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Neuregulins (NRGs) are protein ligands that act through ErbB receptor tyrosine kinases to
regulate tissue morphogenesis, plasticity, and adaptive responses to physiologic needs in
multiple tissues, including the heart and circulatory system. The role of NRG/ErbB signaling
in cardiovascular biology, and how it responds to physiologic and pathologic stresses is a
rapidly evolving field. While initial concepts focused on the role that NRG may play in regu-
lating cardiac myocyte responses, including cell survival, growth, adaptation to stress, and
proliferation, emerging data support a broader role for NRGs in the regulation of metabolism,
inflammation, and fibrosis in response to injury. The constellation of effects modulated by
NRGs may account for the findings that two distinct forms of recombinant NRG-1 have
beneficial effects on cardiac function in humans with systolic heart failure. NRG-4 has re-
cently emerged as an adipokine with similar potential to regulate cardiovascular responses
to inflammation and injury. Beyond systolic heart failure, NRGs appear to have beneficial
effects in diastolic heart failure, prevention of atherosclerosis, preventing adverse effects
on diabetes on the heart and vasculature, including atherosclerosis, as well as the cardiac
dysfunction associated with sepsis. Collectively, this literature supports the further exami-
nation of how this developmentally critical signaling system functions and how it might be
leveraged to treat cardiovascular disease.

Introduction
Neuregulins (NRG) are polypeptide growth factors belonging to the epidermal growth factor family that
signal through receptor tyrosine kinases encoded by the erythroblastic leukemia viral oncogene homolog
receptor (ErbB) family [1]. ErbB receptor dimerization by NRG activates tyrosine kinases that induce vital
pathways in embryogenesis, including cardiac development, neural development, and myogenesis [2–6].
Four NRG genes have been identified, each producing isoforms with specific post-translation modifica-
tions that have been demonstrated to regulate tissue morphogenesis and repair via context-specific cellular
processes including proliferation, differentiation, survival, apoptosis, and migration.

The neuregulin/ErbB pathway has been a source of interest in cardiovascular biology since the dis-
rupted expression of neuregulin 1 (NRG-1), ErbB2, and ErbB4 all produce an identical lethal phenotype
from myocardial trabeculation failure at 10.5 days gestation [2–4]. The clinical cardiovascular relevance
of this biology was awakened when Herceptin (Trastuzumab), an ErbB2 (HER-2, c-neu) monoclonal anti-
body used in breast cancer, was found to be associated with an unacceptably high incidence of left ventric-
ular dysfunction when used with anthracycline therapy [7]. Since those initial reports, NRG-1 has been
found to have cardioprotective effects, leading to work examining recombinant NRG-1 as a heart failure
therapy with regenerative capabilities. This review aims to discuss the most recent discoveries regarding
NRG/ErbB cardiovascular biology, clinical applications in cardiovascular repair, and areas of proposed
future investigation.
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Neuregulins
NRG-1 is the most extensively studied NRG and is one of four separate genes (Nrg1–Nrg4), each producing unique
proteins able to signal through ErbB receptors. The Nrg1 gene can produce multiple different isoforms via alternative
splicing [8–10]. The three structural components that differentiate these isoforms include either an α- or β-splice
variant of the EGF-like domain, the N-terminal sequence, and a transmembrane domain. The EGF-like domain is
the peptide sequence that provides binding specificity to ErbB3 and ErbB4 [11]. The immense diversity of isoforms
has been predominantly studied in neuronal development and neuronal plasticity [12,13]. With regards to the adult
cardiovascular system, NRG-1 type 1 isoforms are expressed in the microvascular endothelium of the heart, with
NRG-1α expressed at higher levels than NRG-1β [14]. The NRG-1 isoforms 1 and 2 with β EGF domains are of
critical importance as loss of function of these subunits results in a lethal phenotype from myocardial trabecular
failure at 10.5 days of life [4].

NRG-1 subtypes expressed in the heart are pro-NRG transmembrane proteins that require protease processing
for activation [14]. Early studies implicated the ADAM family of matrix metalloproteinases (MMPs), specifically
ADAM17 and ADAM19, in the release of endothelial membrane pro-NRG-1 [15–18]. Further studies had shown
ADAM17 to be the primary protease involved in the release of pro-NRG-1, while ADAM19 has no role [19]. There
are likely other proteases that are able to activate pro-NRG-1, as ADAM17 knockout mice do not resemble NRG-1
deficient mice with respect to embryonic heart defects [19]. There remains much that is unknown about what regu-
lates the activity of ADAM17 in relation to NRG-1 shedding from the cardiac endothelium and how these are altered
in pathologic states such as heart failure. For example, in a canine tachycardia-induced heart failure model, NRG-1
expression increased without a change in the mRNA expression of ADAM17 [20]. More studies are required to fully
decipher how NRG-1 is released from the endothelium during physiologic conditions and cardiovascular stress.

