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Abstract

Oral cancer is a growing health issue in a number of low- and middle-income countries

(LMIC), particularly in South and Southeast Asia. The described dual-modality, dual-view,

point-of-care oral cancer screening device, developed for high-risk populations in remote

regions with limited infrastructure, implements autofluorescence imaging (AFI) and white

light imaging (WLI) on a smartphone platform, enabling early detection of pre-cancerous

and cancerous lesions in the oral cavity with the potential to reduce morbidity, mortality, and

overall healthcare costs. Using a custom Android application, this device synchronizes

external light-emitting diode (LED) illumination and image capture for AFI and WLI. Data is

uploaded to a cloud server for diagnosis by a remote specialist through a web app, with the

ability to transmit triage instructions back to the device and patient. Finally, with the on-site

specialist’s diagnosis as the gold-standard, the remote specialist and a convolutional neural

network (CNN) were able to classify 170 image pairs into ‘suspicious’ and ‘not suspicious’

with sensitivities, specificities, positive predictive values, and negative predictive values

ranging from 81.25% to 94.94%.

1 Introduction

Oral cancer incidence and death rates are rising in low- and middle-income countries (LMIC)

[1–5]. As of 2012, 65% of new oral cancer cases and 77% of oral cancer deaths occurred in

LMIC [6] with a five year survival rate under 50% in some countries [7].

Oral cancer development is increased by a number of lifestyle choices including tobacco [8,

9] and alcohol use [10]. Particularly in Asia, betel quid (or paan) chewing (with or without

tobacco [11, 12]) increases rates of oral squamous cell carcinoma (OSCC) and oral submucous
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fibrosis (OSMF) [13–21]. Betel quid (typically consisting of betel leaf, areca nut, slaked lime,

and possibly tobacco [22]) was identified as a contributer to increased oral cancer incidence as

early as 1902 [23]. Despite the risk of developing oral cancer, psychostimulating qualities keep

betel quid popular [22, 24–26].

High-risk populations living in remote areas with limited access to healthcare infrastructure

are in need of low-cost, easy-to-use medical imaging devices to enable early diagnosis with

increased sensitivity as early diagnosis is well correlated with higher survival rates [7]. Conven-

tional visual examinations achieve sensitivities around 60% with specificity over 98.5% [27]

but require visible lesions, possibly delaying diagnosis.

Autofluorescence imaging (AFI) is an alternate detection technique using changes in the

radiant exitance of oral tissue fluorescence when illuminated at 400–410 [28–30] to discrimi-

nate potential oral malignant lesions, removing the requirement of the lesion being visible [19,

28, 31–41]. Increasing dysplasia results in a decreased fluorescence signal from changes in

endogenous fluorophores and increased absorption from hemoglobin [29, 33, 34, 42–44]. Car-

cinogenesis affects cellular structure, breaking down the collagen and elastin cross-linking,

leading to reduced fluorescence signal [29, 33, 35, 44]. Additionally, changes in mitochondrial

metabolism decreases fluorescence from flavin adenine nucleotide (FAD) [43]. Increased

microvascularization results in higher hemoglobin content [42, 45], increasing absorption of

both excitation and emission wavelengths [46]. Lastly, in addition to decreased green wave-

length fluorescence, a 635 nm emission peak occurs due to increased porphryin take-up in

cancerous cells [47, 48] with the ratio of signal between 635 nm and 500 nm indicating possible

cancerous lesions [30, 39, 40].

Previous autofluorescence imaging (AFI) system studies have typically achieved sensitivities

of greater than 71% and specificities of 15.3%—100% [30, 42, 49–54] though a few studies have

achieved sensitivities of only 30%–50% [45, 55]). Increased sensitivity will lead to earlier diag-

nosis of oral cancer, enabling prompt treatment of the disease, while the specificity of an AFI

device needs to remain high to avoid unneeded, invasive biopsies.

