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Abstract Tuberculosis (TB) spreads through contact bet-
ween a susceptible person and smear positive pulmonary
TB case (TPM+). The spread of TB is highly dependent on
people migration between cities or regions that may have dif-
ferent contact rates and different environmental parameters,
leading to different disease spread speed in the population.
In this work, a metapopulation model, i.e., networks of pop-
ulations connected by migratory flows, which overcomes
the assumption of homogeneous mixing between different
regions was constructed. The TB model was combined to
a simple demographic structure for the population living in
a multi-patch environment (cities, towns, regions or coun-
tries). Themodel consist of a system of differential equations
coupling TB epidemic at different strength and mobility
between the patches. Constant recruitment rate, slow and
fast progression to the disease, effective chemoprophylaxis,
diagnostic and treatment are taken into account to make the
model including the reality of people in the sub-Saharan
African countries. The basic reproduction number (R0) was
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computed and it was demonstrated that the disease-free equi-
librium is globally asymptotically stable if R0 < 1. When
R0 > 1, the disease-free equilibrium is unstable and there
exists one endemic equilibrium. Moreover, the impact of
increasing migration rate between patches on the TB spread
was quantified using numerical implementation of themodel.
Using an example on 15 inter-connected patches on the same
road, we demonstrated that most people was most likely to
get infected if the disease starts in a patch in the middle than
in border patches.
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1 Introduction

Tuberculosis (abbreviated as TB for tubercle bacillus) is a
common deadly infectious disease caused mainly by the
Mycobacterium tuberculosis (MTB) that primarily attacks
the lungs (pulmonary TB). TB can also affect the central
nervous system, the circulatory system, the genital-urinary
system, bones, joints and even the skin. MTB spreads mostly
through contact with active pulmonary TB persons, although
[1,2] and not from latently infected persons. MTB transmis-
sion depends on the number of infectious droplets expelled
by a carrier, the effectiveness of ventilation, duration of the
exposure and virulence of the MTB strain [1–5]. The trans-
mission chain can therefore be broken by isolating patients
with active disease and starting effective anti-tuberculosis
therapy [1–5]. Nowadays, about 95% of the estimated 8 mil-
lion new TB cases occurring each year are in developing
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countries, where 80% occur among people between the ages
of 15–59years [1], although several strategies for TB con-
trol propagation are implemented. The reason of these fails
might on the heterogeneity of the countries and difficulties
to access to treatment in some places. In fact, heterogeneity
plays an important role in many infectious disease processes.
For instance, spatial heterogeneity is a strong determinant
of host-parasite relationships. In modeling spatial or geo-
graphic effects on the spread of a disease, a distinction is
usually made between diffusion and dispersal models. In
diffusion models, spread is made to immediately adjacent
zones, hence the phenomenon of traveling waves can appear.
These models traditionally use partial differential equations
(PDE). However, there are some important situations that
cannot be modeled by PDE. This is the case when the space
considered is discrete. For example, when sparsely popu-
lated regions have to be considered, the human population
is located in patches. The organization of human-hosts into
well-defined social units such as families, villages or cities,
are good examples of patches. Another example arises in the
study of the human African Trypanosomiasis. For situations
where human can travel a long distance in a short period of
time, dispersal models are more appropriate to capture het-
erogeneity.

When considering dispersal models, there is an approach
based on the metapopulation concept. The population is sub-
divided into a number of discrete patches which are supposed
to be well mixed. Then in each patch, the population is subdi-
vided into compartments corresponding to different epidemic
status. This leads to a multi-compartment system. At this
point two formulations are possible. The first one assumes
that an infective in one patch can infect susceptible individ-
uals in another patch. This assumption gives rise to a family
of models which have been well studied [6–8]. The seminal
model of [7] is the prototype of such systems. This formula-
tion assumes that there is a spatial coupling between patches,
but that individuals (vectors or hosts) do not migrate between
patches. They make short ‘visits’ from their home patches to
other patches. A number of theoretical studies have focused
on the mathematical modelling of the spread of infectious
diseases in heterogeneous complex metapopulations. Satten-
spiel and Dietz [9] introduced a SIR epidemic model with
population mobility. A two-patch model of trypanosomiasis
is considered in [10] to explore control strategies through
numerical simulations. Wang and Mulone [11] have com-
puted the basic reproduction ratio R0 for a SIS model, with
“true action mass” on two patches. In [12], Arino and van
den Driessche computed the basic reproduction number R0

for a SEIRS model with mass action and constant popula-
tion on n patches. Fromont et al. [13] studied a SIR model
with density-dependent dynamics on n patches and applied
this model to the Feline leukemia virus infection on cats. A
SIS model with “pseudo mass action” and vital dynamics on

n patches was considered in [14]. They computed the basic
reproduction number R0 and proved the global stability of
the disease-free equilibrium (DFE) whenever R0 < 1 when
infective and susceptible individuals have the same dispersal
rate. They have also proved the permanence of the disease
when R0 > 1. A local study of a SIR model on n patches
has been studied by Lloyd and Jansen [15]. Using the frame-
work of Arino and van den Driessche [11], Ruan et al. [16]
studied the global spread of SARS. They computed the R0.
Arino et al. [17] considered SEIRS multi-species epidemic
models on n patches with migration, which could be used
as vector-hosts models. They computedR0 and obtained by
simulation, epidemic waves on a ring of patches. In [12]
a review on epidemiological metapopulation models was
given. A SIS model on n patches, with true action mass and
with migration, where infective and susceptible individuals
can have different migration rates has been studied by Allen
et al. [18]. They computed the R0, proved the global asymp-
totic stability of the DFE whenR0 < 1 and have shown that
there exists a unique endemic equilibrium whenR0 > 1. All
the previous examples, except those in [12,17,19] have con-
sidered directly transmitted diseases. More recently in [20],
the authors studied a SEI model of TB on two patches, with
true action mass and different migration rates of susceptible
and infective individuals. However, a number of theoretical
studies was carried out on the mathematical modelling of TB
transmission dynamics [21–29].However, only a fewof these
studies have considered the mathematical modelling of the
spread of TB in heterogeneous complex metapopulations.

In this paper, motivated by the usefulness of and the
current investigation on the spread of infectious diseases
on heterogeneous populations, we intend to systematically
investigate the analysis of the spread of tuberculosis in sub-
Saharan Africa in the modelling framework. The aim of this
work is to link the cities, taking into account human move-
ments, that could explain the spread of tuberculosis (TB).
For instance, in sub-Saharan Africa, many people move a lot
from place to place to go from Home to work and back or to
visit family or friends. Moreover, it is well known that due
to the symptoms of the disease, infectious were not able to
move. Thus, in our model, we intend to take into account
limitation movements of infectious and show that it can have
an impact in the spread and the force of the infection.