As will be discussed in more detail later, NRGs can be found in the circulation, although whether circulating
NRGs are active has been questioned. Endocardial and endothelial cells of the cardiovascular system are the source
of NRG-1, which are responsible for cardiac development and cardiac protection from stress, respectively [21]. Of
the remaining NRGs, NRG-2, and NRG-4 are believed to have cardiovascular functions, while NRG-3 appears to be
expressed predominantly in the central nervous system.

The Nrg2 gene produces the NRG-2 protein that has homology to NRG-1 but has a different activity and different
selectivity for ErbB receptors. NRG-2 is expressed in the endocardial lining of the heart with higher expression in
the atrium and lower expression in the ventricular outflow tracts [22]. Carraway et al. [22] demonstrated that NRG-1
favored heterodimerization of ErbB3 or ErbB4 with ErbB2 while NRG-2 favored ErbB3 heterodimerization with
ErbB1 resulting in different cellular responses. In neuronal cell lines, ADAM10 and BACE2 are the predominant
proteases required for proteolytic membrane release [23]. Further investigation is required to assess the role of NRG-2
in the heart.

The Nrg4 gene produces the NRG-4 protein, which was initially thought to have little influence on the cardio-
vascular system. However, recently NRG-4 serum levels have been associated with insulin resistance [24], metabolic
syndrome [25], nonalcoholic fatty liver disease [26], and the severity of atherosclerosis [27]. The Nrg4 gene is capa-
ble of producing five splice variants with a wide tissue distribution [28]. The A1 and A2 variants of NRG-4 contain
a transmembrane domain and are likely activated by proteolysis while the three B-isoforms lack a transmembrane
domain and are likely secreted [29]. NRG-4 selectively binds ErbB4 producing homodimerization or heterodimer-
ization with ErbB1 and ErbB2. NRG-4 was found to have approximately 8-fold lower binding affinity then NRG-1
[30].

ErbB receptors
The four ErbB receptor tyrosine kinases are ErbB1, ErbB2, ErbB3, and ErbB4. Of the four receptors, NRG-1 is known
to directly interact with ErbB3 and ErbB4, causing a conformational change allowing homodimerization or het-
erodimerization with other ErbB receptors. Dimerization allows transphosphorylation catalyzed by the intracellular
kinase domains of the receptor complex. ErbB2 has no natural ligand but gains kinase activity through heterodimer-
ization. ErbB3 can bind NRG-1 but has low kinase activity; thus, homodimerization leads to minimal downstream
signaling. When NRG binds ErbB4, a conformational change allows homodimerization with another ErbB4 or het-
erodimerization with ErbB1, ErbB2, or ErbB3 [31–33]. Expression levels of ErbB receptors vary in space (subcellular
location and tissue distribution) and in time (e.g., developmental stage, physiologic, and pathologic stress). In em-
bryonic mouse cardiac myocytes, the expression levels of ErbB2 and ErB4 are highest, with a progressive decline in
myocyte expression starting early after birth [34]. ErbB3 is expressed in the myocardium at stable levels throughout
postnatal development [35,36].
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Figure 1. The NRG-1/ErbB signaling pathway in cardiac myocyte

NRG-1 binds ErbB4 and induces dimerization with ErbB2, allowing receptor tyrosine kinase transphosphorylation. Activated ErbB

receptors interact with and activate several pathways including RAS/ERK, PI3K/Akt, and Src/FAK [171–174]. Abbreviations: AKT,

serine/threonine-specific protein kinase B; BAX, bcl-2-associated x protein; eNOS, endothelial nitric oxide synthase; ERK, extra-

cellular signal-regulated kinase; FAK, focal adhesion kinase; GDP, guanosine diphosphate; GTP, guanosine triphosphate; GRB2,

growth factor receptor-bound protein 2; MEK, mitogen-activated ERK kinase; mTOR, mammalian target of rapamycin; PDK1,

phosphoinositide-dependent kinase 1; PIP3, phosphotidyl inositol (4,5,6)-triphosphate; PI3K, phosphatidyl inositol-3 kinase; p85,

regulatory subunit of PI3K; Raf, proto-oncogene serine/threonine-protein kinase; Ras, Ras proteins, members of a large superfamily

of small GTPases; SOS, son of sevenless; Src, proto-oncogene tyrosine-protein kinase.