In high-risk, remote populations with low doctor-to-patient ratios, the ideal AFI system is

operable by any frontline health worker in primary health centers, dentists, nurses, or by any

community member, even those without formal healthcare training. In the cases where a

trained specialist is not present, a remote specialist can be integrated into the clinical environ-

ment through the internet, allowing for informed diagnosis. Smartphones provide portable

image collection, computation, and data transmission capabilities controlled by a simple

touchscreen interface, addressing the needs of a cancer screening device being simple to use

and connected to the internet. Using the smartphone’s data transmission capabilities, the col-

lected data can be uploaded to a cloud server, where a remote specialist can access the images

and make a diagnosis. Additionally, deep-learning tools like a CNN can be implemented in the

cloud and used for automatic image analysis and classification [56].

2 Materials

2.1 Hardware

To address the need for oral cancer screening in high-risk populations, we have developed a

low-cost, point-of-care smartphone-based system (Fig 1). The dual-view, oral cancer screening

device augments a commercially available Android smartphone (LG G4, LG, Seoul, South

Korea) for AFI and white light imaging (WLI) both internal to the oral cavity with an intraoral

probe, and external with a whole mouth imaging module [57]. The whole cavity imaging mod-

ule provides a wide field of view (FOV) image for assessment of the patient’s overall oral

health.

Smartphone-based oral cancer screening device and convolutional neural network classifier
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The intraoral probe’s custom optical system (Figs 2 and 3) extends the entrance pupil away

from the smartphone camera aperture and allows for close-focus imaging of the oral tissues. A

hygienic sleeve (TIDI Products, Neenah, WI) is used with the intraoral probe for infection pre-

vention. Smartphone cameras are well-designed to capture a wide field of view from a rela-

tively long distance away, and modifying this optical system to (a) decrease the field of view by

*90%, (b) focus on a close object, (c) utilize the entire image sensor, and (d) yield a packaged

design to fit comfortably in the oral cavity and access base of tongue and cheek pockets is chal-

lenging. During the design process, the lenses of the smartphone camera were modeled as a

single paraxial surface to ensure compatibility with any smartphone camera whose camera can

be set to infinite focus. The prescription of the optical system is provided in Table 1. The sag of

the aspheric surfaces is defined using an even polynomial [58]

z ¼
c r2

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � ð1þ kÞ c2 r2

p þ a2 r
4 þ a3 r

6
ð1Þ

where r is the radial distance from the optical axis, c is the curvature (1/R), k is the conic con-

stant, and the α’s define the coefficients of the even r-polynomial. The lenses were designed

Fig 1. Smartphone-based oral cancer screening device using both WLI and AFI. Interchangeable modules installed

on a common platform allow for both (a) intraoral imaging and (b) whole cavity imaging.

https://doi.org/10.1371/journal.pone.0207493.g001

Fig 2. (a) Intraoral probe section view showing the mechanical structure, lenses, and illumination LEDs; and (b) the

diamond turned lenses.

https://doi.org/10.1371/journal.pone.0207493.g002
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using poly(methyl methacrylate) (PMMA) and OKP4HT (Osaka Gas Chemicals, Osaka,

Japan) and fabricated using single point diamond turning (Moore Nanotechnology Systems,

Swanzey, NH). A rendered sectioned view of the intraoral probe assembly and the manufac-

tured lenses are shown in Fig 2. A layout of the optical system is shown in Fig 3 and the nomi-

nal modulation transfer function (MTF) is provided in Fig 4.

The system utilizes six 405 nm Luxeon UV U1 LEDs (Lumileds, Amsterdam, Netherlands)

to enable AFI and four 4000 K Luxeon Z ES LEDs (Lumileds) for WLI and general screening.

The LEDs are placed in a plane-symmetrical pattern on either side of the optical axis (Figs 1

and 2). In the intraoral probe, the LEDs are angled toward the object plane to increase illumi-

nation uniformity. An emission filter (Asahi Spectra, Tokyo, Japan) with a 470 nm cut-on

wavelength is installed in the imaging channel for AFI and excitation filter (Asahi Spectra) is

installed in front of the violet LEDs to limit output in the passband of the emission filter. The

whole mouth module uses the unmodified smartphone camera optics to provide wide FOV

imaging and includes both wavelengths of illumination LEDs, with an emission filter for AFI

in the imaging channel.

