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Abstract: A novel aniline tetramer (AT) capped electroactive imide oligomer (EIO) for metal
corrosion protection was successfully synthesized in this study. The chemical structure of the EIO
was characterized by liquid chromatography-mass spectrometry and Fourier-transform infrared
spectroscopy. Furthermore, the redox behavior of EIO was identified using electrochemical cyclic
voltammetry studies. An EIO coated on a cold-rolled steel (CRS) electrode was found to possess
superior corrosion resistance to polyimide (PI) on a series of electrochemical corrosion measurements
in 3.5 wt.% NaCl solution over an extended period (30 days). The mechanism for the advanced
corrosion protection of the PI coating on the CRS electrode could be attributed to the redox catalytic
capabilities of the AT units present in the EIO. These capabilities may induce the formation of passive
metal oxide layers on the CRS electrode. Scanning electron microscopy and X-ray photoelectron
spectroscopy were used to analyze the surface condition of the CRS after the corrosion test. EIO- and
PI-coated electrodes were identified by a series of electrochemical measurements, including corrosion
potential (Ecorr), polarization resistance (Rp), and corrosion current (Icorr) measurements, along with
electrochemical impedance spectroscopy (EIS).
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1. Introduction

Metallic corrosion is a serious safety and economic issue for construction and industrial
development [1]. Many approaches to corrosion protection have been developed, including organic
coatings [2–5], inorganic coatings [6,7], ceramic coatings [8], and corrosion inhibitors [9,10]. Recently,
organic coatings have attracted significant attention due to their potential for simple preparation, low
cost, and functional potential, while being considered one of the most efficient strategies for corrosion
protection. However, most of the organic coatings are not perfect barriers for providing long-term
corrosion protection because such coatings are more or less permeable to corrosive media like water,
oxygen, and ions. Therefore, several approaches for corrosion protection have been developed utilizing
organic coatings. Some methods involve the addition of chromate as a corrosion inhibitor, which can
provide the highest level of corrosion protection. Unfortunately, the adverse health and environmental
effects, high toxicity, and carcinogenic risks of chromium limit its safety and therefore use [11,12].

Conducting polymers such as polyaniline (PANI), polypyrrole, and polythiophene are interesting
materials for both research and technological applications. There has been increasing interest in the
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use of these polymers to reduce the corrosion of oxidizable metals [13–15]. Among these types of
polymers, PANI has been considered one of the most promising electrode materials due to its facile
synthesis, environmental stability, unique electronic properties, and simple acid–base doping/dedoping
chemistry [16,17]. Although PANI has good anti-corrosion properties [18–20], poor solubility of PANI
in common organic solvents has limited its practical application in many fields. To find an appropriate
counter to this shortcoming, aniline oligomers and their derivatives have been the subject of much
recent research [21–24].

Kaner and his research team have demonstrated that aniline tetramer (AT) is the smallest oligomer
unit that can fully represent the structure of PANI [25]. Faul et al. synthesized the AT-alkyl diblock
compound which self-assembled into single-crystalline two-dimensional microplates and studied its
electrical conductivity [26]. Chao and Wang also prepared electroactive polymers containing AT in
the main and side chains, which exhibited electrochemical properties, electrochromic behavior, and
fluorescent sensing properties [27–29]. Huang et al. incorporated the amino-capped aniline trimer
into a polyurethane prepolymer to obtain electroactive polyurethane coatings, exhibiting a stronger
corrosion protection on the cold rolled steel in the corrosion medium than the pristine polyurethane
coating [30]. Liu et al. prepared self-assembled AT based conducting nanofiber incorporated into a
waterborne epoxy as a composite coating to enhance the corrosion resistance of mild steel (Q235 grade),
demonstrating a relatively high conductivity and reversible redox behavior [31].

Polyimide (PI) is a high-performance engineering polymer with outstanding properties, including
film-forming ability, thermal stability, and mechanical properties compared to conventional polymers.
Thus, PI films have been used commercially in various applications such as flexible substrates, gas
separation membranes [32], chemical sensors [33,34], and anticorrosion materials [5,35,36].

In this work, we present the electrochemically investigated corrosion protection properties of
aniline tetramer-capped electroactive imide oligomer (EIO) coating on cold-rolled steel (CRS) electrodes.
The corrosion resistance of the EIO coating was compared to a corresponding PI coating using a series of
electrochemical measurements. The electroactivity of the EIO was characterized by cyclic voltammetry.
The Tafel curve and EIS spectra were used to investigate the anti-corrosion performance. Scanning
electron microscopy and X-ray photoelectron spectroscopy were used to analyze the corrosion products.

