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Abstract: Fructose 1,6-bisphosphatase (FBPase) has been identified as a drug discovery 

target for lowering glucose in type 2 diabetes mellitus. In this study, a large series of  

105 FBPase inhibitors were studied using a combinational method by 3D-QSAR, 
molecular docking and molecular dynamics simulations for a further improvement in 

potency. The optimal 3D models exhibit high statistical significance of the results, 
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especially for the CoMFA results with rncv
2, q

2 values of 0.986, 0.514 for internal 
validation, and rpred

2, rm
2 statistics of 0.902, 0.828 statistics for external validation. Graphic 

representation of the results, as contoured 3D coefficient plots, also provides a clue to the 

reasonable modification of molecules. (1) Substituents with a proper length and size at the 
C5 position of the thiazole core are required to enhance the potency; (2) A small and 

electron-withdrawing group at the C2 position linked to the thiazole core is likely to help 

increase the FBPase inhibition; (3) Substituent groups as hydrogen bond acceptors at the 
C2 position of the furan ring are favored. In addition, the agreement between 3D-QSAR, 

molecular docking and molecular dynamics simulation proves the rationality of the 

developed models. These results, we hope, may be helpful in designing novel and potential 
FBPase inhibitors. 

Keywords: 3D-QSAR; molecular dynamics; FBPase inhibitors; CoMFA; CoMSIA 

 

1. Introduction  

Type 2 diabetes mellitus (T2DM) is a chronic metabolic disorder that results from defects in both 

insulin secretion and insulin action. Nowadays, T2DM, as a major health hazard, is widespread and 

sometimes even fatal, which leads to both medical and social challenges. It has been reported [1] that 
type 2 diabetes mellitus is a progressive disorder. Often it can be treated initially with oral drug 

monotherapy. However, with the progress of the disease it will require the addition of other oral drugs, 

and in many patients the therapy of injecting insulin will be critically required to achieve targeted 
glycemic levels. As we know, patients with diabetes experience significant morbidity and mortality 

from microvascular and macrovascular complications. It has been documented that diabetes is the 

primary cause of blindness [2]. Therefore, patients with diabetes and corresponding complications 
suffer from great mental and physical pain. It is imperative for researchers to develop safe and 

effective drugs to prevent this kind of obstinate disease. Currently, many reports have illustrated that 

diet and exercise therapy plays an important role in the treatment for patients with T2DM [3,4]. 
However, if this therapy fails to achieve the desired level of glycemic control, pharmacologic 

intervention is required. Now, several classes of oral drugs are reported to have an effect on the 

treatment of T2DM including sulfonylureas [5], metformin [6], repaglinide [7], troglitazone [8] and so 
on. However, these oral agents still have some limitations. For example, sulfonylurea therapy usually 

is associated with weight gain, which has been implicated as a reason of secondary drug failure [3]; 

Metformin therapy is forbidden in patients with renal and hepatic disease, respiratory insufficiency and 
alcohol abuse; and troglitazone, a very expensive oral drug, often causes hypercholesterolemia which 

is a major risk factor for coronary artery disease. Therefore, the development of a kind of drug with 

more safe profiles and less side effects is a task of top priority. 
Most of the work has focused on enzymes in the gluconeogenesis (GNG) pathway, because this 

pathway is partly responsible for the excessive glucose production in type 2 diabetes mellitus [9]. Out 

of these enzymes, fructose 1,6-bisphosphatase (FBPase), a highly regulated enzyme that catalyzes the 
second to last step in gluconeogenesis [10,11], draws the attractiveness as a drug target to treat T2DM. 
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FBPase enables the inhibition of gluconeogenesis from all GNG substrates while avoiding direct 
effects on glycogenolysis, glycolysis and the tricarboxylic acid cycle. Moreover, evidence from 

clinical researches illustrates that FBPase inhibitors may show an adequate safety margin [11]. Thus, 

several classes of drugs targeting at the FBPase, recently, have been reported including MB06322 [12], 
anilinoquinazolines [13], benzoxazole benzenesulfonamides [14], MDL-29951 [15], AMP  

mimics [16–18], etc. However, among these agents, some series show very poor oral bioavailability 

(OBAV), thus, making the development of novel drugs with acceptable OBAV and more  
potency required. 

Nowadays, in silico modeling approaches [19–23], as a productive and cost-effective technology in 

design of novel lead compounds, have been used in combination with experimental practices [24–27] 
to facilitate the drug discovery process. In view of this, Chen and co-workers have carried out 

excellent work to study the FBPase inhibitors using the in silico method based on 63 FBPase  

inhibitors [28]. In the present work, more diverse set of molecules were performed to examine if a 
similar level of prediction can be achieved. In addition, besides both three-dimensional quantitative 

structural activity relationships (3D-QSAR) and molecular docking, in this work, a molecular 

dynamics (MD) approaches were also performed to investigate the stability of the docking results. 
Thus in the present work, a total of 105 thiazoles and oxazole-based inhibitors of FBPase was collected 