The illumination LEDs are driven with a switching boost voltage regulator (Linear Technol-

ogy, Milpitas, CA) controlled by a custom Android application (Sec 2.2) through a Bluetooth

connected microcontroller unit (MCU, SparkFun Electronics, Niwot, CO). Two 3.7 V 18650

Li-ion batteries (Orbtronic, Saint Petersburg, FL) power the MCU and LED driver. The MCU

sets the LED current through a digital potentiometer (Analog Devices, Norwood, MA) and

switches between the LED strings using signal voltages applied to MOSFETs. The smartphone

application synchronizes the LED illumination with image capture, optimizing the LED on-

time, reducing power consumption and generated heat. A block diagram is shown in Fig 5.

Finally, the phone and electronics are mounted to a low-cost, 3D-printed mechanical struc-

ture of VeroBlackPlus RGD875 plastic (Stratasys, Eden Prairie, MN). This structure also

Fig 3. Layout of the intraoral probe optical design.

https://doi.org/10.1371/journal.pone.0207493.g003

Table 1. Intraoral probe optical system prescription.

Surface Material Radius Thickness Conic α2 α3

Obj air infinity 32.6

1 OKP4HT -20.585 5.0 12.222 -3.086�10-4 8.902�10-7

2 PMMA 9.862 3.5

STOP air -20.904 19.0 15.340 -5.511�10-5 5.041�10-6

4 PMMA 46.623 8.0 11.035 -4.636�10-5 -8.567�10-8

5 air -20.564 89.0 -1.795 -2.443�10-5 -5.850�10-8

6 PMMA 33.722 12.0 4.506 5.408�10-5 1.450�10-7

7 air -7.986 0.0 -4.612 7.972�10-5 4.231�10-7

8 OKP4HT 10.437 6.0 0.397 3.454�10-5 1.445�10-6

9 air 4.480 8.0 -3.363 4.041�10-4 1.126�10-5

10 smartphone camera

https://doi.org/10.1371/journal.pone.0207493.t001
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provides a universal mount for the interchangeable imaging modules. A simple redesign of the

mechanical structure could allow for a variety of smartphone sizes and camera locations on

the backside of the smartphone.

2.2 Software

A custom Android application (app) was developed to guide the user through the data collec-

tion process. When first opened, the app prompts the user to create a new case ID or select an

ID from a previous session, storing all the data from a single patient under the same ID. From

the main menu, relevant patient data (age, history of tobacco or paan use, etc.) can be input,

AFI and WLI images can be collected and viewed, on-phone image processing can be com-

pleted (Fig 6), or data can be uploaded to the cloud. During image capture, the smartphone

uses its Bluetooth connection to communicate with the MCU to synchronize image capture

and the LED illumination. After image capture, the images may be viewed within the app or

the AFI images processed on the phone using the red-to-green signal ratio [30, 59] with a ‘sus-

picious’ or ‘not suspicious’ classification.

The Android Camera2 API [60] is used to enable low-level camera control by the app,

including exposure, gain, focus, ISO, color conversion, and white balance. The LG G4 device

runs Android 6.0 Marshmallow which supports most of the Camera2 API features and the

Camera2 API is compatible with Android 5.0 Lollipop and newer allowing 84.7% of Android

Fig 4. Nominal MTF of the intraoral probe at the tissue plane with the sagittal and tangential data averaged.

https://doi.org/10.1371/journal.pone.0207493.g004

Fig 5. Block diagram of the oral screening system electronics.

https://doi.org/10.1371/journal.pone.0207493.g005
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devices to run the app [61]. Additionally, the app could be ported to other popular smartphone

operating systems though the device cost could significantly increase.

The patient data, images, and location data (for further spatio-temporal analysis) is

uploaded to a cloud server through Wi-Fi and can be remotely accessed anywhere with an

internet connection through a web app deployed on the server (Fig 7). When viewing images,

the specialist is presented with original, full-resolution images along with sliders to adjust con-

trast and brightness. On the same web-page the specialist uses dropdown menus to select a

diagnosis from list (normal, lichen planus, leukoplakia, erythroplakia, etc.) and a text box to

provide triage instructions to the patient.

The cloud server hosts a virtual machine configured on a Google cloud compute engine to

automatically classify uploaded images with a pre-trained convolutional neural network

(CNN), determining the likelihood of the presence of suspicious lesions in each image.

A reminder email is automatically sent to the remote specialists whenever a new case is

uploaded to the cloud. Once a remote specialist diagnoses a waiting case, a summary report is

generated with uploaded data from the smartphone, CNN results, and diagnoses. The reports

can be viewed continuously on the web app and also be downloaded to the smartphone

through the Android app.