2. Experimental

2.1. Materials and Instrumentation

N-Phenyl-p-phenylenediamine (98%, Alfa-Aesar, haverhill, MA), ferric chloride (99%,
ECHO, Taichung), 4-4′-diaminodiphenylether (ODA, 97%, Sigma-Aldrich, Missouri, St. Louis),
4,4′-(4,4′-Isopropylidenediphenoxy)bis(phthalic anhydride) (IDPA, 98%, Sigma-Aldrich, Missouri,
St. Louis), N-methyl-2-pyrrolidone (NMP, 99%, TEDIA, Fairfield, OH), hydrochloric acid (35%,
SHOWA, Xingtian city, Saitama), ammonium persulfate (APS, 98%, J.T.Baker, Phillipsburg, New Jersey),
ammonium hydroxide (25%, SHOWA, Xingtian city, Saitama), N,N-Dimethylacetamide (DMAc, 99%,
TEDIA, Fairfield, OH), dimethylformamide (DMF, 99%, TEDIA, Fairfield, OH), dimethyl sulfoxide
(DMSO, 95%, TEDIA, Fairfield, OH), tetrahydrofuran (THF, 99.5%, Acros, Geel, Belgium), chloroform
(99%, Shimakyu’s Pure Chemicals, Osaka-shi, Osaka), dichloromethane (99.5%, Shimakyu’s Pure
Chemicals, Osaka-shi, Osaka), acetone (99%, ECHO, Taichung), ethanol (95%, ECHO, Taichung) were
used as received. Attenuated total reflection Fourier transform-infrared spectra were collected using
an FTIR spectrometer (JASCO, Hachioji, Tokyo, FT/IR-4600) at room temperature, the resolution used
in the measurements and the number of scans was 4 cm−1 and 64 scans, respectively. Mass spectra
were obtained on a triple quadrupole mass spectrometer (TSQ Quantum) with an ESI source. UV-Vis
absorption spectra were collected using a UV-Vis spectrometer (JASCO V-750). The field emission
scanning electron microscope (JEOL, Akishima, Tokyo, JSM-7800F, in-lens Schottky field emission
electron gun, accelerating voltages was 3.0 KV) and X-ray photoelectron spectrometer (XPS, Thermo
K-Alpha, Al K-alpha microfocus monochromated X-ray source) were used to characterize passivation
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by metal oxide layers. Cyclic voltammetry experiments were performed on CHI 6273E electrochemical
analyzer using a conventional three-electrode system. The electrochemical corrosion measurements
were performed using an electrochemical workstation zive sp1 (WonATech, Seoul, Korea). The area of
work electrode was 1 cm2. All tests were performed at 25 ◦C in corrosive medium (3.5 wt.% sodium
chloride solution).

2.2. Synthesis of Aniline Tetramer (AT)

The synthesis of AT was performed by a modification of the published literature procedures [37].
The ferric chloride hexahydrate (4.90 g, 0.01 mole) in HCl solution (30 mL, 1.0 M) was rapidly added
to a solution of the N-phenyl-1,4-phenylenediamine (aniline dimer, 2.0 g, 0.01 mole) in HCl solution
(200 mL, 1.0 M). After vigorous mechanical stirring for 4 h in the ice bath, the product was collected
by centrifugation, and washed repeatedly with 1.0 M HCl and deionized water until the supernatant
was colorless. The resulting precipitate in the emeraldine salt state was then treated with ammonium
hydroxide solution (1.0 M, 200 mL) for 24 h. The precipitate was collected by filtration and dried in a
vacuum oven at 50 ◦C for 24 h to yield aniline tetramer in the emeraldine base state.

2.3. Synthesis of Polyimide (PI)

A total of 1.04 g (2 mmol) IDPA was dissolved in 10 mL of NMP under nitrogen at room
temperature, followed by slowly added into a stirred solution of 0.4 g (2 mmol) of ODA dissolved
in 10 mL of NMP. The reaction mixture was stirred for 6 h to obtain a solution containing poly(amic
acid) (PAA). The as-prepared PAA solution was dried under vacuum at 250 ◦C for 5 h to complete the
chemical imidization reaction of the polyimide (PI).

