.

15. Nagy ZB, Kelemen JZ, Fehér LZ, Zvara A, Juhédsz K, Pusés LG. Real-time
polymerase chain reaction-based exponential sample amplification for
microarray gene expression profiling. Anal Biochem.
2005;337(1):76-83.

16. Han H. Derivative component analysis for mass spectral serum proteomic
profiles. BMC Med Genomics. 2014;7:51.

17.

21

22.
23.

24.

25.

26.

27.

28.

29.

30.

31
32.

33

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

Page 16 of 17

Suykens JAK, Vandewalle J. Least squares support vector machine
classifiers. Neural Process Lett. 1999;9(3):293-300.

Van GT, Suykens JAK, Baesens B, Viaene S, Vanthienen J, Dedene G, et
al. Benchmarking least squares support vector machine classifiers. Mach
Learn. 2004;54(1):5-32.

Bioinformatics Toolbox. http://www.mathworks.com/products/bioinfo/.
Ressom H, Varghese R, Drake S, Hortin G, Abdel-Hamid M, Loffredo C,
et al. Peak selection from MALDI-TOF mass spectra using ant colony
optimization. Bioinformatics. 2007;23(5):619-26.

Boersma BJ, Reimers M, Yi M, Ludwig JA, Luke BT, Stephens RM, et al. A
stromal gene signature associated with inflammatory breast cancer. Int J
Cancer. 2008;122(6):1324-32.

TCGA portal. https://tcga-data.nci.nih.gov/tcga/.

Irizarry R, Hobbs B, Collin F, Beazer-Barclay Y, Antonellis K, Scherf U, et al.
Exploration, normalization, and summaries of high density
oligonucleotide array probe level data. Biostatistics. 2003;4:249.

Dillies MA1, Rau A, Aubert J, Hennequet-Antier C, Jeanmougin M,
Servant N, et al. A comprehensive evaluation of normalization methods
for lllumina high-throughput RNA sequencing data analysis. Brief
Bioinform. 2013;14(6):671-83.

Marioni JC, Mason CE, Mane SM, Stephens M, Gilad Y. RNA-seq an
assessment of technical reproducibility and comparison with gene
expression arrays. Genome Res. 2008;18(9):1509-17.

The NCBI Gene Expression Omnibus (GEQO).
http://www.ncbi.nlm.nih.gov/geo/.

Haasdonk B. Feature space interpretation of svms with indefinite kernels.
IEEE Trans Pattern Anal Mach Intell. 2005;27(4):482-92.

Rallapalli G, Kemen EM, Robert-Seilaniantz A, Segonzac C, Etherington
G, Sohn KH, et al. EXPRSS: an lllumina based high-throughput
expression-profiling method to reveal transcriptional dynamics. BMC
Genomics. 2014;15:341.

Seiffert C, Khoshgoftaar TM, Van Hulse J, Napolitano A. RUSBoost:
Improving clasification performance when training data is skewed. In:
19th International Conference on Pattern Recognition (ICPR). Tampa, FL:
IEEE; 2008. p. 1-4.

Sun'Y, Wong AC, Kamel M. Classification of imbalanced data, a review.
Int J Patt Recogn Artif Intell. 2009;23:687.

Jolliffe I. Principal component analysis. New York: Springer; 2002.

Oh'S, Lee MS, Zhang BT. Ensemble learning with active example
selection for imbalanced biomedical data classification. [EEE/ACM Trans
Comput Biol Bioinform. 2011,8(2):316-25.

Han X. Nonnegative principal component analysis for cancer molecular
pattern discovery. IEEE/ACM Trans Comput Biol Bioinformatics.
2010;7(3):537-49.

Han X. Improving gene expression cancer molecular pattern discovery
using nonnegative principal component analysis. Genome Informat.
2008;21:200-11.

Zhang J, Wu G, Miller CP, Tatevossian RG, Dalton JD, Tang B, et al.
Whole-genome sequencing identifies genetic alterations in pediatric
low-grade gliomas. Nat Genet. 2013;45(6):602-12.