We consider the spread of TB on complex metapopula-
tions, i.e., networks of populations connected by migratory
flows. Each population within the metapopulation is com-
posed of subpopulations of each of the various epidemi-
ological status. Ordinary differential equations (ODE) are
used to model the local interactions of these subpopulations
within each compartment as well as the migration of sub-
populations between adjacent compartments. Here, a patch
may represent a city, a town, a region or a country, and
population movements between patches may be justified by
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the migration or travel among patches. We distinguish n
patches. For overall patches, we divided the infective class
into two subgroups with different properties: (i) diagnosed
infectious and (ii) undiagnosed infectious. Based on the fact
that diagnosed infected are educated about the disease and
its infectivity, and undiagnosed in many villages or regions
in Africa do not know their TB-status due to the absence of
hospital in rural areas, education, mentalities and so on, we
assume that the transmission of the infection from diagnosed
infectious to susceptible individuals is frequency-dependent
(standard incidence), while the transmission of the infec-
tion fromundiagnosed infectious to susceptible individuals is
density-dependent (simplemass action), i.e., non-limited.We
compute the disease-free equilibrium and the basic reproduc-
tion numberR0.We show that the disease-free equilibrium is
globally asymptotically stable whenR0 < 1. Using implicit
function theorem, we show that there exist a unique endemic
equilibrium in a small neighborhood of the isolated endemic
equilibrium for weak (small) migration rates. Numerical
studies are presented to validate analytical results. Compar-
ing to existing results [30], ourworkdiffers from these studies
in that our model in addition to undiagnosed infectious, our
model also considers the natural recovery and traditional
medicine (practiced in sub-Saharan Africa). It is our view
fact that this study represents the first work that provides an
in-depth the spread of TB on complex metapopulation net-
works in sub-Saharan Africa which take into account both
standard and mass action incidences in the force of the infec-
tion.

2 Model construction

2.1 Migration model

The transfer rate from patch i to patch j , for i �= j , is denoted
by m ji ≥ 0. It is assumed that the infection and death due to
the disease do not occur during the travel, but only in different
patches. Let Ni (t) be the total Human population in patch i .
Then, for i = 1, . . . , n, the dynamics of Ni (t) is given by

Ṅi = πi − μi Ni +
n∑

j �=i

mi j N j − Ni

n∑

j �=i

m ji , (1)

where μi denotes the mortality rate of individuals in patch i
and πi the recruitment inside the population of patch i .

System (1) can be written in the following compact form
for all patches together:

Ṅ = π − diag(μ)N + MN , (2)

where N = (N1, . . . , Nn)
T , π = (π1, . . . , πn)

T , μ =
(μ1, . . . , μn)

T , the superscript T denoting the transpose, the

Fig. 1 A general n-patches model for the transmission of TB between
n cities. Solid line stands for strong connection between cities, while
the dotted line represent “weak” connections

matrix M is defined by M(i, j) = mi j for i �= j and
M(i, i) = −∑n

j=1m ji and diag(μ) the diagonal matrix
with μi as its (i, i) entry.

Model (2) does not keep track of where an individual usu-
ally resides, but just considers where he is at time t . The
migration model flowchart is presented in Fig. 1.

2.2 TB metapopulation model

In each sub-population, based on epidemiological status,
the basic model included classes of susceptible, infected,
infective and recovered individuals, and hence are known
as SEIR (Susceptible–Infected–Infective–Recovered) mod-
els [31–33]. The infective class is divided into two subclasses
with different properties: diagnosed and undiagnosed infec-
tious. At time (t), each individual is assumed to be in one of
the following states: susceptible, latently infected (exposed
to TB but not infectious), diagnosed infectious (active TB
confirmed after a sputum examination in the hospital), undi-
agnosed infectious (have an active TB not diagnosed in a
sputum examination in the hospital), and recovered individ-
uals (cured after a therapy of treatment). For a patch i , states
variables are denoted by Si , Ei , Ii , Ji and Ri , respectively.
The model is based on the following assumptions.

Diagnosed infected population transmit the disease to a
susceptible with a frequency-dependent (i.e., limited) force
of infection, while undiagnosed infectious have a density-
dependent (i.e., non-limited) force of infection [34–36].

The rate constant for non-disease related death isμi , thus,
1/μi is the average lifetime. Diagnosed and undiagnosed
infectious have addition death rates due to disease with rates
di and δi , respectively. Transmission of MTB occurs after
adequate contacts between susceptible, diagnosed and undi-
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Fig. 2 Flow diagram for the
dynamics transmission of
tuberculosis in patch i where

λi = βi

(
Ii
Ni

+ εi Ji

)
is the

force of the infection

agnosed infectious. Then, susceptible individuals of patch i
acquire TB infection from individuals with active TB at rate
λi , given by

λi = βi
Ii
Ni

+ εiβi Ji , (3)

where βi is the effective contact rate of diagnosed and undi-
agnosed infectious that is sufficient to transmit the infection
to susceptible individuals in patch i , and the parameter εi
accounts the higher infectiousness of undiagnosed infections
with respect to diagnosed infections. Upon adequate contacts
with active TB, a susceptible individual becomes infected but
not yet infectious. A proportion pi of the latently-infected
individuals develops a fast active TB and the remainder (1−
pi )develops a latentTBand enters the latent class Ei .Among
latently-infected individuals who develop a fast active TB,
a proportion fi is assumed to undergo a fast progression
directly to the diagnosed infectious class Ii , while the remain-
der (1 − fi ) enter the undiagnosed infectious class Ji .

Once latently infected with MTB, an individual will
remain so for life unless reactivation occurs. Latently infected
individuals are assumed to acquire some immunity as a result
of infection, which reduces the risk of subsequent infec-
tion but does not fully prevent it. Once latently infected, an
individual can follow a chemoprophylaxis. We assume that
chemoprophylaxis of latently infected individuals reduces
their reactivation. We denote by αi the rate of chemoprophy-
laxis of latently-infected individuals in patch i . Thus, αi Ei

is the number of latently-infected individuals who received
chemoprophylaxis in patch i . Due to endogenous reactiva-
tion, a proportion 1−αi of latently infected individuals who
did not received effective chemoprophylaxis becomes infec-
tious at rate ki . Among latently infected individuals which
become infectious, a proportion hi of them is diagnosed and
treated, while the remaining 1−hi is not diagnosed and enter
the class of undiagnosed infectious Ji . It is assumed that after

many attempts to treat the disease, some undiagnosed infec-
tious will decide to to to the hospital at a constant rate θi .
Also, due to their own immunity, traditional medicine and
drugs bought in the street (practiced in sub-Saharan Africa),
a proportion 1− θi of undiagnosed infectious who do not go
to the hospital can spontaneously recover from the disease
at a constant rate ρi and enter the latent class Ei . After a
therapy of treatment, diagnosed infectious might be declared
cured of the disease and enter the recovered class Ri at rate
ri . As suggested by Styblo et al. [37], recovered individuals
can only have partial immunity. Hence, they can undergo a
reactivation of the disease and move to the class Ii at rate γi
[34–36].

This description is summarized in the flow diagram shown
in Fig. 2.

This yields the following differential equations for i =
1, . . . , n:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ṡi = πi − λi Si − μi Si +
n∑

j=1

mi j S j − Si

n∑

j=1

m ji ,

Ėi = (1 − pi )λi Si + ρi (1 − θi )Ji − AEi Ei

+
n∑

j=1

mi j E j − Ei

n∑

j=1

m ji ,

İi = pi fiλi Si + θi Ji + γi Ri + hi (1 − αi )ki Ei

− AIi Ii + η

⎛

⎝
n∑

j=1

mi j I j − Ii

n∑

j=1

m ji

⎞

⎠ ,

J̇i = pi (1 − fi )λi Si + (1 − hi )(1 − αi )ki Ei

− AJi Ji + η

⎛

⎝
n∑

j=1

mi j J j − Ji

n∑

j �=i

m ji

⎞

⎠ ,

Ṙi = ri Ii − ARi Ri +
n∑

j=1

mi j R j − Ri

n∑

j=1

m ji ,

(4)
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where mi j are the migration rates from patch j to patch i
(with i �= j),

AEi = μi + ki (1 − αi ), AIi = μi + di + ri ,

AJi = μi + δi + θi + ρi (1 − θi ) and ARi = γi + μi .