2.4. Synthesis of Electroactive Amic Acid Oligomer (EAAO) and Imide Oligomer (EIO)

A total of 1.04 g (2 mmol) of IDPA was dissolved in 10 mL of NMP under nitrogen at room
temperature, followed by slowly added into a stirred solution of 0.73 g (2 mmol) of AT dissolved in
10 mL of NMP. The solution was magnetically stirred for 4 h to obtain a solution containing aniline
tetramer capped electroactive amic acid oligomer (EAAO). The as-prepared EPAAO solution was dried
under vacuum at 250 ◦C for 3 h to complete the chemical imidization reaction of the electroactive imide
oligomer (EIO), as shown in Scheme 1.

Polymers 2020, 12, x FOR PEER REVIEW 3 of 16 

 

(JASCO V-750). The field emission scanning electron microscope (JEOL, Akishima, Tokyo, JSM-
7800F, in-lens Schottky field emission electron gun, accelerating voltages was 3.0 KV) and X-ray 
photoelectron spectrometer (XPS, Thermo K-Alpha, Al K-alpha microfocus monochromated X-ray 
source) were used to characterize passivation by metal oxide layers. Cyclic voltammetry experiments 
were performed on CHI 6273E electrochemical analyzer using a conventional three-electrode system. 
The electrochemical corrosion measurements were performed using an electrochemical workstation 
zive sp1 (WonATech, Seoul, Korea). The area of work electrode was 1 cm2. All tests were performed 
at 25 °C in corrosive medium (3.5 wt.% sodium chloride solution). 

2.2. Synthesis of Aniline Tetramer (AT) 

The synthesis of AT was performed by a modification of the published literature procedures 
[37]. The ferric chloride hexahydrate (4.90 g, 0.01 mole) in HCl solution (30 mL, 1.0 M) was rapidly 
added to a solution of the N-phenyl-1,4-phenylenediamine (aniline dimer, 2.0 g, 0.01 mole) in HCl 
solution (200 mL, 1.0 M). After vigorous mechanical stirring for 4 h in the ice bath, the product was 
collected by centrifugation, and washed repeatedly with 1.0 M HCl and deionized water until the 
supernatant was colorless. The resulting precipitate in the emeraldine salt state was then treated with 
ammonium hydroxide solution (1.0 M, 200 mL) for 24 h. The precipitate was collected by filtration 
and dried in a vacuum oven at 50 °C for 24 h to yield aniline tetramer in the emeraldine base state. 

2.3. Synthesis of Polyimide (PI) 

A total of 1.04 g (2 mmol) IDPA was dissolved in 10 mL of NMP under nitrogen at room 
temperature, followed by slowly added into a stirred solution of 0.4 g (2 mmol) of ODA dissolved in 
10 mL of NMP. The reaction mixture was stirred for 6 h to obtain a solution containing poly(amic 
acid) (PAA). The as-prepared PAA solution was dried under vacuum at 250 °C for 5 h to complete 
the chemical imidization reaction of the polyimide (PI). 

2.4. Synthesis of Electroactive Amic Acid Oligomer (EAAO) and Imide Oligomer (EIO) 

A total of 1.04 g (2 mmol) of IDPA was dissolved in 10 mL of NMP under nitrogen at room 
temperature, followed by slowly added into a stirred solution of 0.73 g (2 mmol) of AT dissolved in 
10 mL of NMP. The solution was magnetically stirred for 4 h to obtain a solution containing aniline 
tetramer capped electroactive amic acid oligomer (EAAO). The as-prepared EPAAO solution was 
dried under vacuum at 250 °C for 3 h to complete the chemical imidization reaction of the 
electroactive imide oligomer (EIO), as shown in Scheme 1. 

 
Scheme 1. Synthesis route of the EAAO and EIO. 

2.5. Reduction of AT and EAAO 

Scheme 1. Synthesis route of the EAAO and EIO.



Polymers 2020, 12, 91 4 of 16

2.5. Reduction of AT and EAAO

The as-prepared EAAO solution was poured into 100 mL of distilled water for precipitation.
The product was collected by filtration and washed with an excess of distilled water and
dichloromethane several times, and finally dried under dynamic vacuum at room temperature
for 24 h. The as-prepared AT and EAAO (0.1 g) were dispersed into a solution of 1 mL hydrazine
hydrate in 10 mL 1.0 M ammonium hydroxide, respectively. After stirring for 24 h, the products were
filtered and washed with distilled water several times, and dried under dynamic vacuum at 40 ◦C for
24 h. Finally, the obtained the leucoemeraldine oxidation state of AT and EAAO.