3 Methods

3.1 System characterization

3.1.1 Imaging. Performance of the intraoral imaging system was characterized by (a)

measuring the MTF without the smartphone camera, (b) measuring the MTF with the smart-

phone camera, (c) evaluating the predicted assembled performance with a Monte Carlo analy-

sis, (d) measuring the cutoff frequency, and (e) evaluating the field of view.

Fig 6. Screenshots of the custom Android application. (a) shows the main menu of the app where buttons allow for

navigation to image capture, image viewing, image upload to the cloud, and mobile analysis. (b) shows the image

capture interface for both WLI (using the ‘TAKE_WL’ button) and AFI (using the ‘TAKE_FL’ button) individually or

sequentially using the ‘TAKE PICTURE’ button. (c) shows a sample result for on-phone image processing of AFI

images.

https://doi.org/10.1371/journal.pone.0207493.g006
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The cutoff frequency and field of view of the intraoral probe optical system was validated by

imaging a 1951 USAF resolution test chart.

The MTF of the optical system was directly measured using both an Optikos LensCheck

(Optikos, Wakefield, MA) instrument and the slanted edge method [62, 63]. The LensCheck

system directly measures the point-spread function (PSF) of the intraoral lens system with-

out the smartphone camera lens or image sensor and the MTF is calculated from the nor-

malized Fourier transform of the PSF. The slanted edge method was used to measure the

entire optical system including the external lens system, the smartphone camera, and the

image sensor. The slanted edge method measures an edge-spread function (ESF) of which

the derivative is the line-spread function (LSF). The normalized Fourier transform of the

LSF is the one-dimensional MTF. The results from multiple regions of interest across the

slanted edge in the central field of view were averaged. The spatial frequency limit was then

scaled by the limiting spatial frequency of the added intraoral optical system. Both MTF

measurements were compared to representative assembled performance of the passively

aligned intraoral probe optics modeled using a Monte Carlo analysis in Zemax OpticStudio

(Zemax, Kirkland, WA).

Due to the imaging channel emission filter, the color space is distorted. More accurate

color representation is important for image evaluation by a remote specialist and is achieved

Fig 7. Sample web portal screen for remote viewing and diagnosis of images. The four images presented from left to

right are: (i) original AFI, (ii) AFI with histogram equalization, (iii) original WLI, (iv) WLI with color correction.

https://doi.org/10.1371/journal.pone.0207493.g007
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by applying a custom color matrix
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defined by amn values that maps the camera RGB values to the CIEXYZ color space [64]. After

imaging a standard 24-patch color checker board (X-Rite, Grand Rapids, MI) with known

CIEXYZ values, the A matrix composed of the amn coefficients can be calculated by

A ¼ C� 1T ð3Þ

where T is the matrix of known CIEXYZ values and C is the matrix of measured RGB camera

values.

3.1.2 Illumination. The white light and violet light illumination uniformity was measured

by imaging a matte white surface without the emission filter in place. For this test, the violet

LEDs were replaced with white LEDs with similar radiance characteristics from the same prod-

uct series (Luxeon Z) to avoid exciting fluorescence from the measurement surface. The uni-

formity measurements are corrected by the relative illumination (RI) of the imaging system.

The RI of the combined intraoral lens system and the smartphone camera was measured using

a liquid light guide coupled source diffused by multiple plates of ground glass. The measured

uniformity is compared to a non-sequential raytracing model (FRED, Photon Engineering,

Tucson, AZ) using LED rayfiles from the manufacturer. Uniformity is quantified using the

coefficient of variation (cv) [65] on normalized data,

Uniformity ¼ 1 � cv ¼ 1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1
ðxi � x� Þ2

N � 1

r

1

N

XN

i¼1
xi

¼ 1 �
s

x�
; ð4Þ

where xi is the luminance value of each pixel, x� is the mean of the pixels in the image, and σ is

the standard deviation of the pixel values.