For i = 1, . . . , n, the dynamics of the total population
becomes

Ṅi = πi − μi Ni +
n∑

j=1

mi j (S j + E j + R j + η(I j + J j ))

− (Si + Ei + Ri + η(Ii + Ji ))
n∑

j=1

m ji

− (δi Ji + di Ii ). (5)

Setting H(t) = ∑n
i=1 Ni (t), the dynamics of the total pop-

ulation is

Ḣ = � −
n∑

i=1

μi Ni −
n∑

i=1

(δi Ji + di Ii ), (6)

where � = ∑n
i=1 πi .

Setting S = (S1, . . . , Sn)T , E = (E1, . . . , En)
T , I =

(I1, . . . , In)T , J = (J1, . . . , Jn)T and R = (R1, . . . , Rn)
T ,

system (4) becomes:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ṡ = π − diag(λ)S − diag(μ)S + MS,

Ė = diag((1 − p) · λ)S + diag(ρ · (1 − θ))J

− diag(AE )E + ME,

İ = diag((p · f ) · λ)S + diag(θ)J + diag(γ )R

+ diag(h.(1 − α).k)E − diag(AI )I + ηMI,

J̇ = diag((p · (1 − f ) · λ)S + diag(1 − h) · (1 − α) · k)E
− diag(AJ )J + ηMJ,

Ṙ = diag(r)I − diag(AR)R + MR,

(7)

where π = (π1, . . . , πn)
T , λ = (λ1, . . . , λn)

T , μ = (μ1,

. . . , μn)
T , p = (p1, . . . , pn)T , ρ = (ρ1, . . . , ρn)

T , θ =
(θ1, . . . , θn)

T , f = ( f1, . . . , fn)T , α = (α1, . . . , αn)
T ,

AE = (AE1, . . . , AEn )
T , AI =(AI1 , . . . , AIn )

T , AJ =(AJ1 ,

. . . , AJn )
T , AR = (AR1 , . . . , ARn )

T , k = (k1, . . . , kn)T ,
h = (h1, . . . , hn)T and r = (r1, . . . , rn)T , 1 = (1, . . . , 1)T .

In system (7), the notation “a.b”,where a and b are vectors
with the samedimension denotes, the component-wise vector
multiplication,M is defined as in Eq. (2) and N = S + E +
I + J + R is the vector-size of the total population.

Adding all equations in system (7) gave

Ṅ = π − diag(μ)N + M[S + E + R + η(I + J )]
− [diag(δ)J + diag(d)I ], (8)

where M was defined in Eq. (2)
System (7) was written in a more compact form as:

{
ẋ = π − diag(λ)x + (M − diag(μ))x,
ẏ = Bdiag(λ)x + Vy y,

(9)

where x = S ∈ R
n+ stands for the susceptible individuals

and y = (E, I, J, R)T ∈ R
4n+ was the vector representing

the state of infected individuals (latently infected, diagnosed
and undiagnosed infectious and recovered individuals).

B = (diag(1 − p), diag(p · f ), diag(p · (1 − f )), 0)T ,

(10)

is a (4n×n) block matrix, and Vy is a constant matrix, given
by

Vy =

⎡

⎢⎢⎢⎢⎣

M−diag(AE ) 0 diag(ρ.(1−θ)) 0

diag(k · h · (1−α)) ηM−diag(AI ) diag(θ) diag(γ )

diag(k · (1−h) · (1−α)) 0 ηM−diag(AJ ) 0

0 diag(r) 0 M−diag(AR)

⎤

⎥⎥⎥⎥⎦
,

with AE , AI , AJ and AR defined as in Eq. (4).
Vy and [M − diag(μ)] are Metzler matrices since their

off-diagonal entries are non-negative [38,39]. It follows that
they are stable and invertible matrices. The following result
can be applied for Vy and [diag(μ) − M)]−1.

Lemma 1 The matrix Vy and [diag(μ) −M)]−1 are stable
matrix. All the eigenvalues of Vy and [diag(μ)−M)]−1 have
negative real parts.

Proof Note that Vy = [Vy(i, j)]i, j=1,...,n , is a diagonal col-
umn dominant matrix. Indeed, for i = 1, . . . , n, one has that

4n∑

j �=i

| Vy(i, j) | = ki (1 − αi ) +
n∑

j=1

mi j

< AEi +
n∑

j=1

mi j

= | −AEi −
n∑

j=1

mi j |=| Vy(i, i) | . (11)

Similarly for i = n + 1, . . . , 2n, one has

4n∑

j �=i

| Vy(i, j) | = ri +
n∑

j=1

ηmi j < AIi +
n∑

j=1

ηmi j

= | −AIi −
n∑

j=1

ηmi j |=| Vy(i, i) | . (12)
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Also, for i = 2n + 1, . . . , 3n,

4n∑

j �=i

| Vy(i, j) | = θi + ρi (1 − θi ) +
n∑

j=1

ηmi j

< AJi +
n∑

j=1

ηmi j

= | −AJi −
n∑

j=1

ηmi j |=| Vy(i, i) | . (13)

Similarly for i = 3n + 1, . . . , 4n, one obtains

4n∑

j �=i

Vy(i, j) = γi +
n∑

j=1

mi j < ARi +
n∑

j=1

m ji

= | −ARi −
n∑

j=1

m ji |=| Vy(i, i) |, (14)

and

4n∑

j �=i

Vy(i, j) = γi +
n∑

j=1

mi j < ARi +
n∑

j=1

m ji

= | −ARi −
n∑

j=1

m ji |=| Vy(i, i) | . (15)

ByGershgorin circle theorem [30], we know that each eigen-
value of Vy lies in the union of the following circles

| z + Vy(i, i) | ≤
4n∑

j �=i

| Vy( j, i) |, i = 1, . . . , n. (16)

Then, Eqs. (15) and (11)–(14) imply that the real part of each
eigenvalue of Vy is negative. Hence, Vy is stable and invert-
ible. Moreover, since Vy is aM-matrix (opposite of aMetzler
matrix), it is known from [38] that−V−1

y is nonnegative. This
concludes the proof. ��
Remark 1 The same proof can be used to show that the M-
matrix [diag(μ)−M] is invertible and that [diag(μ)−M]−1

is nonnegative.

2.3 Basic properties of the model

Following results are straigthforward for model 9:

Lemma 2 1. The nonnegative orthant R
5n+ is positively

invariant for system (9).
2. Each non-negative solution of system (4) is bounded by

max

(
�

μmin
, H(0)

)
where � = ∑n

i=1 πi and μmin =
min1≤i≤n(μi ).

From the Susceptible population equation,

Ṡ ≤ π − [diag(μ) − M]S.

One can easily prove that

lim sup
t→∞

S(t) ≤ S0, (17)

where S0 = −[M−diag(μ)]−1π . Then, the following result
is straightforward.