The NRG/ErbB signaling system regulates diverse cellular responses that are context specific. The molecular regu-
lators of this specificity are not fully understood but include several factors such as specific isoforms of NRG-1, ErbB
receptor expression, subcellular localization, and coupling to intracellular signaling cascades (ERK 1/2, PI3K/Akt,
STAT, and FAK) that ultimately regulate cellular responses based on the cell type (Figures 1 and 2). ErbB2 and ErbB4
in adult mouse ventricular cardiomyocytes are enriched in a specific membrane compartment, the T-tubule system
[37]. The T-tubules are invaginations of the sarcolemma that are exposed to the extracellular space and function to
link depolarization to intracellular calcium release and subsequent myocyte contraction. ErbB2 and ErbB4 are present
at intercalated discs and have a T-tubule like striated pattern [38]. In that context, ErbB2 interacts with FAK, which
is also located at the intercalated disc, and NRG activation induces focal adhesion complex formation in adult rat
cardiac myocytes [39]. The localization in both sarcolemma T-tubules and intercalated discs suggests that ErbB2 and
ErbB4 support the hypothesis that NRG/ErbB signaling in the adult heart regulates myocyte-to-myocyte connectiv-
ity. Further investigation is needed to fully understand this and other functions of the NRG/ErbB system in the adult
heart.
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Figure 2. ErbB receptor expression in different subpopulations of cardiac cells

Adult cardiomyocytes express ErbB2 and ErbB4. Expression of all ErbB receptors, including ErbB1, ErbB2, ErbB3, and ErbB4,

has been demonstrated on cardiac endothelial cells, fibroblasts, and highly proliferative cells. ErbB3 and ErbB4 are expressed on

monocytes and cardiac macrophages. See the text for references.

Myocardial NRG/ErbB levels in relation to physiologic and pathologic
cardiac stress
NRG-1, ErbB2, and ErbB4 are essential for cardiac development as discussed above, as well as the preservation of
heart function and adaptation to physiologic and pathologic stresses (Figure 3 and Table 1). NRG-1 appears to be
constituvely active at some level, as it can be found in the coronary effluent of isolated hearts [40]. In pregnancy, the
heart adapts to physiologic stress induced by an increase in effective circulating volume, leading to left ventricular
(LV) growth and eccentric remodeling. Left ventricular tissue samples from pregnant rats have both elevated NRG-1
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Figure 3. NRG-1 signaling through ErbB2 and ErbB4 regulate growth and survival pathways leading to physiological

hypertrophy

The loss of NRG-1, ErbB2, or ErbB4 results in dilated cardiomyopathy under cardiac stress. In vivo studies have suggested that

NRG-1 can improve left ventricular ejection fraction in subjects with heart failure with a reduced ejection fraction. *pErbB2 and

pErbB4 represent phosphorylated (activated) forms of ErbB receptors.

Table 1 NRG-1 and myocardial ErbB receptors expression in different types of physiologic and pathologic stress

Cardiac stress NRG expression Myocardial ERBB expression and activity

Physiologic:

Exercise ↑ NRG1 [42–44,175] ↑ p-ErbB2 and p- ErB4 [44]

Pregnancy ↑ NRG1 [41] ↑ p-ErbB2

Early aortic stenosis No change No change in ErbB2 and ErbB4

Early pacing induced cardiomyopathy ↑ NRG1 ↑ p-ErbB2 and p- ErbB4 with increased PI3K/pAkt and p
ERK 1/2.

Pathologic:

Late aortic stenosis No change [47] ↓ ErbB2 and ErbB4 [47]

Late pacing induced cardiomyopathy ↑ NRG1 [20] ↑ p-ErbB2 and ↑ p- ErbB4 but decreased PI3K, pAkt, and
p- ERK1/2 [20]

Decompensate systolic heart failure ↑ NRG1 [50] ↓ ErbB2, p-ErbB2 and ↓ ErbB4,p-ErbB4 [50]

Post LVAD implantation ↓ NRG1 [50] ↑ErbB2 and ErbB4 [50]
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and activated ErbB2/ErbB4, implicating NRG/ErbB signaling in cardiac adaptation to physiologic stress [41]. Exer-
cise, another physiologic cardiovascular stressor, activates NRG-1, in skeletal muscle [42], and circulating NRG-1 is
positively correlated with cardio- respiratory fitness [43]. In a post-myocardial infarction rat model, exercise increases
left ventricular tissue levels of NRG-1 as well as ErbB2/ErbB4 activation [44]. These studies all suggest that in adult-
hood, endogenous NRG/ErbB acts to preserve myocardial function in the setting of physiologic stress. Interestingly,
sustained high level of NRG-1 expression in the cerebella throughout life is associated with an increased life span
when compared across seven rodent species [45]. In correlation, diminished myocardial NRG-1/ErbB expression has
been proposed to be related to age-associated myocardial senescence and loss of cardiomyocytes through apoptosis
[46,47] suggesting NRG-1 has a role in the prevention of cardiovascular aging.