to build 3D-QSAR models using comparative molecular field analysis (CoMFA) [29] and comparative 

molecular similarity indices analysis (CoMSIA) methods [30]. The reliability and robustness of the 
developed best models were estimated with bootstrapping analysis and y-randomization check. In 

addition, the predictive abilities of the obtained models were validated statistically with an external test 

set of compounds using multiple statistical criteria. In addition, a combined computational approach 
including the docking analysis and molecular dynamics (MD) simulation was also employed to 

elucidate the probable binding modes of these antagonists at the binding site of the FBPase. The good 

concordance between the 3D contour maps and the docking result provides our identification of 
several key features of the binding mechanism for these inhibitors. We hope the developed models 

could provide some meaningful clues in the future synthesis of highly potent and orally bioavailable 

FBPase inhibitors. 

2. Results and Discussion  

2.1. Molecular Docking 

The docking results could illustrate to us the active-site architecture and ligand binding model as 
well as the network of electrostatic, hydrogen bond and van der Waals interactions associated with 

ligand binding between the inhibitors and FBPase. In this work, the most potent compound 27 is taken 

as the representative to elucidate this point in detail. As illustrated in Figure 1, compound 27 locates at 
the active site of the enzyme and binds primarily through the H-bond and van der Waals interactions. 

The majority of hydrogen-bond and hydrophobic modes are the same as those observed in  

the crystal structure of AMP complexed with FBPase [31], which validates the reliability of the  
docking model. 



Int. J. Mol. Sci. 2011, 12             

 

 

8164 

Figure 1. The binding models of the most potent compound 27 with Fructose  
1,6-bisphosphatase (FBPase). Top panel: A surface rendering to illustrate the interactions 

between compound 27 with the representative key amino acids. The inhibitor is 

represented as stick model and carbon atoms are colored green. Bottom panel: 2D 
representation of compound 27 and FBPase. The active site residues are represented as 

follows: polar residues in purple, hydrophobic residues in olive, respectively. The red dash 

denotes H-bonds. 

 

As can be seen from the figure, the phosphate of compound 27 forms hydrogen bond interactions 
with the main chain NH group residues of Thr27, Glu29, Leu30, with the OH of Tyr113, Thr27, and 

the side chain NH3+ group residue of Lys112. In addition, the amino group attached to the thiazole ring 

forms two other hydrogen bonds with the FBPase residues: one with the carbonyl O of Val17 and the 
other with the side chain OH of Thr31. Besides these hydrogen bond interactions, the van der Waals 

interactions also play a central role in the ligand binding as shown in Figure 1. The furan ring interacts 

with the main chain carbons of Gly26 and Gly28, with the side chain carbons of Leu30 and Val160. 
Interactions between the thiazole core and the binding pocket, besides hydrogen bond interactions, are 

mainly van der Waals contacts with the Phe16, Val17 and Met18. For the cyclohexyl ring, one can 

notice that the cyclohexyl ring produces van der Waals interactions with the amino residues of Ala24, 
Glu20, Asp178, Cys179 and Met177. All these interactions fix the inhibitor 27 in the binding  

pocket steadily. 

Compared to the interactions between AMP and FBPase [31], the most potent compound 27 forms 
more van der Waals interactions with the amino residues of FBPase, which may be one possible reason 

exhibiting its high activity. Through the investigation of the series of thiazoles and oxazoles, an 

interesting common characteristic was observed for most of the inhibitors that they all have the 
phosphate group, as a hydrogen bond acceptor, which forms a hydrogen bond network with the amino 

residues of FBPase. 
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2.2. 3D-QSAR Statistical Results 

To measure the predictive capability of a QSAR model, several statistical parameters including 

especially the cross-validated correlation coefficient (q2), non-cross-validated correlation coefficient 

(rncv
2), and standard error of estimate (SEE), F-statistic values, predicted correlation coefficient for the 

test set of compounds (rpred
2) as well as the principal components (PCs) were calculated. 

When building a 3D-QSAR model, two important elements impacting greatly on the quality of the 

model must be taken into account. One is the molecular alignment. In this work, both the ligand- and 
receptor-based alignment rules were applied, with the purpose to compare and implement the results of 

them for exploring the receptor-ligand interaction mechanism as really as possible. Another factor is 

the grid descriptors. Herein, two 3D descriptors for CoMFA (i.e., the steric and electrostatic fields) and 
five 3D descriptors for CoMSIA (i.e., the steric, electrostatic, hydrophobic, hydrogen bond (H-bond) 

donor and acceptor fields) as well as their 31 combinations were applied as the independent variables 

in the building models. 
As a result, several optimal CoMFA and CoMSIA models with proper predictive performance 

based on the same training (77 molecules) and test set (28 molecules) were obtained, with their 

statistical results shown in Table 1. For the ligand-based study, the optimal CoMFA model employing 
both the steric and electrostatic field descriptors obtains a LOO cross-validated q

2 of 0.514, a 

correlation coefficient rncv
2 of 0.986, a SEE value of 0.108 and an F value of 462.072 using  