3.2 Field testing and CNN classification

A pilot human subjects study was performed at KLE Society’s Institute of Dental Sciences

(Bangalore, India), Mazumdar Shaw Medical Centre (Bangalore, India), and the Christian

Institute of Health Sciences & Research (Dimapur, India) to demonstrate the feasibility of the

oral cancer screening hardware, remote clinical diagnosis workflow, and classification algo-

rithms. This study received institutional review board (IRB) approval from Mazumdar Shaw

Cancer Centre (NNH/MEC-CL-2016-394) and University of California, Irvine (HS#2002-

2805). All subjects provided informed written and oral consent.

Inclusion criteria included clinically suspicious oral lesions, a history of previously treated

OSCC with no current evidence of cancer recurrence at least six months after cessation of

treatment, or the presence of recently diagnosed, untreated OSCC or pre-cancerous lesions.

Exclusion criteria included being less than or equal to 18 years of age, currently undergoing

treatment for malignancy, pregnancy, under treatment for tuberculosis, or suffering from any

acute illness.

The full field testing workflow is shown in Fig 8. When patients arrived for their visit, they

first read, understood, and signed a consent form. After acknowledging consent, a general

dentist or oral oncology specialist performed a conventional visual oral exam. Following, the

Smartphone-based oral cancer screening device and convolutional neural network classifier
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general dentist performed the smartphone-based imaging exam, collecting both AFI and WLI

with both the whole cavity imaging module and the intraoral probe module. Finally, the oral

oncology specialist clinically diagnosed each lesion site, with the clinical diagnosis serving as

the gold standard.

Based on the gold-standard diagnosis, the images were assigned to either the normal class

or suspicious class. Diagnoses of oral squamous cell carcinoma, lichen planus, homogeneous

leukoplakia, speckled leukoplakia, tobacco pouch keratosis, verruccous leukoplakia, and oral

submucous fibrosis were included in the suspicious class. Diagnoses of normal/variation were

included in the normal class. Variation includes normal variations of oral mucosa, including

fissured tongue, Fordyce granules, leukoedema, physiological pigmentation, and linea alba

buccalis [66–68]. Diagnoses of benign were not included in either class.

The captured images were uploaded to the cloud server for diagnosis by a remote specialist,

and for the intraoral images, classification by the conventional neural network (CNN). Image

pairs (WLI and AFI) were screened by the remote specialist for sufficient image quality (mini-

mal motion blur, in focus) to make a diagnosis.

The intraoral images were then classified with a trained CNN. For the CNN training, meth-

ods commonly used in network training were applied including transfer learning [69] and

data augmentation [70–72]. For data augmentation, the original images were rotated and

flipped to feed the network more data for training. Additionally, transfer learning was applied

by using a VGG-M [70] network pre-trained on the ImageNet dataset [73]. The network was

modified for our task by replacing the final dense layer and softmax layer and then training the

network with our dataset.

Sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV)

[74, 75] were calculated to compare the remote specialist diagnosis and the CNN result to the

gold-standard on-site specialist diagnosis. Lastly, a receiver operating characteristic (ROC)

curve was generated to determine the accuracy of the classifier and area under the ROC curve

(AUC) calculated to provide a single value for comparison to other devices [76, 77].

4 Results

4.1 System performance

4.1.1 Imaging. Fig 9 provides the resulting image of a 1951 USAF resolution test chart,

showing a resolution limit of 71.8 lp/mm and also the full field of the view of the intraoral

probe.

The measured MTF along with the performance of an average system from the Monte

Carlo analysis with representative tolerances is shown in Fig 10. A sensitivity analysis shows

Fig 8. Field testing workflow for smartphone-based oral screening.

https://doi.org/10.1371/journal.pone.0207493.g008
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decenter of the outside concave surface of L4, L3 decenter, and L4 decenter have the greatest

effect on performance.

Lastly, the color mapping A matrix was calculated to be

A ¼

0:81795 0:09584 � 0:02293

� 0:11767 0:98376 0:07395

� 0:19637 0:57655 2:28612

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

ð5Þ

4.1.2 Illumination uniformity. Data for the modeled and measured uniformity for the

intraoral and whole mouth modules are provided in Table 2.

4.2 Field testing and CNN classification

Data was collected at the three testing sites from 190 patients with data from 99 patients

(demographics shown in Table 3) used for CNN analysis and remote diagnosis.