The activation of ErbB receptors by NRG in vivo has consistently been shown to be protective against pathological
stress. Trastuzumab, a monoclonal antibody that disrupts ErbB2 function, is associated with systolic dysfunction and
heart failure in patients treated for Her2/Neu positive breast cancer. Cardiomyopathy seen with Trastuzumab treat-
ment was most prevalent when given in combination with anthracyclines [48], suggesting NRG/ErbB regulates the
myocardial response to pathologic stress of anthracycline-induced injury. Signaling through the NRG/ErbB pathway
diminishes in advanced LV dysfunction, potentially contributing to disease acceleration. Diminished NRG/ErbB sig-
naling occurs in rats with aortic banding. Initially, aortic banding increased expression of NRG, but after persistent
stress, LV expression of ErbB2 and ErbB4 decreases as decompensated heart failure develops [47,49]. The correlation
between diminished ErbB2/ErbB4 expression and decompensated heart failure was also found when comparing my-
ocardial samples before left ventricular assist device placement (LVAD) with normal unused donor hearts. Patients
undergoing LVAD had lower expression of activated ErbB2/ErbB4 despite increased NRG-1 [50]. There is a clear cor-
relation between diminished ErbB2/ErbB4 function and progression to decompensated heart failure, but it is unclear
what is affecting ErbB expression. It has been postulated by others that down-regulation of NRG-1/ErbB signaling
associated with pump failure is related to increased levels of angiotensin II, and epinephrine [51] as in vitro both
angiotensin II and epinephrine have been found to suppress NRG-1 mRNA synthesis in cardiac endothelium [49].

Others have postulated that an inhibitory cross-talk between ErbB receptor tyrosine kinases and
G-protein–coupled receptors (GPCR) is responsible for shifting the balance between pathologic and physio-
logic cardiac hypertrophy. This inhibitory cross-talk in the myocardium has been described by Chung et al. [52] after
they found that activation of endothelin type A receptors (ETA) inhibited ErbB2/ErbB4 at multiple levels, including
NRG-1 induced ErbB2/ErbB4 autophosphorylation and downstream phosphorylation of Akt. However, studies
there are also reports of positive interactions between GPCR and ErbB receptors. GPCR receptors can transactivate
ErbB receptors via at least two mechanisms: phosphorylation of ErbB receptors via other tyrosine kinases such as
Src [53] and through activation of the metalloproteinases leading to NRG activation [54–57]. Further studies are
necessary to understand the role of cross-talk between GPCR and ErbB receptors in the progression of heart failure.

ErbB receptor expression is also regulated by micro-RNAs (miR) in many tissues, and this may also play a role in
cardiac pathology. Cardiotoxic anthracycline treatment induces expression of miR-146a in mouse cardiac myocytes,
which suppresses ErbB4 expression thereby increasing myocyte damage [58]. Pressure overload increases expression
of miR-199a [59], which is suppressed by STAT3 (signal transducer and activator of transcription 3) [60]. Cardiac
myocyte STAT3 deficienty in mice leads to cardiomyopathy [61]. Cardiac myocytes from STAT3-deficient mice have
reduced ErbB4 as a result of increased miR-199a, resulting in impaired energy utilization and cardiac myocyte death
[62]. Further studies are required to assess miRNA regulation of other ErbBs and NRGs.

Circulating neuregulin levels
The levels of circulating NRG-1 and NRG-4 in steady-state conditions have been examined in several studies (Table 2).
We and others have found that the level of NRG-1 is characterized by large inter-individual variability with the range
of absolute values covering two orders of magnitude, from hundreds to tens of thousands of picograms per milliliter
of blood in healthy donors. The analysis of variability revealed the presence of high values of quartile coefficient of
dispersion ranging between 0.8 and 0.9 in the blood plasma or serum [43,63]. This large inter-individual variability
can explain the significant differences between levels of circulating NRG-1 found in different studies [43,63,64]. In
contrast with large inter-individual variability, the individual level of circulating NRG-1 is stable, not changing even
after exersice [43] in healthy volunteers. Similar to NRG-1, the levels of circulating NRG-4 also vary significantly with
values of quartile coefficient of dispersion between 0.5 and 1.0 [24,65].