Corollary 1 The set

 =
{

(S(t), E(t), (t), J (t), R(t)) ∈ R
5n+ , S(t) ≤ S0,

H(t) ≤ max

(
�

μmin
, H(0)

)}
, (18)

is a compact forward invariant and absorbing set for system
(7).

It can be easily shown that , is positively-invariant under
the flow induced by model system (7). Since the solutions
are bounded, the usual existence uniqueness and continua-
tion results hold for the system (7) for all t ≥ 0.Hence,model
system (7) is well posed mathematically and epidemiologi-
cally and it is sufficient to consider the dynamics of the flow
generated bymodel system (7) in. Therefore, the following
result follows.

Theorem 1 For every non-zero, non-negative initial values,
solutions of system (4) exist for all times.

Proof Local existence of solutions follows from standard
arguments since the right-hand side of system (4) is locally
Lipschitz continuous. Global existence follows from a priori
bounds. ��

3 Main results

3.1 The disease-free equilibrium (DFE)

We consider system (7). Let P0 = (S0, E0, I 0, J 0, R0) be
that disease free equilibrium. Then, by definition one has
I 0 = J 0 = 0. Thus, λ = 0, and system (7) at the DFE P0 is

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0 = π − diag(μ)S0 + MS0,
0 = −diag(AE )E0 + ME0,

0 = diag(γ )R0 + diag(h · (1 − α) · k)E0,

0 = diag((1 − h) · (1 − α) · k)E0,

0 = [diag(AR) − M]R0.

(19)

From system (19), it is straightforward to see that E0 =
R0 = 0 since the matrices diag((1 − h) · (1 − α).k) and
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[diag(AR)−M] are invertible (see Theorem 1). It remain to
determine S0. To do so, adding all equations in (19) yield

[M − diag(μ)]S0 = −π. (20)

Now, using the fact that [M − diag(μ)] is inversible and
[M − diag(μ)]−1 is nonnegative, one has that

S0 = −[M − diag(μ)]−1π. (21)

Finally, we have proved the following result.

Lemma 3 The disease-free equilibrium of model system (7)
is P0 = (S0, 0, 0, 0) where S0 is defined as in Eq. (21).

3.2 The basic reproduction number

We compute the basic reproduction number R0, using the
next generation approach, developed in van den Driessche
and Watmough [40]. Using the notations in [40] and the
second equation of (9), the matrices F and V , for the new
infections and the remaining transfers are respectively, given
by

F = B[F1 + diag(S0)F2] and V = −Vy, (22)

where F1 = [0, diag(β), 0, 0] and F2 = [0, 0, diag(β.ε), 0].
Thus, the basic reproduction number is by

R0 = ρ(FV−1) = ρ
(
B

[
F1 + diag(S0) F2

] (
−V−1

y

))
,

(23)

where ρ is the spectral radius of the matrix FV−1.
The basic reproduction numberR0, is the average number

of secondary cases produced by a single infective individual
which is introduced into an entirely susceptible population.

3.3 Global stability of the disease-free equilibrium

In this section, we address the global stability of the disease-
free equilibrium of model system (7).

Theorem 2 Consider model system (7) and assume that the
mobility matrix M is irreducible. Then, the disease-free
equilibrium P0 = (S0, 0, 0, 0, 0) is globally asymptotically
stable in  if R0 < 1.

Proof The local stability of P0 is classic by the result of van
denDriessche andWatmough [40]. Sincewe are interested in
the asymptotic behavior of the system (7), we will show that
there exists T > 0 such that, ifR0 < 1 then the solutions of
(7) tend to the P0 = (S0, 0, 0, 0, 0) when t → 0, for t > T .
Indeed, from the first equation of system (7), one has

Ṡ ≤ π − [diag(μ) − M]S. (24)

This suggests the linear comparison system

Ẋi = π − [diag(μ) − M]S. (25)

The linear comparison system (25) has a unique positive
equilibrium S0 which is globally asymptotically stable. Since
the matrix [diag(μ) − M] is invertible and is a stable M-
matrix [20], then, by the comparison theorem for cooperative
systems, one has that

lim sup
t→∞

Si (t) ≤ lim
t→∞ Xi (t) = S0i , for i = 1, . . . , n. (26)

Thus, for anyσ > 0, there exists a sufficiently large T > 0
such that Si (t) ≤ S0i + σ , for all t > T and i = 1, . . . , n.

SinceR0 depend of S0, we set F = F(S0), S0σ = S0+σ1

and Fσ = F(S0σ ) = F(S0 + σ1) = B[F1 + diag(S0 +
σ1)F2]. Since the spectral radius of FσV−1 is a continuous
function of σ , we can choose σ as small as possible such that
if ρ(FV−1) < 1, then ρ(FσV−1) < 1.

Now, since Si (t) ≤ S0i + σ for all t > T and
Si (t)

Ni (t)
≤ 1,

then replacing Si (t) by S0i +σ in model system (7), we have
the following comparison linear system in E , I , J and R:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ė = diag(1 − p)[diag(β)I + diag(ε · β)diag(S0 + σ1)J ]
+ diag(ρ · (1 − θ))J − diag(AE )E + ME,

İ = diag(p · f )[diag(β)I + diag(ε · β)diag(S0 + σ1)J ]
+ diag(θ)J + diag(γ )R + diag(h · (1 − α) · k)E
− diag(AI )I + ηMI,

J̇ = diag(p · (1 − f )[diag(β)I + diag(ε · β)

diag(S0 + σ1)J ] + diag(1 − h) · (1 − α) · k)E
− diag(AJ )J + ηMJ,

Ṙ = diag(r)I − diag(AR)R + MR,

(27)

System (27) can be written in the following compact form:

ẏ = (Fσ − V ) y, (28)

where y is defined as in Eq. (9). y = (0, 0, 0, 0) is the unique
equilibrium of this linear comparison system (28) which is
globally asymptotically stable, since it is well known that
if s(Fσ − V ) is the stability modulus of a matrix (Fσ −
V ) defined as the maximal real part of the eigenvalues of
(Fσ − V ), then from [40], s(Fσ − V ) < 0 is equivalent to
ρ(FσV−1) < 1.

Therefore, all solutions of the linear comparison system
(28) converge to the trivial solution y = (0, 0, 0, 0) when t
tend to +∞, with t > T . It is obvious to see that sinceM is
aMetzler matrice and is irreducible, then Fσ −V as the jaco-
bian of system (28) is a M-matrix and irreducible. Thus, by
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comparison theorem for monotone dynamical systems [20],
we can conclude that the E, I, J, R components of system (7)
also converge to zero when t → ∞, with t > T . Putting this
last zero solution into the first equation of system (7) gives
the linear system (25)which admits a unique positive equilib-
rium S0 which is globally asymptotically stable. Finally, by
the asymptotically autonomous systems theory [41], we can
conclude that the S-component of the solution of system (7)
converges to S0. This proves the global attractiveness of P0 =
(S0, 0, 0, 0) when R0 < 1, and this completes the proof. ��

3.4 Endemic equilibrium and bifurcation analysis for
R0 near one

Anendemic equilibrium is a stationary solution of system (7),
with at least one positive infected state variable. It is very dif-
ficult to find an explicit formula of the endemic equilibrium
point because model system (4) is complex. Alternatively,
we give a simple criterion for the existence of an endemic
equilibrium when R0 is near one. To do so, we shall pro-
ceed in the following two steps: i) study the model when the
patches are isolated, and ii) analyze the bifurcation when the-
ses patches are then connected by small migration flows. For
all these cases, we shall use the implicit functions theorem
result [42–44].