2.6. Electrochemical Measurements

All of the electrochemical corrosion measurements were performed by electrochemical workstation
zive sp1 (Wonatech, Korea) at 25 ◦C in corrosive medium (3.5 wt.% sodium chloride solution).
The working electrode (cold rolled steel, CRS) was groundby sandpaper 800 and 1000 grit, sequentially.
Meanwhile, each of the AT, EAAO and PAA solutions were prepared with NMP and then drop-coating
onto the groundCRS. The samples were dried under vacuum at 250 ◦C for 3 h. The thickness of the
coatings was determined using micrometers (Mitutoyo 293-240-30 IP65, range 0–25 mm, resolution
0.001 mm). The average thickness was 0.022 mm ± 0.001 mm. The area of working electrode was
1 cm2. All tests were performed in the corrosive medium for one hour to ensure the steady state
prior to polarization current measurement. The potential was scanned from −250 to +250 mV at
a scan rate of 2.5 mV s−1 for polarization current experiments. The corrosion potential (Ecorr) and
corrosion current density (Icorr) were determined by the Tafel extrapolation method. The Icorr was
determined by superimposing a straight line along the linear portion of cathodic or anodic curve and
then extrapolating it through Ecorr.

The polarization resistance (Rp) value was calculated from the Tafel plots, according to the
Stearn-Geary equation [38,39]:

Rp =
babc

2.303(ba + bc)Icorr
(1)

where ba and bc are the anodic slope and cathodic slope, respectively. Corrosion rate (CR, in mm per
year) was calculated using the following equation [40,41]:

CR =
Icorr ×M

D×V
× 3270 (2)

where Icorr is the current density (A cm−2), M is the molecular mass, V is the valence (the number of
electrons that lose during the oxidation reaction), and D is the density of CRS (g cm−3).

3. Results and Discussion

3.1. Characterization of AT

The Mass and ATR-FTIR spectra of AT as shown in Figure 1. The characterizations of AT were as
follows: ion trap-MS m/z: [M + H]+ calculated for C24H20N4 = 365.4. Found 365.4. In the ATR-FTIR
spectrum of AT, the characteristic bands at 3314 cm−1 and 3208 cm−1 were attributed to the N-H
stretching modes. Moreover, the characteristic bands at 1594 cm−1 and 1504 cm−1 were attributed to C
= C of quinoid rings and benzenoid rings, respectively [37].
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3.2. Characterization of EAAO and EIO

The as-prepared aniline tetramer-terminated EAAO and EIO were characterized by ATR-FTIR, as
shown in Figure 2. In both of the ATR-FTIR spectra the characteristic band found at about 3259 cm−1

was attributed to the N-H stretching modes. Moreover, characteristic bands at 1580 cm−1 and 1506 cm−1

were attributed to C=C of quinoid rings and benzenoid rings, respectively [42,43]. The ATR-FTIR
spectrum of EAAO was shown in Figure 2a, the characteristic band at 1653 cm−1 was attributed to
C=O of CONH. After thermal imidization, the characteristic bands of the carboxyl groups vanished in
the EIO spectrum, as shown in Figure 2b. Meanwhile, new characteristic absorption bands appeared
at 1774 cm−1 and 1715 cm−1 of the EIO spectrum, which may be associated with asymmetric and
symmetric carbonyl stretching. Moreover, the characteristic band found at 1378 cm−1 and 746 cm−1 was
designated as the C-N stretching and deformation of the imide groups, respectively [44,45]. The above
information indicates that the EAAO had been effectively converted into the corresponding EIO
through the thermal imidization process.
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The solubility of the synthesized electroactive amic acid oligomer in some common organic
solvents is summarized in Table 1. The EAAO exhibited excellent solubility in many polar solvents
such as NMP, DMF, DMAc, DMSO and THF. The high solubility of EAAO could be attributed to the
following reasons: First, the flexible ether linkage (-O-) of IDPA, which reduced the rotation energy
barrier of the molecule chain and secondly, the polar functional groups (carboxylic acid and amide) of
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EAAO, which enhanced the interaction between EAAO and the solvent [46]. The high solubility of the
EAAO provides a distinct advantage in processing.

Table 1. Solubility of EAAO in common organic solvents a.

NMP DMF DMAc DMSO THF CHCl3 CH2Cl2 Acetone Ethanol

EAAO + + + + + + + + + + + + + +

a The solubility of the EAAO was determined with 5% solid content at 25 ◦C. ++ = soluble, + = partially soluble.