Several clinical studies have demonstrated that the level of circulating NRG-1 and NRG-4 changes during the
development and progression of cardiovascular disease. For example, the level of circulating NRG-1 is increased in
patients with paroxysmal atrial fibrillation [66]. While the underlying mechanisms remain to be investigated, the
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Table 2 The levels of circulating NRG-1 and NRG-4 in human cohorts

Neuregulins Mean +− SD Median [IQR] Plasma or serum N Reference Major finding

NRG-1, ng/ml 217 +− 170 Serum n=9 [43] NRG-1 correlates with
exercise capacity

0.77 +− 0.37 Serum n=36 [64] NRG-1 correlates with
proangiogenic factors,

VEGF and
Angiopoietin-1

5.3 +− 8.8 0.9 [0.6, 7.0] Platelet-free plasma n=10 [63] Circulating NRG-1 is
functionally inactive

9.0 +− 11.4 0.4 Plasma n=62 [176] NRG levels are reduced
after exposure to

cardiotoxic
chemotherapy

2.6 [0.2, 19.1]/4.1
[2.0, 12.9]

Serum/plasma n=21 [70] NRG-1 inversely
correlates with CAD

severity

1.4 [0.2, 14.2] Serum n=319 [177] No changes during
acute coronary

syndrome

4.4 [2.8, 8.7] Serum n=899 [71] Circulating NRG-1 is
associated with heart

failure severity and risk of
death or cardiac
transplantation

NRG-4, ng/ml 2.3 [1.1, 3.7] Serum n=129 [65] The level of circulating
NRG-4 is inversely

associated with the risk
of Type 2 diabetes

mellitus

1.1 +− 0.9 Serum n=57 [78] Circulating NRG-4 is
inversely associated with

the risk of acute
coronary syndrome

0.08 [0, 0.55] Serum n=83 [24] The circulating NRG-4 is
an independent risk

factor associated with
diabetes

4.1 +− 2.0 Plasma n=41 [178] Circulating level of
NRG-4 is reduced in
diabetic peripheral

neuropathy

1.4 +− 0.2 Plasma n=32 [27] NRG-4 inversely
correlates with the

severity of CAD

1.4 +− 0.1 Serum n=24 [179] NRG-4 is increased in
patients with Type 2

diabetes mellitus

increased level of NRG-1 may be associated with the induction of compensatory mechanisms in response to cardiac
stress associated with increased inflammation, pressure overload, and generation of reactive oxygen species [67–69].
Increased level of NRG-1 has also been found in patients with stress-induced ischemia [70], as well as severe heart
failure, where it associates with the risk of death or cardiac transplantation [71]. A recent study demonstrated the
positive correlation between circulating NRG-1 and left ventricular ejection fraction [72], supporting the idea that
NRG-1 is contributing to compensatory cardiac responses.

The levels of both NRG-1 and NRG-4 correlate inversely with the severity of coronary artery disease (CAD) [27,70]
and coronary collateral circulation [73]. The potential explanation may include the reduction in the synthesis or
secretion of NRG-1 and NRG-4 by endothelial cells [74,75] associated with endothelial dysfunction in CAD [76,77].
In addition, an association between higher NRG-4 level and lower risk of acute coronary syndrome has been described
in patients with coronary artery disease [78].

These and other changes in the levels of circulating NRG-1 and NRG-4 indicate regulation of activation and/or
expression, but not necessarily changes in circulating activity. Nitration of NRG-1’s EGF-like domain, found in cir-
culating NRG-1, results in the inactivation of the ligand [79]. This may explain our recent finding that circulating
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Figure 4. NRG-1 regulates functional responses in different cell types within the myocardium

Heart injury is associated with the proteolytic activation and release of NRG-1 from the surface of cardiac endothelial cells. Active

NRG-1 protects cardiomyocytes, reduces pro-fibrotic activation of fibroblasts, promotes survival of endothelial cells, and angio-

genesis, and prevents pro-inflammatory activation of immune cells.

NRG-1 is functionally not active in blood obtained from healthy donors [63]. In addition to NRG-1 inactivation,
there are circulating NRG-binding proteins such as the endogenous soluble form of the human ErbB3 receptor that
may negatively regulate circulating NRG activity [80]. The inactivation of NRGs and the presence of soluble binding
partners, which limit the functional activity of NRGs, are adding to the complexity in interpreting the study results
and emphasize the importance of functional testing of NRGs in healthy donors and patients with cardiovascular
disease, using cell-based assays [63].

Neuregulin in repair of systolic heart failure
The clinical experience with Trastuzumab-associated cardiac dysfunction led to studies designed to understand the
role of this signaling system in the adult myocardium [7]. Mice were created with inducible suppression of ErbB2 in
cardiac myocytes using Cre-recombinase technology resulting in a dilated cardiomyopathy phenotype exacerbated
by anthracyclines [37,81]. An identical dilated cardiomyopathy phenotype was also seen in a Cre-recombinase my-
ocardial specific ErbB4 mouse model [82]. Recombinant NRG-1 was thus examined as a potential therapy for systolic
heart failure [83]. The mechanisms of NRG-1’s beneficial effects in cardiac repair in these studies are still being inves-
tigated, as the biology of this system in the heart and other tissues is complex and incompletely understood (Figure
4).
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Table 3 Neuregulins studied as therapies for systolic heart failure

Recombinant forms
of NRG Commercial name Domains

Examples of in vivo
studies Human studies

Results of human
studies

Human recombinant
Neuregulin 1 (rhNRG1β)

Neucardin β-Isoform of the growth
factor domain (EGF-
domain) of NRG-1

Liu et al. [83], Gu et al.
[180], Guo et al. [181],
Fang et al. [182]

Jabbour et al. [116], Gao
et al. [117]

Both phase 1 and 2 trials
have been completed finding
sustained improvement in
LVEF in systolic heart failure
patients at 90-day follow-up.
A phase 3 trial is currently on
going.