Fig 9. Image of a 1951 USAF resolution test chart showing the (a) full field of view of the intraoral probe and (b)

contrast limit. The zoomed contrast limit image (b) shows group 6–2 is resolvable, a cutoff frequency of 71.8 lp/mm.

https://doi.org/10.1371/journal.pone.0207493.g009

Fig 10. Comparison of the nominal, Monte Carlo, and measured on-axis MTF performance. The Monte Carlo

analysis is an average system output. Measured MTF data is from an Optikos LensCheck instrument and from a

slanted edge test. The sagittal and tangential data has been averaged where noted.

https://doi.org/10.1371/journal.pone.0207493.g010
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Out of 364 image pairs, 170 WLI and AFI image pairs had sufficient quality for remote

diagnosis and use in the CNN with N = 86 in the normal class and N = 84 in the suspicious

class. Data augmentation increased the dataset size by 8× to 1360 image pairs. After training

the network for 80 epochs, four-fold cross validation accuracy of the VGG-M network was

86.88%. The ROC curve for the CNN is provided in Fig 11 and the AUC = 0.908.

Sensitivity, specificity, PPV, and NPV values comparing the remote specialist diagnosis and

the CNN result to the gold-standard on-site oral oncology specialist clinical diagnosis are pro-

vided in Table 4.

Sample images diagnosed by a remote specialist are shown in Figs 12 and 13. Fig 12 shows

AFI and WLI taken with the intraoral probe. With suspect areas outlined, the combination of

WLI and AFI provides the most information about the type of lesion and the size of the

affected area. Fig 13 provides similar findings for the whole cavity imaging module.

5 Discussion

The smartphone platform is a natural progression of previous autofluorescence systems target-

ing oral lesions [34, 41, 42, 78–83] and our device offers several improvements. Compared to

previous smartphone-based systems [83], the two FOVs are useful for both an overview of the

oral cavity health along with targeted imaging of problem areas. Our intraoral probe extends

capability, reaching to the base of the tongue and cheek pockets in some patients, areas of

increased cancer risk [4]. Our device offers image capture, save, review, and transmit of both

Table 2. Measured and modeled uniformity for white light and violet light for the intraoral probe and whole mouth module. The measured uniformity is adjusted by

the relative illumination of each optical system.

Color Intraoral Whole cavity

Modeled Measured Modeled Measured

White 0.85 0.92 0.94 0.96

Violet 0.89 0.93 0.95 0.96

https://doi.org/10.1371/journal.pone.0207493.t002

Table 3. Study participant demographics for the image pairs used in CNN classification. Values are provided as the

N of each category except for age in units of years. The Both health behavior represents the combination of both smok-

ing and chewing. Health behavior was not collected for all participants.

Item Female Male Total

N 46 53 99

Age, μ [yr] 37.4 42.2 40.0

Age, σ [yr] 15.0 13.0 14.1

Health behavior
None 8 6 14

Smoking 0 7 7

Chewing 17 25 42

Both 3 14 17

Alcohol 3 9 12

Clinical diagnosis
Normal 24 9 33

Lichen Planus 2 6 8

Homogeneous Leukoplakia 6 10 16

Speckled Leukoplakia 1 2 3

Tobacco Pouch Keratosis 12 21 33

Squamous Cell Carcinoma 1 5 6

https://doi.org/10.1371/journal.pone.0207493.t003
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AFI and WLI captured both intraorally and externally to the oral cavity. Additionally, our

intraoral imaging attachment utilizes a custom designed optical system to maximize the num-

ber of pixels used on the smartphone image sensor. Operation of the system is simple through

an intuitive user interface. Since the device is connected to the cloud and remote diagnosis is

possible, the system does not need to be operated by a specialist, with the remote specialist

integrated into the clinical environment through the internet. Importantly, the device imple-

ments a machine learning algorithm to aid both the community health workers and the remote

specialists as devices requiring the human visual system (HVS) to make decisions based on

small changes in scene or image brightness are suboptimal due to the logarithmic response of

the HVS [84, 85].