10 components, which indicates a good internal predictivity of the model. When being validated by the 
independent test set which is not included in the building of the model, an rpred

2 = 0.902 is achieved, 

proving its high external predictive power. As to the field contribution, the steric and electrostatic field 

descriptors account for 0.563 and 0.437, respectively, to the CoMFA model. 
During the ligand-based CoMSIA analysis, the model with slightly worse but still acceptable 

statistical performances (q2 = 0.443, rncv
2 = 0.874, SEE = 0.314, F = 80.809) than that of the CoMFA 

one was observed, with three field descriptors (steric, electrostatic, hydrogen bond acceptor) employed. 
The rpred

2 value for the 28 test set compounds is 0.756. As to the relative contribution, the electrostatic 

field makes the greatest (0.453), followed by steric field (0.379), and the hydrogen bond acceptor field 

gives 0.168. 
For the receptor-based 3D-QSAR studies, it can be observed that no statistically acceptable results 

were obtained in terms of both internal and external validation criteria (Table 1). Thus, we focus on 

our further research to the optimal ligand-based CoMFA and CoMSIA models. Figure 2 illustrates the 
correlation plots of the experimental versus the predicted pIC50 values of the training (black dot) and 

test (red asterisk) sets for the two 3D-QSAR models. Clearly, good correlationships are observed since 

the predicted values are almost as accurate as the experimental activities for the whole dataset 
(especially for the CoMFA model). Table S1 (Supporting Information) lists the predicted results of the 

whole data set. 
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Table 1. The optimal comparative molecular field analysis (CoMFA) and comparative 
molecular similarity indices analysis (CoMSIA) results based on different  

superimposition methods. 

PLS analysis 

Superimposition Methods 

I II III 

CoMFA CoMSIA CoMFA CoMSIA CoMFA CoMSIA 
q

2 0.514 0.443 0.047 0.191 0.121 0.147 
PCs 10 6 2 2 4 2 
rncv

2 0.986 0.874 0.486 0.485 0.796 0.540 
SEE 0.108 0.314 0.617 0.618 0.394 0.584 

F value 462.072 80.809 35.010 34.859 70.348 43.425 
rbs

2
 0.992 0.905 0.635 0.601 0.875 0.630 

SEEbs 0.082 0.267 0.520 0.544 0.304 0.519 
rpred

2 0.902 0.756 0.364 0.559 0.352 0.473 
Relative Contribution (%) 

S 0.563 0.379 0.398 - 0.581 - 
E 0.437 0.453 0.602 0.479 0.419 - 
H - - - - - - 
D - - - 0.521 - 0.822 
A - 0.168 - - - 0.178 

q
2, cross-validated correlation coefficient after the leave-one-out procedure; PCs, principal 

components; rncv
2, non-cross-validated correlation coefficient; SEE, standard error of estimate;  

F, the value of F statistic; rbs
2, the average r

2 value from a bootstrapping analysis for 100 runs; 
SEEbs, the average SEE value from a bootstrapping analysis for 100 runs; rpred

2, predicted 
correlation coefficient for the test set of compounds. Superimposition method: I, from the  
database alignment; II, from docking alignment; III, from database alignment based on the  
docking conformations. 

Figure 2. The predicted versus the actual pIC50 values for the FBPase inhibitors:  
(A) CoMFA model and (B) CoMSIA model. 
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Overfitting can be a problem in QSAR. One should demonstrate that the final model is based on the 
correct number of components. Herein, in order to address this problem, we have validated the optimal 

CoMFA model using first 11 components and CoMSIA model using first 7 components. By 

investigating the q2, rncv
2 and SEE, we have noticed the two optimal models improve with the addition 

of components, that 10 components are needed for the CoMFA model and 6 for the CoMSIA model 

and that further improvement is not obtained with additional components (see Tables S2 and S3). 

As a further test of the robustness of the CoMFA and CoMSIA models, we also randomized the 
target values for 50 times. As a result, none of obtained models have significant q

2. The q
2 values 

obtained are in the range from −0.630 to 0.085 for CoMFA, and from −0.476 to 0.013 for CoMSIA, 

respectively. This indicates that the q2 values in both the optimal CoMFA and CoMSIA models with 
original data are not due to chance correlations. 

To testify firmly the good performance of the prediction, the squared correlation coefficient values 

between the actual and predicted values of the test set compounds with intercept (rtest
2) and without 

intercept (r0
2) are also calculated. Table 2 gives the values of the parameters for the optimal CoMFA 

and CoMSIA models in the present work. According to references [32–35], models are considered 

acceptable if they satisfy all following conditions: (1) rpred
2 > 0.5, (2) rtest

2 > 0.6, and (3) r0
2 is close to 

rtest
2, such that the (rtest

2 − r0
2)/rtest

2 < 0.1 and 0.85 ≤ k ≤ 1.15 or 0.85 ≤ k′ ≤ 1.15. When the observed 

values of the test set compounds (X axis) are plotted against the predicted values of the compounds  

(Y axis) setting intercept to zero, the slope of the fitted line gives the value of k. Interchange of the axes 
gives the value of k′. As can be seen from the table, both the best CoMFA and CoMSIA models 

successfully pass those tests. 