3.4.1 Case of isolated patches

We consider the case when the patches are isolated (i.e., there
is no migration between them). In this case, M = 0 and
model system (4) becomes

{
ẋi = ϕi (xi ) − λi xi ,
ẏi = λBi x + Ai yi ,

(29)

where xi = Si ∈ R+ is a state representing the compart-
ment of non transmitting individuals (susceptible), yi =
(Ei , Ii , Ji , Ri )

T ∈ R
4+ is the vector representing the

state compartment of different infected individuals (latently
infected, diagnosed and undiagnosed infectious and recov-

ered individuals), ϕi (xi ) = πi − μi xi , λi = 〈ei1 | yi 〉
Ni

+
〈ei2 | yi 〉 is the force of infection, ei1 = (0, βi , 0, 0),
ei2 = (0, 0, βiεi , 0), Bi = (1 − pi , pi fi , pi (1 − fi ), 0)T ,
〈. | .〉 is the usual scalar product and Ai is the constantmatrix:

Ai =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

−AEi 0 δi (1 − θi ) 0

ki hi (1 − αi ) −AIi θi γi

ki (1 − hi )(1 − αi ) 0 −AJi 0

0 ri 0 −ARi

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

with AEi , AIi , AJi and ARi defined as in Eq. (4). Note that
Ai is a Metzler matrix with negative column sums, thus non-
singular. Since Ai is a non-singular Metzler matrix (similar
proof to Theorem 1), −A−1

i is nonnegative [38,39]. We will
need this property later. It can be shown that Vy is a block
diagonal matrix, where each block is defined by Ai . The
matrix F for the new infection terms is

Fi = Bi
(
ei1 + ei2S

0
i

)

=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 βi (1 − pi ) βiεi (1 − pi )S0i 0

0 βi pi fi βiεi pi fi S0i 0

0 βi pi (1 − fi ) βiεi pi (1 − fi )S0i 0

0 0 0 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where S0i = πi

μi
.

LetR(i)
0 be the basic reproduction number of the isolated

patch i . Using the method of van den Driessche and Wat-
mough [40], the basic reproduction number R0(0) of the
metapopulation model (4) when the patches are isolated (i.e.,
mi j = m ji = 0 for all i, j) is given by

R0 = R0(0) = max
i=1,...,n

R(i)
0 , (30)

where

R(i)
0 = Ri

01 + πi

μi
Ri
02,

with

Ri
01 =

〈
ei1 |

(
−A−1

i

)
Bi

〉
and Ri

02 =
〈
ei2 |

(
−A−1

i

)
Bi

〉
.

Now, let us compute the endemic equilibrium. Let Q�
i =

(x�
i , y

�
i ) be any arbitrary equilibrium of model system (29)

(i.e., a steady state with y�
i �= 0), then for any i , x�

i and y�
i )

are solutions of the following system:

{
ϕi (x�

i ) − λ�
i x

�
i = 0,

λ�
i x

�
i Bi + Ai y�

i = 0,
(31)

where ϕi (x�
i ) = πi − μi x�

i and

λ�
i = 〈ei1 | y�

i 〉
N �
i

+ 〈ei2 | y�
i 〉, (32)

is the force of infection evaluated at the steady state.Multiply
the second equation of Eq. (31) by −A−1

i yields

y�
i = λ�

i x
�
i

(
−A−1

i

)
Bi . (33)
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With this in mind, one can deduce that

〈ei1 | y�
i 〉 = λ�

i x
�
i Ri

01 and 〈ei2 | y�
i 〉 = λ�

i x
�
i Ri

02. (34)

From the first equation of Eq. (31), one has

x�
i = πi

μi + λ�
i
. (35)

CombiningEqs. (32), (34) and (35) yields the total population
of patch i at the steady state:

N �
i = λ�

i πiRi
01

λ�
i (λ

�
i + μi − πiRi

02)
. (36)

Now, let wi
1 = (1, 0, 0, 0)T , wi

2 = (0, 1, 0, 0)T , wi
3 =

(0, 0, 1, 0)T and wi
4 = (0, 0, 0, 1)T . Then, from Eq. (33),

we have

E�
i = 〈wi

1 | y�
i 〉 = λ�

i x
�
i 〈wi

1 | (−A−1
i )Bi 〉 = λ�

i x
�
i aEi ,

I �
i = 〈wi

1 | y�
i 〉 = λ�

i x
�
i 〈wi

2 | (−A−1
i )Bi 〉 = λ�

i x
�
i aIi ,

J �
i = 〈wi

3 | y�
i 〉 = λ�

i x
�
i 〈wi

3 | (−A−1
i )Bi 〉 = λ�

i x
�
i aJi ,

R�
i = 〈wi

4 | y�
i 〉 = λ�

i x
�
i 〈wi

4 | (−A−1
i )Bi 〉 = λ�

i x
�
i aRi ,

(37)

where

aEi = 〈wi
1 | (−A−1

i )Bi 〉, aIi = 〈wi
2 | (−A−1

i )Bi 〉,

aJi = 〈wi
3 | (−A−1

i )Bi 〉 and aRi = 〈wi
4 | (−A−1

i )Bi 〉.

Now, using Eq. (5) in the absence of migration at the steady
state and Eq. (37), one has

N �
i = πi

μi

μi + λ�
i (1 − diaIi − δi aJi )

λ�
i + μi

. (38)

Equaling Eqs. (36) and (38), it can be shown that the nonzero
endemic equilibria ofmodel system (9) satisfies the following
quadratic equation in term of λ�

i :

c2(λ
�
i )

2 + c1(λ
�
i ) + c0 = 0, (39)

where

c2 = μi (aEi + aIi + aJi + aRi ),

c1 = (diaIi + δi aJi )(πi Ri
02 − μi ) + μi (1 − R(i)

0 ),

c0 = μ2
i (1 − R(i)

0 ).

The positive endemic equilibria Q�
i are obtained by solving

the polynomial equation c2(λ�
i )

2 + c1(λ�
i ) + c0 = 0 with

respect to λ�
i and substituting the result (positive values of

λ�
i ) into the expressions of the state variables at the steady

state. It is worth noting that the coefficient c2 is positive,
while the coefficient c0 is positivewhenRi

0 < 1 and negative
whenRi

0 > 1. Thus, the number of possible real roots of the
polynomial equation (39) depends on the signs of c1 and c0.
This can be analyzed using the Descartes Rule of Signs on
the polynomial equation f (λ�

i ) = c2(λ�
i )

2 + c1(λ�
i ) + c0.

Observe that, if Ri
0 > 1, then c0 < 0 and Eq. (39) has

exactly one positive solution. Solving the quadratic equation
(39), the positive solution is given by

λ�
i =

−c1 +
√
c21 − 4c0c2

2c2
, (40)

Hence, we have proved the following result.

Theorem 3 Assume that all the patches are disconnected
(there is no migration between them). Then, for each patch i ,
ifR(i)

0 > 1, thenmodel system (4) has a unique endemic equi-
librium Q� = (Q�

i )i=1,...,n, with Q�
i = (S�

i , E
�
i , I

�
i , J �

i , R�
i )

where S�
i , E

�
i , I

�
i , J

�
i and R�

i are defined as in Eqs. (35),
(37)–(40).