Human recombinant
Neuregulin 1 (rdNRG1β)

None β-Isoform of the growth
factor domain (EGF-
domain) of NRG-1 with Ig
domain

Bersell et al. [89] None. None

Human recombinant glial
growth factor 2 isoform of
NRG1β (GGF2)

Cimaglermin Alfa β-isoform of the growth
factor domain (EGF-
domain), type 2 isoform of
NRG-1 gene, containing
IgG and kringle domains

Bian et al [183], Hill et al.
[184], Galindo et al. [95]

Lenihan et al. [118] A phase 1 trial was
completed finding sustained
improvement in LVEF in
systolic heart failure patients.
There was a dose limiting
side effect at the highest
planned dose. See the text
for details.

Engineered bivalent
NRG1β (bivNRG)

None 2 β-Isoform of the growth
factor domain (EGF-
domain) of NRG-1
connected by a linking
peptide

Jay et al. [145] None None

Cardiac myocyte growth, survival, and proliferation
The first evidence of direct effects of NRG-1 in cardiac myocytes was obtained from in vitro experiments using cells
isolated from rat hearts [84]. The recombinant human glial growth factor 2 (GGF2), a recombinant protein with the
active EGF-binding domain of NRG-1 (see Table 3 for further details), can improve embryonic cardiac myocytes
survival in conditions of serum deprivation. Further studies demonstrated pro-survival effects of NRG-1, including
protection from norepinephrine cytotoxicity [85]. NRG-1 also protects cardiac myocytes from anthracycline-induced
apoptosis via ErbB4-dependent activation of the PI3K/Akt signaling pathway [86]. In addition, the mitogen-activated
protein kinase signaling pathway is involved in NRG-1 mediated reprogramming toward enhanced cardiac myocyte
growth and survival [87]. Endothelial cell-derived NRG-1 protects cardiomyocytes against hypoxia and reperfusion
injury, both in vitro and in vivo [88]. The ability of NRG-1 to promote the survival of cardiomyocytes in response to
a wide variety of cardiovascular stresses appears to be a critical role for NRG-1 in the postnatal heart.

Neuregulins, via activation of ErbB receptors, can also stimulate the proliferation of cardiac myocytes in the adult
heart. Bersell et al. [89] demonstrated that NRG-1, signaling through ErbB2/ErbB4, can induce mononuclear car-
diomyocytes to disassemble their myofibrils, enter the cell cycle, divide and regenerate injured myocardial tissue.
Less than 10% of cardiomyocytes are mononuclear, and in vivo, only 0.3% of mononuclear cardiomyocytes under
the influence of exogenous NRG-1 underwent division [89] suggesting that pharmacologic NRG-1 produces limited
regeneration. D’Uva et al. [36] demonstrated that the manipulation of ErbB2 signaling augments cardiac regenera-
tive properties. Mice with constitutively active cardiomyocyte ErbB2 show significant cardiac hypertrophy, with the
cellular division of both mononuclear and binuclear myocardial cells. Mice with constitutively active ErbB2 that un-
derwent myocardial ischemia showed a robust dedifferentiated population of cardiac myocytes in the infarcted tissue
associated with improved cardiac function. Polizzotti et al. [90] demonstrated, in mice subjected to cryoinjury, NRG
induces cardiac myocyte regeneration in newborn mice, but this response was diminished 5 days post-birth. Similarly,
they showed that cardiac myocytes obtained from human infant myocardium respond to NRG in an age-dependent
manner, with cell division only seen in cells obtained from younger subjects (<6 months) [90]. Based upon a series
of experiments in zebrafish and mice, it appears that NRG-1-dependent cardiac regeneration in early postnatal life is
dependent on cardiac innervation [91].