Table 2. Comparison of the external predictability of the optimal CoMFA and CoMSIA, 
for the prediction set. 

Model rtest
2
 rpred

2
 r0

2
 (rtest

2 − r0
2)/rtest

2
 r

2
m

 
k k′

 

CoMFA 0.909 0.902 0.901 0.009 0.828 0.981 1.018 
CoMSIA 0.741 0.756 0.693 0.065 0.579 0.990 1.005 

rtest
2, conventional r

2
 in the test set; rpred

2, predicted correlation coefficient for the test set of 
compounds; r0

2, r
2 with the Y-intercept set to zero; k, slope of regression lines (observed versus 

predicted activities) through the origin; k′, slope of regression lines (predicted versus observed 
activities) through the origin. 

A previous report [36] has illustrated that the rpred
2 may not truly reflect the predictive capability of 

a model on a new dataset. Also, the squared regression coefficient (rtest
2) between the observed and 

predicted values of the test set compounds does not necessarily mean that the predicted values are very 
near to the observed activities (as there may be considerable numerical difference between the values 

though maintaining an overall good inter-correlation). To better evaluate the external predictive 

capacity of a model a modified r2 term (rm
2) is been defined as follows [37]: 

)1( 2222
otesttestm rrrr −−×=  (1) 

In case of good external prediction capacity, predicted values will be very close to the actual values 

and thus the rtest
2 value will be very near to the r0

2. In the best case rm
2 may be equal to rtest

2, whereas 
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in the worst case rm
2 value could be zero. Herein, the rm

2 values of both the two models are larger than 
the recommended value (0.5). We also noticed that, by comparing the CoMFA with CoMSIA model, 

the former produces higher predictive power than the latter in terms of both the internal and external 

exams (Tables 1 and 2), suggesting that the currently developed CoMFA model achieves the predictive 
task for the novel synthesized compounds better. 

2.3. Contour Maps 

The CoMFA and CoMSIA results are represented as 3D coefficient contour maps which show 
regions where variations of different fields in the structural features of the molecules lead to the 

increase or decrease of the activity. In this study the most potent compound 27 is exhibited as a 

representative molecule in the following CoMFA and CoMSIA contour maps (Figures 3 and 4). 
The steric and electrostatic fields from the best CoMFA model are represented in Figure 3. In the 

steric field (Figure 3A), the green-colored contours represent the regions of favorable steric effect, 

while yellow-colored contours represent regions of unfavorable steric effect, respectively. 

Figure 3. CoMFA StDev*Coeff contour plots with the combination of compound 27.  

(A) Steric contour map. Green contours indicate regions where bulky groups increase 

activity (favored level 80%); yellow contours indicate regions where bulky groups 
decrease activity (disfavored level 20%). (B) Electrostatic contour map. Red contours 

indicate regions where negative charges increase activity (disfavored level 20%); blue 

contours indicate regions where positive charges increase activity (favored level 80%). 

 

As shown in Figure 3A, there exists a large green contour surrounding the cyclohexyl ring linked to 

the C5 position of the thiazole ring, indicating that the presence of a bulky group in this position will 
induce an increase of the inhibition activity for the class of compounds. The observation is fully 

supported by the experimental results. For example, a comparison among C5-thiazole analogues with 

various alkyl groups (molecules 18–27 shown in Supporting Information, Table S4) comes to a 
conclusion that the large substituent at 5-position on the thiazole core keeps optimal, since in this 

position the cyclohexyl ring falls into the green-colored zone. In addition, a careful inspection shows 

that a small yellow-colored map is located at the distal of the cyclohexyl ring, suggesting that too large 
groups are disfavored in this position. Taking compound 30, for example, insertion of a methylene 

group between the cyclohexyl ring and the thiazole core leads to a decrease of the activity, compared 

with its counterpart compound 27. By analyzing the docking simulation as discussed previously, it can 
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also be found that the distal carbon atom of the cyclohexyl core is near the side chain of Asp178 (with 
a distance of 2.8 Å in the binding pocket). Thus, one conclusion can be drawn that a proper size alkyl 

group is required at the C5 position to increase the inhibitory activity. 