The measured imaging performance of the device matches the predicted performance for a

passively aligned optical system and is sufficient for an oral cancer screening device, able to

resolve features down to 14 μm. Similar to the Monte Carlo result, the measured mid-spatial

frequency performance is decreased from the nominal. Contributions to the decreased perfor-

mance include stray light from various mechanical surfaces, chromatic aberration, and pas-

sively aligned lenses. The TIDI Products SureClear Window is specifically designed to

minimally affect image quality through the sheath, though the barrier can increase aberrations

Fig 11. Receiver operating characteristic (ROC) curve for the CNN. The area under the curve (AUC) equals 0.908.

https://doi.org/10.1371/journal.pone.0207493.g011

Table 4. Sensitivity, specificity, PPV, and NPV values for the images of sufficient quality for remote diagnosis and

CNN evaluation compared to the gold-standard on-site specialist clinical diagnosis.

Parameter Remote specialist CNN

Sensitivity 0.9259 0.8500

Specificity 0.8667 0.8875

PPV 0.9494 0.8767

NPV 0.8125 0.8549

https://doi.org/10.1371/journal.pone.0207493.t004
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Fig 12. Sample white light (column a) and autofluorescence (column b) intraoral probe field testing images with

suspect areas outlined. All rows were classified by the CNN as suspicious. On-site specialist diagnoses were: (g)—

normal/variation; (h)—homogeneous leukoplakia; (i)—carcinoma of the left mandibular alveolus; (j)—tobacco pouch

keratosis demonstrating increased fluorescence due to hyperkeratosis; and (k)—tobacco pouch keratosis. Column (c)

shows the green intensity map with the mean subtracted as discussed in Section 5.

https://doi.org/10.1371/journal.pone.0207493.g012
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Fig 13. Sample white light (column a) and autofluorescence (column b) whole cavity module field testing images

with suspect areas outlined. All rows were classified by the CNN as suspicious. On-site specialist diagnoses were: (g)—

normal/variation; (h)—carcinoma of the left mandibular alveolus; (i)—oral squamous cell carcinoma; (j)—tobacco

pouch keratosis; and (k)—homogeneous leukoplakia. Column (c) shows the green intensity map with the mean

subtracted as discussed in Section 5.

https://doi.org/10.1371/journal.pone.0207493.g013
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and specular reflection from the white LEDs when saliva is introduced on the barrier. Image

sensor noise and the proprietary image processing pipeline of the smartphone have the oppor-

tunity to decrease the resolution cutoff of the optical system. Automatic, immutable image

processing implemented by the smartphone manufacturer including edge sharpening could

explain differences between the Optikos and slanted edge measured results. Additionally, sin-

gle-point diamond turning tool marks cause diffraction-type scatter proportional to the power

spectral density (PSD) of the surface, diminishing the quality of the PSF [86]. Due to the low

amount of nominal distortion (<0.8%) in the optical system, distortion is not calibrated to

save computation time and power in the system.

The measured and modeled illumination uniformity match well for both modules and illu-

mination wavelengths. The whole cavity module uniformity error is only 2% for white illumi-

nation and 1% for violet illumination. For the intraoral probe the error is slightly larger at 7%

for white light illumination and 4% for violet illumination. The increase in uniformity from

the model is likely due to errors in the scattering properties of the various surfaces in the

model, including the system mechanics and the target surface.

Our initial field-testing workflow and results were positive. Through the web app, doctors

were able to diagnose cases quickly and efficiently, with the AFI and WLI from two FOVs pro-

viding the needed information. Compared to the on-site specialist, the remote specialist was

able to correctly diagnose patients as having suspicious lesions with high specificity, sensitivity,

and PPV, though the remote specialist’s ability to correctly clear patients without suspicious

lesions could be improved. The sensitivity and specificity of previous autofluorescence-only

devices can have large variation [54], while also needing to be operated by a specialist. The

combination of AFI and WLI in our device should set the sensitivity floor at 60%, the value for

a conventional visual exam [27].

The CNN sensitivity, specificity, PPV, NPV, and AUC results are promising given the

small size of the dataset, however, future research will need to include benign cases in the

training and classification processes. Our AUC value is similar to the high-end of results

obtained with similar systems in discriminating healthy tissue from lesions [30, 38, 45, 50,

87], however, results have been mixed and the addition of benign lesions decreased the AUC

significantly [38].