3.4.2 Equilibria with small migrations rates between
patches: bifurcation analysis near R0 = 1

Herein, we shall prove that, if the metapopulation is at an
endemic steady state in the absence of migration, it will
remains so as long as the patches are connected with small
migration rates so that the overall basic reproduction num-
ber (depending yet on the migration rates) is greater than the
unity.
To address this issue, let uswritten system (7) in the following
form:

F(M, X) = 0, (41)

where X = (S1, E1, I1, J1, R1, . . . , Sn, En, In, Jn, Rn) ∈
R
5n+ ,M = (m12, . . . ,m1n, . . . ,mn1, . . . ,mn−1 n) ∈ R

n(n−1)

is the vector of migration and F = ( f1, . . . , f5n).
Now, let

R0 : Rn(n−1) −→ R

M −→ R0(M).

be the basic reproduction number depending on themigration
vector M . We have the following result.

Lemma 4 When R0(0) > 1, there exists a neighborhood
U1 ⊂ R

n(n−1) of M = 0 such thatR0(M) > 1, ∀M ∈ U1.
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This result is a consequence of the continuity property of
eigenvalues of a matrix with respect to each of its entries
[45]. Now, using Lemma 4, we claim the following result:

Lemma 5 The following two conditions are satisfied.

1. There exists a neighborhood U2 of 0 and a neighborhood
V of Q� such that fi is C1 in a neighborhood U2 × V ⊂
R
n(n−1) × ◦

 of (0, Q�) where
◦
 is the interior of .

2.

(
∂ fi
∂x j

(0, Q�)

)5n

i, j=1
is a non-singular matrix.

Proof The proof of this result follows from the properties
of the matrices therein. Indeed, fi is a C1 function on any

neighborhood U2 × V ⊂ R
n(n−1) × ◦

 of (0, Q�) since fi
is a linear combination of C1 functions. On the other hand,(

∂ fi
∂x j

(0, Q�)

)5n

i, j=1
= diag(Wi ) is a diagonal block matrix

where each diagonal block is defined by

Wi =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

−βi A∗
i − μi βi B∗

i −βi C∗
i βi D∗

i βi F∗
i

(1 − pi )βi A∗
i −Gi1 (1 − pi )βi C∗

i Gi2 (1 − pi )βi F∗
i

pi fiβi A∗
i Gi3 pi fiβi C∗

i − AIi pi fiβi D∗
i + θi pi fiβi F∗

i + γi

pi (1 − fi )βi A∗
i Gi4 pi (1 − fi )βi C∗

i Gi5 pi (1 − fi )βi F∗
i

0 0 ri 0 −ARi

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

where

A∗
i = I �

i (N �
i − S�

i )

(N �
i )2

+ εi J
�
i , B∗

i = I �
i S

�
i

(N �
i )2

,

C∗
i = S�

i (N
�
i − I �

i )

(N �
i )2

, D∗
i = I �

i S
�
i

(N �
i )2

− εi ,

F∗
i = I �

i S
�
i

(N �
i )2

, Gi1 = −(1 − pi )βi B
∗
i + AEi ,

Gi2 = (1 − pi )βi D
∗
i + ρi (1 − θi ),

Gi3 = −pi fiβi B
∗
i + hi ki (1 − αi ),

Gi4 = −pi (1 − fi )βi B
∗
i + ki (1 − hi )(1 − αi ) and

Gi5 = pi (1 − fi )βi D
∗
i − AJi .

It then follows that

(
∂ fi
∂x j

(0, Q�)

)5n

i, j=1
is invertible if

and only if Wi , i = 1, . . . , n are invertible. Since Wi are
strictly diagonal column dominant matrices, then, they are
non-singular (similar proof to Theorem 1). It follows that

the determinant of

(
∂ fi
∂x j

(0, Q�)

)5n

i, j=1
is non-zero. This

achieves the proof. ��

Now, applying the implicit function theorem [42], the fol-
lowing result is straightforward:

Theorem 4 The equation F(M, X) = 0 has a unique solu-
tion Q ∈ V defined by Q = ϕ(M) where ϕ : V → U =
U1 ∩U2 is a function such lim

X→Q
ϕ(X) = Q�.

Remark 2 It is worth noting that Theorem 4 holds for small
migrations rates (i.e., M ∈ U1). We do not pretend to have
the same result in the case of high rates of migrations (i.e.,
those migrations rates which are not in a neighborhood U1).
In addition, a similar theorem as Theorem 4 can be proved
when R0 < 1.

The above theorem says that, if the isolated metapop-
ulation is disease free, then a suitable choice of (small)
migration rates would not change the metapopulation dis-
ease status, maintaining it free of disease. To summarize, if
we use directly the quantity R0 to control the TB in patchy
environment, we must lower R0 below one to prevent it.

4 Numerical simulations

In order to illustrate the results of the foregoing analysis,
numerical simulations of system (4) was carried out on three
and fifteen patches. The parameter values used for numerical
simulations are given in Table 1. In all simulations, the stan-
dard method of Runge Kutta of fourth order with adaptive
stepsize was used in Matlab R2010b.

4.1 A three-patches model

4.1.1 Population dynamics in the absence of migration

In the absence of migration, (mi j = m ji = 0), lets choose

β1 = 1.5, β2 = 0.8 and β3 = 0.3 (so that R(1)
0 = 1.3620 >

1,R(2)
0 = 0.7064 < 1 andR(3)

0 = 0.3126 < 1) and keep all
other parameter values as in Table 1. It appears as expected
that TB dies out in other patches, but persist in patches where
R0 < 1 (patch 2 and 3) and persist in the patch 1 (Fig. 3).

4.1.2 Impact of migration between patches on R0

All parameter values are summarized in Table 1.

• All patches are not connected two by two

Considering the hypothetical scenario of TB spread between
a high prevalence endemic region (patch 1) and low preva-
lence regions where the outbreak could be eradicated
(patches 2 and 3), let β1 = 1.5, β2 = 0.8, β3 = 0.3 and
η = 0.5 (so that R(1)

0 = 1.3620 > 1, R(2)
0 = 0.7064 < 1

andR(3)
0 = 0.3126 < 1) in the absence ofmigration between

patches 2 and 3 (m23 = m32 = 0). This corresponds to the
case when to travel from patch 3 to patch 2 and from patch
2 to patch 3, one must pass in patch 1. People in the patch
with lower disease transmission rate are oblige to pass in the

123



132 D. P. Moualeu et al.

Table 1 Numerical values for
the parameters of model system
(4) in patch i

Symbol Value Source Symbol Value Source

πi 1000, 900, 1200/year Assumed βi Variable Assumed

pi 0.11 [46] fi 0.74 [24]

εi 0.0003 Assumed ki 0.0003/year Assumed

μi 1/53.4/year [47] di 0.139/year [26]

αi 0.001/year [48] hi 0.74/year [48]

ri 0.7372/year [48] ρi 0.139 /year [24]

γi 0.0986/year [48] θi 0.74/year [48]

η Variable Assumed δi 0.25/year [26]

mi j Variable Assumed m ji Variable Assumed
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Fig. 3 Simulation results of model system (4) using various initial
conditions when mi j = 0 with i, j = 1, 2, 3, β1 = 1.5, β2 = 0.8

and β3 = 0.3 (so that R(1)
0 = 1.3620 > 1, R(2)

0 = 0.7064 < 1 and

R(3)
0 = 0.3126 < 1). (S) Susceptible individuals, (E) latently infected

individuals; (I) diagnosed infectious individuals, (J) undiagnosed infec-
tious and (R) recovered individuals. Populations in patches 1, 2 and 3 are
depicted in red, blue and black lines, respectively. All other parameter
values are as in Table 1. (Color figure online)

patch where TB is endemic to go to another patch with lower
disease transmission.