Another large green-colored map situates at C2 position of the thiazole core, indicating the favor of 
a large substituent group for enhancing the inhibitory potency. However, at the back of this  

green-colored contour, a yellow-colored map is also observed, suggesting the careful selection of 

groups of proper size in this position. This investigation is also consistent with the experimental 
investigation, where for instance, compounds 2 and 3 with larger C2-groups such as ethyl and vinyl 

groups result in loss of potency compared to their counterpart, compound 1 having a methyl group at 

the C2 position of the thiazole core (Table S4). We also notice that if both the aryl and heteroaryl 
groups are introduced to the C2 position, the potency largely decreases that it is much lower  

(see compounds 15–17) than that of the molecule 1. In addition, an elimination of the C2-Me of 

compound 1 also leads to a 5-fold weaker compound in thiazole derivative 5, indicating that a suitable 
C2-group is important for the activity. Our previous investigation of the docking results also finds that 

the amino group attached to the C2 position of thiazole core forms two hydrogen bonds respectively 

with the side chain of Thr31 (with a bond length of 1.9 Å) and with the main chain of Val17 (with a 
bond length of 1.9 Å), which indicates that any larger substitute group might lead to a collision with 

these residues in the binding pocket, and thus the larger group here is forbidden. 

The CoMFA electrostatic contour map with the most potent compound 27 is shown in Figure 3B. 
Blue contour maps mean that positive-charged substituent groups are beneficial for the activity while 

red contours indicate that negative charges are conducive. As shown in Figure 3B, blue contour maps 

are observed surrounding the amino group at the C2 position of the thiazole core suggesting that a 
charge withdrawing group near these positions enhances the biological activity. The investigation is in 

agreement with previous docking results. As can be seen in Figure 1, the –NH2 group, as a hydrogen 

bond donor, can interaction with both Thr31 and Val17. In addition, one can also notice that 
substituent of the hydrogen atom with methyl group (compound 11) leads to a large loss of potency 

compared to compound 10 probably due to the lack of the hydrogen bond donor atom. In addition, a 

large red contour map exists around the phosphate group and embeds the cyclohexyl group illustrating 
that in these positions electro-rich groups are beneficial for increasing the activity. This may be a 

reason that all compounds of the dataset contain such electronegative groups (phosphate group). 

The CoMSIA steric and electrostatic contour maps (Figure 4A,B) are similar to the CoMFA model 
and thus are not discussed here additionally. Figure 4C depicts the H-bond acceptor contour map of the 

CoMSIA model. Magenta contours encompass areas where an H-bond acceptor leads to improved 

biological activity, while an acceptor located near the cyan regions results in the loss of biological 
activity. Clearly, it is easily found that a large magenta-colored map is surrounding the phosphate 

group and the cyclohexyl group, indicating the favor of the presence of H-bond acceptor groups in this 

region for the activity. The investigation is also supported by previous CoMFA and CoMSIA 
electrostatic contour maps where, in these positions, a large red map exists, indicating electro-rich 

groups as hydrogen bond acceptors are beneficial to increase the potency of these inhibitors. Analysis 

of docking results also shows that the oxygen atoms of the phosphate group as hydrogen acceptors 
form six hydrogen bonds with the FBPase: two with the side chain hydroxyl groups of Thr27 and 

Tyr113 with the bond lengths of 2.3 and 1.8 Å respectively; three with the main chain amino groups of 
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Thr27, Glu29 and Lue30 with H-bond lengths of 1.9, 2.7and 1.9 Å, separately; and one with the side 
chain amino group of Lys112 with the bond length of 1.9 Å. The investigation also consists with the 

previous report [31]. In addition, a small cyan contour map is near the amino group at C2 position of 

the thiazole core, indicating the disfavored regions for H-bond acceptor groups. In fact, in the position, 
hydrogen bond donor groups are favored as depicted in CoMFA and CoMSIA electrostatic contour 

maps as well as the docking results. Thus this information obtained from the CoMFA and CoMSIA 

contour maps is helpful to understand the interactions between the inhibitors and the FBPase. 

Figure 4. CoMSIA StDev*Coeff contour plots with the combination of compound 27.  

(A) Steric contour map. Green contours indicate regions where bulky groups increase 

activity (favored level 80%); yellow contours indicate regions where bulky groups 
decrease activity (disfavored level 20%). (B) Electrostatic contour map. Red contours 

indicate regions where negative charges increase activity (disfavored level 20%); blue 

contours indicate regions where positive charges increase activity (favored level 80%). (C) 
H-bond acceptor contour map. Magenta contours indicate regions where H-bond acceptor 

substituents increase activity (favored level 85%); cyan contours indicate the disfavor 

regions for H-bond acceptor groups (disfavored level 15%). 

 

Since the previous report [28] is the subset of the current research, it is very interesting to 

investigate both the similarity and difference between them. Firstly, we compare the external 
validation abilities of the best CoMFA models for Chen’s [28] and ours. The best CoMFA model 

developed by Chen et al. gives rpred
2 and rm

2 of 0.805 and 0.887, respectively, while, herein the present 

model exhibits the rpred
2 of 0.902, and rm

2 of 0.828. Apparently, both the discussed models present the 
comparable prediction performance. However, it should be noted that the former model was built 

based on the 63 compounds, while the latter was developed based on 105 molecules with the high 

statistical confidence. In addition, similar conclusions for modes of interaction between FBPase and 
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inhibitors based the 3D-QSAR models and docking experiments from Chen’s and ours are drawn 
depicted as follows: (1) At C5 position of the thiazole core, a substituent group with a proper length 

and size are beneficial to enhance the potency. (2) At C2 position in the thiazole ring, a small and  

electron-withdraw group is likely to helpful to increase the FBPase inhibition. (3) Substituent groups 
(such as phosphate) as hydrogen bond acceptors at the C2 position of the furan ring are favored.  