Additionally, a study including biopsy and a histopathology gold standard is needed to fully

correlate the CNN result. Importantly for our small dataset, data augmentation increased the

number of images pairs by 8×, and since the images have no natural orientation, flipped and

rotated images are still valid. As improvements to the device are made and the health providers

acquire additional time and training with the device, the dataset size and percentage of quality

images will increase, leading to improvements in CNN training. We hope augmenting the

WLI with AFI and the CNN classification algorithm leads to true diagnostic performance in

line with our reported CNN result.

The main challenges to using AFI and WLI for cancerous and pre-cancerous lesion detec-

tion include increased fluorescence signal from hyperkeratinization of pre-malignant lesions

causing an increase in autofluorescence signal [88] and differentiating between pre-cancerous

lesions and areas of inflammation or irritation that can confound either a human or computer

diagnosis [42], though combining WLI and AFI with longitudinal data discriminates dysplasia

from short-term inflammation. The main challenges to large-scale implementation of this

device will be addressing the needs of regions without cellular data or internet access and the

additional time burden on the remote specialists for diagnosing cases and monitoring lesion

progress. However, the overall time burden should decrease as other community members will

be able to collect the necessary data.
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Improvements for the next generation device could include the addition of a simple mean

subtraction from the green channel of the original AFI

f ði; jÞ ¼ IGði; jÞ �
PN� 1

i¼0

PM� 1

j¼0
IGði; jÞ

NM
¼ IGði; jÞ � IG ði; jÞ ð6Þ

to the AFI image already presented to provide the diagnosing specialist with an additional map

of areas of decreased fluorescence signal as shown in Figs 12 and 13. The on-phone red/green

ratio image analysis could also be added to the information shown to the remote specialist

(and on-site specialist if present during data collection) [30]. Additionally, including the whole

cavity images in the CNN training and classification would increase the amount of data avail-

able, however, these images have many additional noise features such as the perioral epidermis

and teeth.

A smaller profile for the intraoral probe would be more effective in accessing sites deep

in the oral cavity like the cheek pockets and base of tongue, particularly in patients with

advanced oral submucous fibrosis. The remote specialist could be better integrated into

the clinical environment with a wider field of view and longer depth of field of the

intraoral probe to improve area recognition and image quality, helping to orient the remote

specialist during diagnosis. Crossed polarizers for the white light LEDs would reduce noise

in the image due to specular reflection. Lastly, as use hours increase, app feedback will be

used to further streamline the user experience, making data collection easier for all types of

users.

Though the targeted communities lack healthcare infrastructure, many have ample cellular

data coverage, and as the cost of smartphones continues to decrease, ownership in LMIC

increases (the compound annual growth rate (CAGR) of mobile subscriptions in LMICs since

2008 is 20% [89] and the CAGR of smartphone ownership from 2013–2015 is >30% [90]).

Smartphone-based devices allow for a hub and spoke model where the hub houses the special-

ists and trained healthcare workers implementing the screening program and the smartphones

extend spokes out to the remote communities. A low system cost enables this model and high-

volume cost estimates for our system are ~ $100 plus the cost of the smartphone (The cost of

the smartphone is not included since most users will be able to use their own smartphone), an

inexpensive medical imaging device.

6 Conclusion

Described is the design and implementation of a low-cost, point-of-care, smartphone-based,

dual-modality imaging system for oral cancer screening in LMIC. The device enables clini-

cians and community members to capture AFI and WLI and upload images to the cloud for

both remote specialist diagnosis and CNN classification. We have tested the device and diag-

nosis workflow in three locations in India and initial feedback on the system is positive, with

both the remote specialist and CNN achieving high values of sensitivity, specificity, PPV, and

NPV compared to the on-site specialist gold standard.

Inexpensive, high-power LED sources in white and violet wavelengths, plastic lens molding

technology, and low-cost but powerful smartphones are promising developments for the crea-

tion of low-cost, portable, simple-to-use autofluorescence imaging devices for oral cancer

detection. Performance should increase as additional images are collected and with improve-

ments to the device hardware and usability. Enabling oral cancer detection in low-resource

communities will lead to earlier detection and diagnosis, minimizing disease progression and

ultimately, a reduction in oral cancer death rates and healthcare costs.
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7 Supplemental material

The design files for the LED driver have been released on GitHub under the GPL-3.0 license

[91, 92] and the corresponding data repository is found at [93].
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