Tam S, Tsao MS, McPherson JD. Optimization of miRNA-seq data
preprocessing. Brief Bioinform. 2015;1-14. doi:10.1093/bib/bbv019.
McLachlan G. Discriminant Analysis and Statistical Pattern Recognition.
Hoboken, NJ USA: Wiley Interscience; 2005.

Nazarov PV, Apanasovich W, Lutkovski VM, Yatskou MM, Koehorst RBM,
Hemminga MA. Artificial neural network modification of
simulation-based fitting: application to a protein-lipid system. J Chem Inf
Comput Sci. 2004,44(2):568-74.

Huang J, Lu J, Ling CX. Comparing naive bayes, decision trees, and SVM
with AUC and accuracy. In: Third IEEE International Conference on Data
Mining. Melbourne, Florida: IEEE; 2003. p. 553-6.

Jing X. Robust adaptive learning of feedforward neural networks via LMI
optimizations. IEEE Trans Neural Netw. 2012;31:33-45.

Fox RJ, Dimmic MW. A two-sample Bayesian t-test for microarray data.
BMC Bioinformatics. 2006;10(7):126.

McCall MN, Bolstad BM, Irizarry RA. Frozen robust multiarray analysis.
Biostatistics. 2010;11(2):242-53.

Han X. Inferring species phylogenies: a microarray approach. Comput
Intell Bioinformatics Lecture Notes Comput Sci. 2006;4115:485-93.
Robinson MD, Oshlack A. A scaling normalization method for differential
expression analysis of RNA-seq data. Genome Biol. 2010;11:R25.


https://sites.google.com/site/tbdiagnosticbiases/
http://www.mathworks.com/products/bioinfo/
https://tcga-data.nci.nih.gov/tcga/
http://www.ncbi.nlm.nih.gov/geo/
http://dx.doi.org/10.1093/bib/bbv019

Han BMC Medical Genomics (2015) 8:46

45.

46.

47.

48.

49.

50.

Wang Z, Gerstein M, Snyder M. RNA-Seq: a revolutionary tool for
transcriptomics. Nat Rev Genet. 2009;10:57-63.

Anders S, Huber W. Differential expression analysis for sequence count
data. Genome Biol. 2010;11:R106.

Tapia E, Omella L, Bulacio P, Angelone L. Multiclass classification of
microarray data samples with a reduced number of genes. BMC
Bioinformatics. 2011;12:59.

Fakoor R, Ladhak F, Nazi A, Huber M. Using deep learning to enhance
cancer diagnosis and classification. In: Proceedings of the ICML Workshop
on the Role of Machine Learning in Transforming Healthcare. Atlanta,
Georgia: JMLR: W&CP; 2013.

Quang D, ChenY, Xie X. DANN: a deep learning approach for annotating
the pathogenicity of genetic variants. Bioinformatics. 2015;31(5):761-3.
Lai Y, Eckenrode SE, She JX. A statistical framework for integrating two
microarray data sets in differential expression analysis. BMC
Bioinformatics. 2009;10(Suppl 1):S23.

Page 17 of 17

Submit your next manuscript to BioMed Central
and take full advantage of:

e Convenient online submission

e Thorough peer review

¢ No space constraints or color figure charges

¢ Immediate publication on acceptance

¢ Inclusion in PubMed, CAS, Scopus and Google Scholar

¢ Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit

( ) BiolMed Central




	Abstract
	Background
	Methods
	Results
	Conclusions
	Keywords

	Background
	Methods
	Kernel selection
	SVM classifier parameterization
	Model selection
	Data selection and preprocessing 


	Results
	Three diagnostic biases
	Overfitting biases
	Why does NaN appear in diagnostic results?
	Label skewness biases
	Underfitting biases

	Diagnostic biases under other cross validations
	What are the reasons for diagnostic biases?
	Diagnostic bias conquering

	Derivative component analysis (DCA)
	Derivative component analysis based support vector machines (DCA-SVM)
	Random undersampling Boost (RUBoost)
	Independent data sets: brain low grade glioma (LGG) TCGA data
	Normalization
	Monte Carlo simulation oriented training and test data selection
	Diagnostic index
	Derivative component analysis based phenotype separation
	Derivative component analysis based phenotype separation


	Discussion
	Conclusions
	Availability of supporting data
	Competing interests
	Authors' contributions
	Acknowledgements
	References