(4) Several important amino acid residues (such as Thr27, Glu29, Lys112, etc.) are identified to play a 

central role in the ligand binding. In summary, the findings made by Chen complement our findings 
and offer a clue to designing novel FBPase inhibitors. 

2.4. MD Simulations 

In the current investigation, a 7 ns molecular dynamics simulation of the docked complex of 
FBPase with inhibitor 27 was performed to obtain a dynamic picture of the conformational changes 

that occur in an aqueous solution, with main emphasis to explore the conformational change that takes 

place in the inhibitor and the enzyme (Figure 5). 
Figure 5A shows the RMSD of the trajectory for the complex with respect to the initial structure  

(in blue line), the graph presents that the RMSD reaches about 3.5 Å which suggests that a relatively 

stable conformation of the protein is achieved through the MD simulation. Figure 5A also gives  
the RMSD of the ligand 27 (in red line) in the binding site of FBPase. It can be noted that the RMSD 

for the ligand reaches about 1.5 Å after 1 ns of MD simulation and retains this value throughout  

the simulation.  
In order to validate the reliability of the docking results, we have compared the results between the 

MD and docking simulations in terms of H-bond interactions and van der Waals contacts. By and large, 

the interaction modes produced between MD and docking simulations share the common features. For 
example, the phosphate of compound 27 forms three common H-bonds with residues of Thr27, Lys112 

and Tyr113. The amino group attached to the thiazole ring forms one common hydrogen bond with 

Val17. As for van der Waals interactions, both modes basically keep similar interactions. Furthermore, 
it can also be noticed that there exists slight differences among docking and MD simulation. For the 

MD results, the phosphate group presents two another H-bonds with residue of Arg140, and lacks the 

two H-bonds with residues of Glu29 and Leu30 that can be found in the docking results. In addition, 
the loss of the hydrogen between the amino group attached to thiazole and the residue of Thr31 

presented in the docking is compensated by the newly formed H-bond between –NH2 with residues of 

Met18, Glu20 and Arg25 during the MD simulation. 
In order to compare the structures from MD simulations and docking, a superimposition of both the 

structures in the last 1 ns is shown in Figure 5B, where the hotpink ribbon represents the initial 

structure for the docked complex, the forestgreen ribbon represents the average structure of the MD 
simulations, with compound 27 represented as stick and line for the initial complex and the average 

complex, respectively. It can be noticed that, from this figure, there is no significant difference 

between the average structure extracted from MD simulations and the docked model of the complex, 
except the cyclohexyl ring exhibiting 90° rotation. However, although the complex has undergone 

slight movements during MD simulation, both the binding pocket and the conformation of the ligand 

are still stable, suggesting the rationality and validity of the docking model. 
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Figure 5. (A) Plot of the root-mean-square deviation (RMSD) of docked complex/ligand 
versus the MD simulation time in the MD-simulated structures. (B) View of superimposed 

backbone atoms of the average structure of the last 1000 ps of the MD simulation (forest 

green) and the initial structure (hot pink) for inhibitor 27-FBPase complex. Compound 27 
is represented in yellow for the initial structure and blue for the final average complex. 

 

3. Materials and Experimental Methods 

3.1. Dataset 

A large, diverse dataset of 105 inhibitors of FBPase were collected from literatures [38,39] 

published by Dang and co-workers. Here, the converted molar pIC50 (−log IC50) values, ranging from 

4.870 to 8.000 M, were used as the dependent variables in the QSAR regression analysis to improve 
the normal distribution of the experimental data points. The whole data set was divided into training 

(77 molecules) and test (28 molecules) sets, respectively. All structures and the corresponding activity 

values of the dataset as well as their belongings to the training or test set are listed in Table S4 
(Supporting Information). Herein, the principle for selection of the test set chemicals was to ensure that, 

on one hand, their pIC50 values are randomly but uniformly distributed in the range of the values for 

the whole set, and on the other hand, their structures cover as large diversity as possible of the dataset 
so that the derived models could represent the real characteristics of all the compounds both from the 

biological activity and the structures. 
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3.2. Molecular Modeling and Alignment 

The 3D structures of all compounds were constructed by using the sketch molecule modules of 

SYBYL6.9 package. Partial atomic charges were calculated by Gasteiger-Hückel method, and energy 

minimizations were performed by using the Tripos force field and the Powell conjugate gradient 
algorithm with a convergence criterion of 0.005 kcal/mol. 