3.3. Chemical Oxidation of AT and EAAO

The obtained LB state of AT and EAAO were dissolved in NMP and ethanol, respectively.
Subsequently, a trace amount of (NH4)2S2O8 was added to them. The clear solution gradually changed
dark blue and then purple upon oxidization. This process was continuously monitored by UV-Vis
spectra, as shown in Figure 3. Initially, in each of the UV-Vis spectra, only one absorption band (AT at
326 nm, EAAO at 316 nm) was observed which is associated with the π-π* transition of the conjugated
ring system [47]. When it is slowly oxidized, the absorption undergoes a blue shift (AT from 326 nm to
300 nm, EAAO from 316 nm to 306 nm), with decreasing intensity. At the same time, a new absorption
appeared (AT at 592 nm, EAAO at 590 nm) which was designated to the exciton-type transition between
the HOMO of the benzoid ring and the LUMO orbital of the quinoid ring [48,49]. As the intensity
reached its maximum, the second absorption underwent a blue shift (AT from 592 to 590 nm, EAAO
from 590 to 580 nm) [45].
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3.4. Electroactivity of AT, EAAO and EIO Coatings

The cyclic voltammetry of AT, EAAO, and EIO using Ag/AgCl as the reference electrode was
performed at a scan range of −0.2 to 1.0 V and a scan rate of 50 mV s−1 in 1.0 M H2SO4. As
shown in Figure 4a, the cyclic voltammetry curve of the AT shows two pairs of redox peaks at
320 mV/200 mV and 520 mV/420 mV, which correspond to the transitions from the leucoemeraldine
base (LB) to the emeraldine base (EB) and the emeraldine base to the pernigraniline base (PNB),
respectively (Scheme 2a) [50]. Moreover, the CV curve of the EAAO shows two pairs of redox peaks at
330 mV/200 mV and 500 mV/350 mV, respectively, as shown in Figure 4b. In contrast, the CV results
obtained from the EIO were different from those obtained from the EAAO. Only one pair of redox
peaks at 360 mV/540 mV could be observed, as shown in Figure 4c. The differences in the EAAO and
the EIO systems could be attributed to their molecular structures (Scheme 2b,c). In the case of the EIO
system, the secondary amines at the EAAO segment were condensed during the thermal imidization
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with carboxylic acid to form an imine, which would not allow for the formation of quinoid rings. Thus,
the EIO existed only in one oxidation state [51], as shown in Scheme 2.Polymers 2020, 12, x FOR PEER REVIEW 7 of 16 
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3.5. Potentiodynamic Measurements

The polarization curves, electrochemical parameters of bare CRS, PI, AT, and EIO coatings, were
exhibited in Figure 5. All the corrosion parameters including corrosion potential (Ecorr), corrosion
current density (Icorr), polarization resistance (Rp), corrosion rate (CR), anodic Tafel slope (ba) and
cathodic Tafel slope (bc) are summarized in Table 2. Generally, a higher value of Ecorr and Rp, as well as
lower values of Icorr and CR, implied better corrosion protection [34,44,52,53]. Figure 5a shows that
bare CRS had the lowest Ecorr (−0.89 V) and the highest Icorr (2.52 × 10−6 A cm−2). By contrast, these
values of the PI, AT and EIO coatings had their anti-corrosion performance improved. The values of
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Ecorr were increased to −0.21 V, −0.27 V and −0.24 V, respectively. Meanwhile, the values of Icorr were
decreased to 1.85 × 10−10 A cm−2, 4.30 × 10−9 A cm−2, and 2.86 × 10−9 A cm−2, respectively.
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Figure 5. Tafel plots for the PI, AT and EIO coatings measured in 3.5 wt.% NaCl solution for (a) 1 day
and (b) 30 days.

Table 2. Electrochemical parameters derived from Tafel plots of the coatings in the saline solution after
one-day immersion.