Anti-fibrotic and anti-inflammatory effects of neuregulins
NRG/ErbB signaling appears to regulate inflammation and fibrotic responses to injury in multiple tissues, including
the heart. NRG-1’s anti-inflammatory effects were first identified in CNS microglial cells after ischemic insult, where
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NRG-1 treatment reduced NF-kB mediated expression of TNFα and IL-6 [92]. NRGs appear to regulate the inflam-
matory response of the heart to injury, though the mechanisms are complex and incompletely understood. NRG-1
has direct anti- inflammatory effects in nonclassical monocytes in humans, acting via ErbB3, reducing TNFα pro-
duction [93]. NRG-1 regulates macrophage phenotype, increasing the CD206 positive ‘regenerative phenotype’ when
administered into a rat heart after myocardial infarction. This may relate to observations in other inflammatory dis-
eases, including inflammatory bowel disease, where colonic macrophages exposed to inflammatory stimuli increased
ErbB4 expression. NRG-4 administration reduced the number of colonic macrophages via induction of macrophage
apoptosis and attenuated inflammation [94].

The effects of NRG-1 on the inflammatory response to injury are likely linked to the reduced fibrosis observed in
several experimental systems. In left ventricular samples of post-MI swine treated with GGF2, there was more or-
ganized myofibril structure, reduced fibrosis, attenuated expression of pro-fibrotic genes, and a reduced number of
myofibroblasts [95]. Similar anti-fibrotic effects were reported in a mouse model where treatment with recombinant
human NRG1β (rhNRG-1β) attenuated the adverse effects of angiotensin II on cardiac hypertrophy by inhibiting fi-
brosis and activation of myocardial fibroblasts [96]. In mice with ErbB4-deficient macrophages, angiotensin exposure
resulted in worse myocardial fibrosis, suggesting that active NRG/ErbB4 attenuates the fibrosis effects of fibroblasts
[96]. An additional study found NRG-1 to have anti-fibrostic effects by suppressing macrophage activation and pre-
venting bleomycin-induced fibrosis in the heart, lung, and skin tissue in vivo [96].

All of these data together provide strong support for the role of NRG-1 signaling through ErbB4 and ErbB3 in the
control of myeloid cell activation, reduction of the number of pro-inflammatory macrophages via targeted apopto-
sis and suppressing the release of pro-inflammatory cytokines in multiple tissues. Because myocardial fibrosis and
remodeling are leading molecular mechanisms in the progression of systolic heart failure, NRGs ability to prevent
inflammation and pro-fibrotic transformation has substantial translational implications, providing a rationale for the
use of NRGs as a therapy in systolic heart failure.

Regulation of remodeling via neuregulin’s activation of focal adhesion
kinase
Focal adhesion kinase (FAK) is a nonreceptor tyrosine kinase that is critical for the transmission of mechanical strain
into biochemical signals that regulate cardiac myocyte growth and survival [97,98]. GGF2 treatment of adult rat
ventricular myocytes induced formation of a multiprotein complex containing ErbB2, FAK p130CAS, and paxillin,
which induces lamellipodia formation and myocyte elongation that ultimately restored myocyte cell-to-cell contact
and synchronous beating [39]. Increased mechanical load on the heart results in increased tension and stretch on car-
diomyocytes, in association with activation of FAK [99] and NRG/ErbB [20]. Complete knockout of the FAK protein
results in embryonic lethality, and myocardial specific Cre-recombinase deletion results in a dilated cardiomyopathy
after exposure to angiotensin II [100]. An important part of normal physiologic cardiac remodeling is maintaining
optimal sarcomere length despite cardiac myocyte growth and lengthening [97,101]. The physiologic growth of the
heart during pre- and postnatal maturation [34] or during pregnancy is regulated by NRG/ErbB signaling [41]. An
attractive hypothesis emerges from this work is that load-dependent NRG/ErbB regulation of FAK orchestrates the
normalization of sarcomere load via cardiac myocyte growth, and perhaps cell division, as discussed previously. Sim-
ilarly, the reparative effects of NRGs in systolic heart failure may in part be mediated by ErbB2 activation of FAK.
These results support the hypothesis that NRG/ErbB signaling through FAK regulates mechanical strain-induced
pathologic eccentric hypertrophy [102].

NRG/ErbB regulation of angiogenesis
Angiogenesis plays a critical role in myocardial development, growth, and recovery from injury. ErbB1, ErbB2, ErbB3,
and ErbB4 are expressed on endothelial cells (Figure 2), and NRG-1 can regulate their proliferation, function, and
participation in angiogenesis. NRG-1 induces the growth of vascular endothelial cells in vitro in a manner indepen-
dent of VEGF [103]. NRG-1 treatment reverses diabetic vascular injury by increasing myocardial capillary density
and increasing myocardial blood flow in mice [104]. In ischemic injury, NRG-1 treatment increases capillary density
within the peri-infarct region [83]. These and other studies highlight the ability of NRG-1/ErbB signaling to augment
myocardial recovery by increasing angiogenetic potential.