Molecular alignment of compounds is a crucial step for the successful development of 3D-QSAR 

models [40]. Thus, in the present work, three alignment methods were performed. Alignment I: In this 
process, the most potent compound 27 was chosen as a template to fit the remaining training and test 

set of compounds. Thereafter, all compounds finally minimized with the lowest energy in the dataset 

were aligned to a common substructure (using the phosphate radical) by substructure-based alignment 
method using the “align database” command in SYBYL (Figure 6A). Alignment II: It is the alignment 

from the direct molecular docking conformations (Figure 6B). Alignment III: It is the combination of 

both alignments I and II, which means that the molecular active conformations are obtained from 
molecular docking, while using the same alignment method as that of alignment I. Figure 6C presents 

this alignment result. 

Figure 6. The alignment of all molecules in the dataset. (A) Database alignment 
(Alignment I). (B) Alignment from the direct molecular docking conformations (Alignment II). 

(C) Alignment from the combination of both alignments I and II, which means that the 

molecular active conformations are obtained from molecular docking, while using the same 
alignment method as that of alignment I (Alignment III). 
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3.3. Docking Simulation 

Docking simulations of thiazoles and oxazoles analogs into the FBPase binding pocket were 

performed using the Surflex-dock module (V 2.51) of another advanced version of SYBYL package 

(X 1.1) in this study [41]. The docking method aligns the ligand to a “protomol” or idealized ligand in 
the active site of the target. The Surflex-dock algorithm and scoring functions have been reported in 

detail previously [42]. For our studies, the X-ray crystal structure of FBPase with high resolution  

(2.30 Å) was retrieved from RCSB Protein Data Bank (PDB entry code: 1FTA Chain A). Prior to 
docking, the ligand and other sub-structures were extracted from the crystal structure, and hydrogen 

atoms were added to the protein in standard geometry using the biopolymer modulators. In this study,  

Ligand-based Mode was adopted to generate the protomol in Surflex-dock program. Two adjustable 
parameters that affect the size and extend of the generated protomol are the threshold and the bloat 

values. In the present work, the threshold and bloat values were set to 0.5 and 0, respectively. Other 

parameters were adopted by default values in the Surflex-dock. In the current work, the maximum 
number of poses per ligand was set to ten. The conformations with the highest total scores for each 

ligand of the data set were aligned automatically together inside the binding pocket of FBPase and 

used directly for CoMFA and CoMSIA research. 

3.4. CoMFA and CoMSIA Interaction Energy Calculations 

The steric and electrostatic field energies were calculated using a sp3 probe atom with a charge of 

+1.0 at all intersections of a regularly spaced grid of 2.0 Å in all three dimensions with the defined 
region. The van der Waals and Coulomb-type potentials representing the steric and electrostatic fields, 

respectively, were calculated using the Tripos force fields. The grid box dimensions were determined 

by the created automatically features in the CoMFA module within the SYBYL program. The steric 
and electrostatic energy values were both truncated to 30.0 kcal/mol. 

In CoMSIA, the steric, electrostatic, hydrophobic, hydrogen bond donor and hydrogen bond 

acceptor potential fields were also calculated at each lattice intersection of a regularly spaced grid of 
2.0 Å as that used in CoMFA. A probe atom with radius 1.0 Å and a charge of +1.0 with 

hydrophobicity of +1.0 and dydrogen bond donor and acceptor properties of +1.0 were used to 

estimate the steric, electrostatic, hydrophobic, donor and acceptor fields. The attenuation factor α was 
set to 0.3. CoMSIA similarity indices (AF) for a molecule j with atom i at a grid point q were calculated 

by equation (2): 
2

,, )( iqejA ikkprobe

q

kF

αγ
ωω

−

∑−=  (2) 

where k represents the steric, electrostatic, hydrophobic, or hydrogen-bond donor or acceptor 

descriptor. ωprobe,k is the probe atom with radius 1.0 Å, charge +1.0, hydrophobicity +1.0, H-bond 

donating +1.0, H-bond accepting +1.0; ωik is the actual value of the physicochemical property k of 
atom i; riq is the mutual distance between the probe atom at grid point q and atom i of the test molecule.  
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3.5. Partial Lleast Square (PLS) Analysis and Statistical Validation 

In the current study, the CoMFA and CoMSIA descriptors served as independent variables and the 

active values (pIC50) as dependent variables in PLS regression analysis for building the 3D-QSAR 

models. The predictive values of the models were evaluated first by leave-one-out (LOO)  
cross-validation process [43,44]. The cross-validated coefficient, q2, was calculated using equation (3): 

2
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∑

∑

=

=

−

−

−=
train

i

tri

train

i

ii

yy

yy

q  (3) 

where iy , iŷ , and try  are the observed, predicted, and mean values of the target property (pIC50), 

respectively for the training set. Herein, the term, 2

1

)ˆ(∑
=

−

train

i

ii yy , is the predictive residual sum of 

squares (PRESS). The optimal number of components obtained from the cross-validation was used to 

derive the final QSAR model. Then, a non-cross-validation analysis was carried out; and the Pearson 

coefficient (rncv
2), standard error of estimates (SEE) and the F values were calculated. Finally, the 

CoMFA and CoMSIA results were graphically represented by field contour maps, where the 

coefficients were generated using the field type “Stdev*Coeff”. 