Sample
Electrochemical Measurements

Ecorr (V) Icorr (A cm−2) RP (Ω cm2) CR (mm/year) ba bc Thickness (µm)

Bare −0.89 2.52 × 10−6 8.69 2.90 × 10−2 0.060 0.309 -
PI −0.21 1.85 × 10−10 3.55 × 108 2.17 × 10−6 0.305 0.300 22 ± 1
AT −0.27 4.30 × 10−9 1.22 × 107 5.03 × 10−5 0.260 0.226 21 ± 1
EIO −0.24 2.86 × 10−9 2.88 × 107 3.35 × 10−5 0.421 0.344 22 ± 1

To further study the long-term anti-corrosion protection performance of the PI, AT and EIO
coatings they were immersed in a 3.5 wt.% NaCl solution for 30 days. The Ecorr and Icorr of the PI
coating were found to be −0.71 V and 8.64 × 10−9 A cm−2, respectively. Furthermore, both the AT
and EIO coatings exhibited better anti-corrosion performance than the PI, as shown in Figure 5b.
The Ecorr of the AT and EIO coatings were −0.67 V and −0.55 V, respectively, while the Icorr values
were 7.85 × 10−9 A cm−2 and 3.32 × 10−9 A cm−2. The detailed values of corrosion parameters are
summarized in Table 3. The results show that the EIO coating has the highest Ecorr and lowest Icorr,
thus it can be concluded that it demonstrated the strongest anti-corrosion performance.

Table 3. Electrochemical parameters derived from Tafel plots of the coatings in the saline solution after
30 days immersion.

Sample
Electrochemical Measurements

Ecorr (V) Icorr (A cm−2) RP (Ω cm2) CR (mm/year) ba bc Thickness (µm)

PI −0.71 8.64 × 10−9 3.66 × 106 1.01 × 10−4 0.162 0.132 22 ± 1
AT −0.67 7.85 × 10−9 5.33 × 106 9.19 × 10−5 0.269 0.150 21 ± 1
EIO −0.55 3.32 × 10−9 1.33 × 107 3.89 × 10−5 0.138 0.385 22 ± 1

3.6. Electrochemical Impedance Spectroscopy (EIS) Measurements

To further investigate the corrosion of the CRS electrode coated by PI, AT and EIO, the EIS
measurements were conducted in 3.5 wt.% NaCl solution. The EIS results are presented in Figure 6a.
The equivalent electric circuits were shown in Figure 7. Rs is the solution resistance between the
working electrode and the reference electrode, Rpo and Cc correspond to the coating pore resistance and
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coating capacitance, Rct and Cdl represent the charge transfer resistance and double-layer capacitance,
and Zw is the Warburg resistance [46]. The Nyquist and Bode plots of the neat CRS are shown as
comparison studies. As shown in Figure 6a, at the initial immersion stage, all of the samples were
semi-circular, indicating the CRS had increased anti-corrosion attributes [54–57]. The EIS data were
fitted with the equivalent circuit in Figure 7a.
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After long-term immersion, the Nyquist plots of the PI exhibited shrinking capacitive arcs followed
by a tiny diffusion tail, indicating that the metal surface corrosion was caused primarily by a charge
reaction [58–60]. Moreover, the electrochemical impedance spectra of AT and EIO show two time
constants and two capacitive arcs, as shown in Figure 6b. The high-frequency capacitive arc reflected
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the properties of the coating, while the low-frequency capacitive loop reflected the corrosion of the
metal beneath the coating [61]. The larger radius of the semicircle signified that the coating has a
high impedance during the water seepage stage due to the passive metal oxide layers formed by the
segments of aniline tetramer, hindering the penetration of water and oxygen and preventing further
corrosion of the CRS substrate. The measured results of the EIS were fitted with the equivalent circuit
in Figure 7b,c.

The Bode plots of the PI, AT, and EIO were shown in Figure 6c,d. In general, the lowest frequency
region of the impedance modulus could be used to roughly estimate the coating resistance [62,63].
At the initial immersion stage, the |Z|0.1 Hz value for bare, PI, AT and EIO were 1.14 × 102, 1.79 × 107,
1.15 × 107 and 1.49 × 107 ohm·cm2, respectively. After 30 days of immersion, the |Z|0.1 Hz value of the
PI, AT and EIO were dropped to 2.60 × 106, 6.38 × 106 and 1.05 × 107 ohm·cm2, respectively. Both the
AT and EIO coatings show better anti-corrosion effect than the PI during the long-term immersion
period. The reason was attributed to the existing aniline tetramer units in the coatings, which can
passivate the metal surface to form a protective iron oxide film. The results of the EIS were consistent
with previous Tafel plot studies.