For m12 = 0.05 and m13 = 0.05, an increase of the travel
rate from patch 1 (the patch with higher disease transmis-
sion rate) to patches 2 and 3 (the patches with lower disease
transmission rate) may result to a decrease ofR0 (Fig. 4a, b).
Moreover, for large values of themigration rates (m21 > 0.05
and m31 > 0.09), the disease could died out since R0 < 1.
The migration to patches with lower transmission might lead
to a better control of the disease spread between patches.
However, an increase of the migration rate to the patch with
higher transmission rate might lead to an increase of R0

(Fig. 4c, d).
If Tb is endemic in patches 2 and 3, but not in patch

1 (Chosing β1 = 0.5, β2 = 1.30 and β3 = 1.2, so that
R(1)

0 = 0.5160, R(2)
0 = 1.1478, and R(3)

0 = 1.2505), for

m23 = m32 = 0, m12 = 0.05, m13 = 0.05 and η = 0.5, an
increase in the migration rate from the patch with lower dis-
ease transmission rate to the patches where TB is endemics
might lead to a generalized epidemic in all patches (Fig. 5a,
b). An increase of the emigration rate from TB endemic
patches will also lead to an increase of theR0.

• All patches are connected

Considering a patch with high prevalence (patch 1) and low
prevalence regions where strategies was set down to control
TB outbreak (patches 2 and 3), values of β1 = 1.5, β2 = 0.8
and β3 = 0.3 (so thatR(1)

0 = 1.3620 > 1,R(2)
0 = 0.7064 <

1 and R(3)
0 = 0.3126 < 1), η = 0.5, m23 = m32 = 0.05

and m12 = m13 = 0.04 was chosen. It came out that with
the chosen parameters, increasing the emigration rate from
the endemic patch might lead to the control of the disease
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Fig. 4 a, c 3D and b, d contour plot showing the effects of the migra-
tion rates to and from the patch with higher transmission m21 and m31
on the basic reproduction number R0 when β1 = 1.5, β2 = 0.8,
β3 = 0.3, η = 0.5 and m23 = m32 = 0 (so that R(1)

0 = 1.3620 > 1,

R(2)
0 = 0.7064 < 1 and R(3)

0 = 0.3126 < 1). a, b m12 = 0.05 and
m13 = 0.05; c, d m21 = 0.04 and m31 = 0.04. All other parameter
values are as in Table 1

(Fig. 6a, b) while increasing the migration rate to endemic
patch might lead to a global epidemic (Fig. 6c, d).

Itwas observed that including themigrationbetweenpatch
2 and 3 did not change the result of the previous subsection.

4.1.3 Travel restriction of infectious

Let η be in the set (0; 1), varying from the situation where
the public health authorities can restrict completely or not
the migration of active TB cases between all patches. Let
β1 = 1.5, β2 = 0.8 and β3 = 0.3 (so that R(1)

0 = 1.3620,

R(2)
0 = 0.7064 and R(3)

0 = 0.3126). Assuming the same
migration rate between all patches, it comes out that the
migration restriction might lead to the persistence of the dis-
ease m32 = m23 = m13 = m31 = m12 = m21 = m = 0.2
in the endemic patch (Fig. 7)

4.2 A fifteen-patches model

The interaction between a metapopulation network consist-
ing of fifteen patches (Fig. 8) was analysed to access the
disease propagation between patches. This configuration is
realistic in many regions of sub-Saharan Africa when to go
in a village, one must pass through several villages before
arriving.

Following possibilities was considered: when the class
with higher disease outbreak is at the center of the patches
chain (patch 8) and the patch where it is in a corner. We
assumed mi i+1 = mi−1 i = m, i = 2, . . . , 14, m1 2 =
m15 14 = m, and mi j = 0 for j �= i − 1 and j �= i + 1
and when the outbreak starts from patch 1. Let set βi ∈
(0.2, 0.71) and πi ∈ (500; 1900) (so that R(1)

0 = 1.6589,

R(2)
0 = 0.6037, R(3)

0 = 0.4673, R(4)
0 = 0.9251, R(5)

0 =
0.7725, R(6)

0 = 0.7496, R(7)
0 = 0.5587, R(8)

0 = 0.6753,
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Fig. 5 a, c 3Dandb,d contour plot showing the effects of themigration
rates to and from the patch with higher transmissionm21 andm31 on the
basic reproduction number R0 when β1 = 0.5, β2 = 1.30, β3 = 1.2,

η = 0.5, m23 = m32 = 0, (so that R(1)
0 = 0.5160,R(2)

0 = 1.1478 and

R(3)
0 = 1.2505). a, b m12 = 0.05 and m13 = 0.05; c, d m21 = 0.04

and m31 = 0.04. All other parameter values are as in Table 1

R(9)
0 = 0.8468, R(10)

0 = 0.4731, R(11)
0 = 0.6268, R(12)

0 =
0.1563, R(13)

0 = 0.2728, R(14)
0 = 0.7266, and R(15)

0 =
0.8750). This is the case where to travel from the first patch
to the last, one needs to go through all other patches.

The initial size of the total population in all patches is
given by

N (0) = (9052, 8110, 9120, 8532, 10034, 9028, 8035, 14042,

8828, 1356, 2231, 10627, 12550, 1456, 2675).

These initial conditions was chosen arbitrarily. Firstly, we
considered that the disease is endemic in patch 1 and we
study the propagation of TB in other patches.

Figure 9 presents the prevalence of the disease whenm =
0.04 in all patches. From this figure, it is evident thatwhenTB
is endemic in patch 1 (R(1)

0 = 1.6046), people in patch 2 will
be infected, and nearby patches also. The disease propagation
will not be effective after the fourth patch.

Let us consider the case when TB is endemic inside the
patch 8 and not endemic elsewhere by setting η = 1, βi ∈
(0.2, 0.71) and πi ∈ (500; 1900) (so that R(1)

0 = 0.7137,

R(2)
0 = 0.6037, R(3)

0 = 0.4673, R(4)
0 = 0.9251, R(5)

0 =
0.7725, R(6)

0 = 0.7496, R(7)
0 = 0.5587, R(8)

0 = 1.4878,

R(9)
0 = 0.8468, R(10)

0 = 0.4731, R(11)
0 = 0.6268, R(12)

0 =
0.1563, R(13)

0 = 0.2728, R(14)
0 = 0.7266, and R(15)

0 =
0.8750) and other parameter values as in Fig. 9.