As been reported [32], although the low value of q2 for the training set can exhibit a low predictive 
ability of a model, the opposite is not necessarily true. That is, the high q

2 is necessary, but not 

sufficient, for a model with the high predictive power. Therefore, the external validation must be 

estimated to establish a reliable and predictive QSAR model. Several often used statistical criteria are 
listed as follows: 

5.02
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In equation (4), the predictive r2, rpred
2, is defined as follow: 

)/"("12
SDPRESSrpred −=  (8) 

where SD is the sum of the squared deviations between the actual activity of the compounds in the test 

set and the mean activity in the training set, and “PRESS” is the sum of the squared deviations between 

predicted and observed activity for each compound in the test set. In equation (4), rtest
2 is the 

conventional correlation coefficient between experimental values and model predictions in the test set. 

The r0
2 is a quantity characterizing linear regression with the Y-intercept set to zero (i.e., described by 

Y = kX, where Y and X are the actual and predictive activity, respectively). The k in equation (6) is the 

slope of regression lines (predicted versus observed activities) through the origin. The definitions of 

the afore-mentioned statistical indices are reported in detail in references [32–35]. 
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3.6. Molecular Dynamics Simulations 

To identify a functionally validated complex from protein docking and the most potent molecule 27, 

we performed 5 ns molecular dynamics simulations to investigate the conformational changes in the 

complex induced by the ligand 27. The software AMBER 11 [45] was used for the MD simulations. 

The inhibitors were minimized using the HF/6-31G* optimization in Gaussian03 [46], and the atom 

partial charges were obtained by fitting the electrostatic potentials derived by Gaussian via the RESP 

fitting technique in AMBER 11. The force field parameters for these molecules were assigned by the 

Antechamber program [47] in AMBER 11. Hydrogen atoms were added to the protein with Tleap 

module from AMBER. The system was then put in to a rectangular box of TIP3P water molecules [48], 

and this solvated system contained approximate 59,365 atoms. 

The whole systems were minimized in three stages to remove bad contacts between the complex 

and the solvent molecules. Firstly, the water molecules were minimized by restraining the protein; 

Secondly, water and the side chains of the protein were minimized by restraining the backbone of the 

protein, and each stage was performed by using the steepest descent minimization of 2500 steps 

followed by a conjugate gradient minimization of 2500 steps. Thirdly, the entire system was 

minimized without any restriction by 10,000 steps changing the minimization method from steepest 

descent to conjugate gradient after 5000 cycles. After 15,000 steps minimization and equilibration for 

60 ps, the system was then heated gradually from 0 to 310 K in the NVT ensemble and equilibrated at 

310 K for another 60 ps. After the minimization and heating, 5 ns MD simulations were performed at a 

constant temperature of 310 K and a constant pressure of 1 atm. The Particle-Mesh Ewald (PME) 

method [49] was employed to deal with the long-range electrostatic interactions [50] in a periodic 

boundary condition. The SHAKE algorithm [51] was applied to fix all bond lengths involving 

hydrogen bonds, permitting a 2-fs time step. 

4. Conclusions 

Presently, a large dataset of 105 thiazoles and oxazoles derivatives as potent orally bioavailable 

FBPase inhibitors for lowing glucose in type 2 diabetes mellitus has been estimated for the purpose of 

developing 3D-QSAR models based on both the ligand- and receptor-based superimpositions. 

Statistically significant models have been derived with two 3D-QSAR methods of CoMFA and 

CoMSIA on the basis of the database alignment method. The CoMFA model presents higher 

predictivity than CoMSIA expressed in terms of several rigorous evaluation criteria such as q2, rpred
2 

and rm
2 for both the internal and external data sets. In addition, both of the two methods pass the  

y-randomization check, suggesting the robustness of the built models. Graphical interpretation of the 

optimal results, provided by the CoMFA and CoMSIA analyses, brings to light the important structural 

features that could be responsible for the activity of FBPase inhibitors. (i) Substituents with a proper 

length and size at the C5 position of the thiazole core are required to enhance the potency; (ii) A small 

and electron-withdraw group at the C2 position linked to the thiazole core is likely to help to increase 

the FBPase inhibition; (iii) Substituent groups as hydrogen bond acceptors at the C2 position of the 

furan ring are favored; (iv) Furthermore, the key amino residues have been found, i.e., Leu30, Glu29, 

Lys113, Lys112 and Thr27 which form the important hydrogen bond network with the phosphate 
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group of FBPase, and Thr31, Val17 also play an important role in the binding between the ligand and 

the target. 

In addition, a good consistency between the CoMFA and CoMSIA contour maps, molecular docking 

and molecular dynamics simulations proves the reliability and robustness of the developed models. 

Overall, in this report, several reliable computation models between thiazole/oxazole analogues and 

FBPase have been built, which not only exhibit satisfied statistics, but also provide several possible 

mechanism interpretations from a molecular-level. We hope the models may provide some instructions 

for further synthesis of highly potent FBPase inhibitors. 
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