Figure 8 shows the initial Rpo of all the coatings before and after the 30 days immersion
period, after which the Rpo of all the samples had decreased due to defects in the coatings. The AT
(3.66 × 106 ohm·cm2) and EIO (7.93 × 106 ohm·cm2) coatings show higher pore resistance than the PI
(2.18 × 106 ohm·cm2) due to the formation of passive metal oxide layers. Furthermore, the Rpo of the
EIO was the highest among all the coatings, indicating that it offered the best protection for the CRS.
This may be the result of the EIO coating not only forming passive metal oxide layers but also providing
the charge transfer complex (CTC), a property that has been the subject of many studies [64]. CTC was
formed between dianhydride and diamine groups in polyimide systems and is largely responsible
for some of the valuable properties of polyimides. The increased interchain attractive forces resulting
from such interactions are proposed to increase the rigidity of the chain, which increases the density of
the EIO coating and grants it stronger anti-corrosion properties.
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3.7. Corrosion Products and Corrosion Mechanism Analysis

In further studies the SEM and XPS were used to confirm the formation of passive metal oxide
layers (Fe2O3) upon the surface of the CRS. For comparison, the SEM image of a ground CRS surface is
shown in Figure 9a. Figure 9b shows the ground CRS surface after the 30 days immersion period in a
3.5 wt.% NaCl solution, where dense, irregular projections and particles can be observed. Moreover,
Figure 9c–d show the surface of the CRS where PI, AT, and EIO coatings were removed after a saline
immersion treatment. It is observed from Figure 9c that sparse granular substances covered the surface



Polymers 2020, 12, 91 11 of 16

of the CRS. This suggests that the coating is unable to completely suppress the penetration of the
aggressive corrosive medium (chlorine and dissolved oxygen ions) into the underlying substrate during
long-term immersion treatment. On the other hand, the AT and EIO coatings were relatively cleaner,
as shown in Figure 9d,e. This indicates that a passive metal oxide layers formed on the CRS surface.
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Figure 9. SEM images for (a) ground CRS, and the surface of CRS coated with the (b) bare, (c) PI, (d) AT
and (e) EIO immersed in 3.5 wt.% NaCl solution duration for 30 days.

The chemical composition of the passivating oxide layers was determined by XPS. The binding
energy vs. intensity plots for iron oxide layers are shown in Figure 10. For comparison, the XPS
plots of the ground CRS surface and CRS surface beneath PI are shown in Figure 10a,b. As shown in
Figure 10c,d, the CRS surface coated with the AT and EIO all exhibited two binding energy peaks of Fe
2p3/2 and Fe 2p1/2 of Fe2O3 at 710.7 eV and 724.1 eV, respectively. Furthermore, a distinctive shake-up
satellite at around 719.1 eV indicates that the passivation oxide layer consists mainly of Fe2O3 [65,66].
The corrosion process in neutral solutions is presented in the following equations [67,68] and schematic
diagrams (Figure 11):Polymers 2020, 12, x FOR PEER REVIEW 12 of 16 
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anodic reaction:
Fe→ Fe2+ + 2e− (3)

O2 reduction takes place at the cathode:

1/2O2 + 2e− + H2O→ 2OH− (4)

chemical process:
2OH− + Fe2+

→ Fe(OH)2→ Fe(OH)3→ Fe2O3 (5)

4. Conclusions

In this study, the aniline tetramer capped electroactive imide oligomer (EIO) was successfully
synthesized and applied as an anti-corrosion coating for a cold-rolled steel electrode. The precursor
of the EIO, electroactive amic acid oligomer (EAAO), is limited due to its high solubility in common
organic solvents. The anti-corrosive properties of the EIO coating were evaluated by Tafel curves
and EIS. Further investigation of the oxidation products underneath the coating using SEM and XPS
concluded that the EIO coating facilitated the formation of passive metal oxide layers. This study offers
a novel method to prepare the soluble electroactive oligomer, which might be useful when applied to
protecting metals from corrosion.

Author Contributions: Conceptualization Y.-C.C.; methodology, software, formal analysis, and investigation
B.-S.H. and G.-H.L.; experiment, data curation and writing—original draft preparation B.-S.H.; writing—review
and editing M.-H.T., T.-I.Y., and Y.-C.C.; project administration and funding acquisition M.-H.T. All authors have
read and agreed to the published version of the manuscript.