The prevalence of the disease in the community, defined as
the ratio of infectious by the total population, whenm = 0.04
is presented in Fig. 10. This figure illustrates that when TB is
endemic in patch 8 (R(8)

0 = 2.6943), the disease will begin
to infect all their neighbors patches. Thus, the impact of the
disease is more important than in Fig. 9, when the patch was
at the corner. One can also see that the number of cases in
other paches growth with the number of infectious in patch
8 and the size of the population of the patch 8.
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Fig. 6 a, c 3Dandb,d contour plot showing the effects of themigration
rates to and from the patch with higher transmissionm21 andm31 on the
basic reproduction number R0 when β1 = 0.5, β2 = 1.30, β3 = 1.2,

η = 0.5, m23 = m32 = 0.05 (so that R(1)
0 = 0.5160,R(2)

0 = 1.1478

andR(3)
0 = 1.2505). a, bm12 = 0.05 andm13 = 0.05; c, dm21 = 0.04

and m31 = 0.04. All other parameter values are as in Table 1

4.2.1 General dynamics with travel restriction

Let us assumed that the initial size of the total population
in the patch with higher endemicity vary, while the initial
population size in other patches is constant. These initial
conditionswas chosen arbitrarily. Firstly,we consider that the
disease is endemic in patch 1 and we study the propagation
in other patches.

Figure 11 presents the prevalence of the disease when
m = 0.05 in each patch. From, this figure it is evident that
when TB is endemic in patch 1 (R(1)

0 = 1.6046), the disease
will spread into the closest neighbor patches. Comparing to
the case of Fig. 9, one can see that, the propagation of the
disease is slow than before and the number of infectious is
less important. But the spread of the disease will be effective
despite the slow progression.

Now, let us consider the case when TB is endemic inside
the patch 8 and not endemic elsewhere. We set η = 1 and
βi ∈ (0.2, 0.71), πi ∈ (500; 1900) (so that R(1)

0 = 0.7137,

R(2)
0 = 0.6037, R(3)

0 = 0.4673, R(4)
0 = 0.9251, R(5)

0 =
0.7725, R(6)

0 = 0.7496, R(7)
0 = 0.5587, R(8)

0 = 1.4878,

R(9)
0 = 0.8468, R(10)

0 = 0.4731, R(11)
0 = 0.6268, R(12)

0 =
0.1563, R(13)

0 = 0.2728, R(14)
0 = 0.7266, and R(15)

0 =
0.8750). All other parameter values are defined as in Fig. 9.

The prevalence of the disease in the community and the
number of infective population when m = 0.04 is presented
in Fig. 12. The initial conditions have been chosen as in
Fig. 9. This figure illustrates that when TB is endemic in
patch 8 (R(8)

0 = 2.6943), the disease will begin to infect all
their neighbors patches. This illustrates that the effect of the
migration will be less in neighbors patches than in Fig. 10.
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Fig. 7 Variation of the basic reproduction ratio as (R0) a function
of capacity of active infected population to move between patches for
β1 = 1.5, β2 = 0.8 and β3 = 0.3 (so that R(1)

0 = 1.3620 > 1,

R(2)
0 = 0.7064 < 1 and R(3)

0 = 0.3126 < 1), m32 = m23 = m13 =
m31 = m12 = m21 = 0.2. All other parameter values are as in Table 1

But the prevalence of the disease is larger in the patch with
higher infectivity. Thus, the impact of the disease is more
important than in Fig. 9.

5 Conclusion

In this paper, we presented a system of differential equa-
tions describing the TB spread in heterogeneous complex

metapopulations. Amore general demographic structure was
incorporated into the model in comparison to the previously
published articles [49]. The model included the difference
in disease transmission among different patches and the dif-
ference between the dispersal rates of susceptible individual
and infective individuals, which simulates the process of dis-
ease control. We divided the infective population into two
major types: the diagnosed infected population with limited
transmission rate (i.e. frequency-dependent or pseudo mass
action); the second infectious type called “undiagnosed”
infectious population with a non-limited transmission rate
model with mass action.

Our study show how complex it is to take into account
human movements in a TB model. More complex is the net-
work and more difficult it will be to control the spreading
of the disease. In fact, we say that our approach permit to
sustain or to establish that local interventions can be benefit
for the whole population. Mathematically the model is not
very easy to handle, but we have been able to show some
interesting results.

The basic reproduction numberR0 was computed and we
showed that the disease-free equilibrium is globally asymp-
totically stable when the basic reproduction number is less
than the unity. Using implicit function theorem, it was shown
that there exists a unique endemic equilibrium in a neighbor-
hood of the isolated endemic equilibrium for weak (small)
migration rates.

Through numerical simulations, some disease spread sce-
narios in three and fifteen patches was analyzed. The case

Fig. 8 Interaction between
fifteen patches
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Fig. 9 Prevalence of TB when η = 1 and βi ∈ (0.2, 0.71), πi ∈
(500; 1900) (so that R(1)
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0 =
0.8750). All other parameter values are as in Table 1
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(500; 1900) (so that R(1)
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where the patches were connected two by two and differ-
ent connection scenarios was analyzed and the spread of TB
in neighbored patches was quantified depending on travel

restriction scenarios. It was found that increasing the migra-
tion rate can help to better control the disease. In other word,
increasing the number of person moving from patches with

123



138 D. P. Moualeu et al.

high TB transmission to patcheswith better TB controlmight
lead to a decrease of the overall cases. We also found that
the disease propagation is function of the population size,
and population size change speed of convergence to the dis-
ease free equilibrium when R0 < 1. Numerical simulation
revealed that TB propagation in the patch with higher trans-
mission rate was faster when the patch was not connected
to other patches. The position of the patch with higher dis-
ease outbreak changes the number of infected in neighbors
patches. Restriction on TB status for travelers was found
to delay the propagation of the disease, but could not stop
the disease if a better control was not applied in the patch
with higher disease outbreak. The main difference was on
the number of infectious in all patches. Also, when there
is a travel restriction of infectious from patches with high
prevalence to patches with low prevalence, the number of
infective individuals in patches with high prevalence may
increase when the migration rates decrease.

In the case of TB spread in 15 patches, TBmight spread in
closest four patches if TB is endemic in border patches, while
TB will infect all patches if epidemic start from patch 8. We
also showed that travel restriction will delay the propagation
of the disease, and increase the number of infected in the
affected patch.

In particular, through illustrative examples, we showed
that the link between the values of the general basic reproduc-
tion number and local ones, which is really important from
a practical point of view. Indeed, our illustrative examples
indicate that the values of local basic reproductive numbers
are of major importance not only to map the epidemiological
risk in order to take into accountwhere the risk of an epidemic
is high, but to be able to indicates priority to lower some local
basic reproduction numbers. Thus, among all citieswhere the
risk is high, it seems important to make control in priority in
cities where the Human population is large. In any case, each
city has to make appropriate control campaign to lower the
epidemiological risk. In the case where some cities, with the
largest populations, may have for any reason a large value of
the basic reproduction numbers, then the disease can spread
quickly to thewhole domain, evenwhen η is small, according
to the network.

For future works, it will be interesting to consider the
global existence and stability of an endemic equilibrium of
the model under the influence of population dispersal among
patches. This appeared to be a challenging mathematical
problemwe could not address in this study. The same analysis
could be considered in the model including backward bifur-
cation. The conclusions drawn in this work are valid for the
set of parameters used, most of them was taken in the recent
literature of TB. In the event of a new highly pathogenic TB
strain, which might result in vastly different disease param-
eter values, our analytic results would hold, but numerical
simulations should be done accordingly.
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