Funding: This material is based on work supported by the Ministry of Science and Technology, Taiwan, ROC
(grant No. MOST 108-2221-E-167 -020 -; MOST 108-2917-I-167 -001 -).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. George, F.; Hays, P. Now is the Time; World Corrosion Organization: New York, NY, USA, 2016.
2. Li, P.; He, X.; Huang, T.-C.; White, K.L.; Zhang, X.; Liang, H.; Nishimura, R.; Sue, H.-J. Highly effective

anti-corrosion epoxy spray coatings containing self-assembled clay in smectic order. J. Mater. Chem. A 2015,
3, 2669–2676. [CrossRef]

http://dx.doi.org/10.1039/C4TA06221C


Polymers 2020, 12, 91 13 of 16

3. Li, P.; Huang, T.-C.; White, K.L.; Hawkins, S.; Kotaki, M.; Nishimura, R.; Sue, H.-J. Spray-coated epoxy barrier
films containing high aspect ratio functionalized graphene nanosheets. RSC Adv. 2015, 5, 102633–102642.
[CrossRef]

4. Huang, T.-C.; Lai, G.-H.; Li, C.-E.; Tsai, M.-H.; Wan, P.-Y.; Chung, Y.-H.; Lin, M.-H. Advanced anti-corrosion
coatings prepared from [small alpha]-zirconium phosphate/polyurethane nanocomposites. RSC Adv. 2017,
7, 9908–9913. [CrossRef]

5. Lai, G.H.; Huang, T.C.; Tseng, I.H.; Huang, B.S.; Yang, T.I.; Tsai, M.H. Transparency anticorrosion coatings
prepared from alumina-covered graphene oxide/polyimide nanocomposites. Express Polym. Lett. 2019,
13, 772–784. [CrossRef]

6. Liang, J.; Srinivasan, P.B.; Blawert, C.; Dietzel, W. Comparison of electrochemical corrosion behaviour of
mgo and zro2 coatings on am50 magnesium alloy formed by plasma electrolytic oxidation. Corros. Sci. 2009,
51, 2483–2492. [CrossRef]

7. Palanivel, V.; Zhu, D.; van Ooij, W.J. Nanoparticle-filled silane films as chromate replacements for aluminum
alloys. Prog. Org. Coat. 2003, 47, 384–392. [CrossRef]

8. Xiang, N.; Song, R.-G.; Zhuang, J.-J.; Song, R.-X.; Lu, X.-Y.; Su, X.-P. Effects of current density on
microstructure and properties of plasma electrolytic oxidation ceramic coatings formed on 6063 aluminum
alloy. Trans. Nonferrous Met. Soc. China 2016, 26, 806–813. [CrossRef]

9. Anitha, R.; Chitra, S.; Hemapriya, V.; Chung, I.-M.; Kim, S.-H.; Prabakaran, M. Implications of eco-addition
inhibitor to mitigate corrosion in reinforced steel embedded in concrete. Constr. Build. Mater. 2019,
213, 246–256. [CrossRef]

10. Ituen, E.B.; Akaranta, O.; Umoren, S.A. N-acetyl cysteine based corrosion inhibitor formulations for steel
protection in 15% hcl solution. J. Mol. Liq. 2017, 246, 112–118. [CrossRef]

11. Peng, S.; Zhao, W.; Li, H.; Zeng, Z.; Xue, Q.; Wu, X. The enhancement of benzotriazole on epoxy functionalized
silica sol–gel coating for copper protection. Appl. Surf. Sci. 2013, 276, 284–290. [CrossRef]

12. Eduok, U.; Suleiman, R.; Gittens, J.; Khaled, M.; Smith, T.J.; Akid, R.; El Ali, B.; Khalil, A.
Anticorrosion/antifouling properties of bacterial spore-loaded sol–gel type coating for mild steel in saline
marine condition: A case of thermophilic strain of bacillus licheniformis. RSC Adv. 2015, 5, 93818–93830.
[CrossRef]

13. Rohwerder, M.; Michalik, A. Conducting polymers for corrosion protection: What makes the difference
between failure and success? Electrochim. Acta 2007, 53, 1300–1313. [CrossRef]

14. Yu, Y.-H.; Jen, C.-C.; Huang, H.-Y.; Wu, P.-C.; Huang, C.-C.; Yeh, J.-M. Preparation and properties of
heterocyclically conjugated poly(3-hexylthiophene)–clay nanocomposite materials. J. Appl. Polym. Sci. 2004,
91, 3438–3446. [CrossRef]

15. Hosseini, M.; Fotouhi, L.; Ehsani, A.; Naseri, M. Enhancement of corrosion resistance of polypyrrole using
metal oxide nanoparticles: Potentiodynamic and electrochemical impedance spectroscopy study. J. Colloid
Interface Sci. 2017, 505, 213–219. [CrossRef]

16. Song, E.; Choi, J.-W. Conducting polyaniline nanowire and its applications in chemiresistive sensing.
Nanomaterials 2013, 3, 498–523. [CrossRef]
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