The downstream signaling mechanisms by which NRG-1 induces angiogenesis are not completely clear. Recent
literature demonstrates that ErbB2 heterodimerizes with neuropilin (Nrp1) on cardiac endothelium to form a func-
tional receptor for a vascular guidance molecule semaphorin 3d, leading to the development of coronary veins [105].
Nrp1 is a transmembrane protein that interacts with co-receptors and has been shown to regulate angiogenesis and
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endothelial sprouting [106]. While Nrp1 is required for the embryonic vascular morphogenesis, it also has a role in
the regulation of angiogenesis in adults [107]. The recent discovery of Nrp1’s dimerization of ErbB2 did not test NRGs
ability to induce angiogenesis but further supports ongoing investigation into the ErbB-dependent regulation of an-
giogenesis. NRG-1 induces increased production and release of VEGF by endothelial cells in vivo [104]. However, in
an in vivo model of corneal angiogenesis, NRG-1 induces angiogenesis independent of VEGF, suggesting that NRG is
functionally angiogenic. Hedhli et al. [21] developed an endothelial-specific inducible NRG-1 knockout mouse. Mice
lacking endothelial NRG-1 had decreased blood flow in response to femoral artery ischemic injury due to reduced
angiogenesis that recovered with exogenous NRG-1. NRG-1 has therapeutic potential in ischemic cardiomyopathy as
it can stimulate angiogenesis in post-infarction myocardium and could be studied as a therapeutic in stable coronary
artery disease to induce collateralization [21,103,108].

NRG-1 can also regulate angiogenesis via the prevention of apoptosis of endothelial progenitor cells [109]. We
have recently demonstrated that human cardiac highly proliferative cells are characterized by the expression of all
four ErbB receptors [110]. These cells are characterized by high proliferative activity in vitro, and have been shown
to possess progenitor properties. NRG-1-dependent stimulation of ErbB receptors of these cells induces their dif-
ferentiation toward endothelial cell lineage, providing an additional mechanism by which NRG-1 regulates cardiac
microvasculature formation.

Regulation of cardiac myocyte metabolism
NRG-1 regulates glucose uptake into skeletal muscle via GLUT4 [111] and cardiac myocytes in a manner independent
of insulin [112]. NRG-1β induces glucose uptake in cardiac myoctyes [14] via activation of the PI3K/Akt pathway
[113]. In animal models of heart failure, recombinant forms of NRG-1 induce glucose uptake by induction of glycolytic
enzyme expression and suppression of oxidative phosphorylation in rhesus monkeys [114], mice [115], and in swine;
this leads to symptomatic hypoglycemia [95]. In human phase I and II trials, NRG-1 did not show hypoglycemic
effects [116–118]. The effects of NRG-1 on glucose uptake, as well as hepatocyte gluconeogenesis, have led to the
concept that NRG-1 may have therapeutic potential in the treatment of Type 2 diabetes mellitus [119–121].

NRG’s effects on cardiac myocyte metabolism appear to be essential for its regenerative properties. Honkoop et al.
[122] used a zebrafish model of cardiac regeneration to demonstrate that proliferating border zone cardiac myocytes
have a very distinct transcriptome compared with nonproliferative cardiac myocytes in remote areas, with a definite
shift toward anaerobic respiration. NRG-1/ErbB2 signaling induced this metabolic reprogramming, and the change
toward anaerobic respiration was essential for myocardial regeneration [122].

The ability of the myocardium to utilize both fats and carbohydrates is well established, with oxidative phospho-
rylation being dominant in the adult myocardium [123–125]. The progression to decompensated heart failure is
associated with a shift to anaerobic respiration, which is thought to be pathogenic [126–130]. Thus, the NRG-1 asso-
ciated shift to anaerobic metabolism in the zebrafish model would seem to be maladaptive. This may be context or
species-specific, as NRG-1 stimulation of adult rat cardiomyocytes increases the expression of many genes involved in
mitochondrial β-oxidation [131]. Similarly, NRG-1 induces oxidative phosphorylation in cardiomyocytes generated
from human embryonic stem cells [132]. Treatment of post-MI rats reverses the pathologic changes in metabolism
transcriptome [115]. In post-MI swine, similar effects were seen along with normalization of mitochondrial structure
as seen by transmission electron microscopy [95]. Although the exact mechanisms of improved mitochondrial func-
tion in cardiomyocytes requires further investigation, NRG-1 acts on complex 2-mediated mitochondrial respiration
in skeletal muscles [133]. Incorporating noninvasive metabolic imaging [134] into future clinical trials with recom-
binant NRG-1 in heart failure may help to sort out to what extent changes in myocardial metabolism are mechanistic
in humans.

Clinical trials of recombinant neuregulins in heart failure
Two forms of recombinant NRG-1β have been studied in clinical trials to examine the potential for a therapeutic
effect in systolic heart failure (Table 3). Jabbour et al. [116] administered the EGF domain-only form of rhNRG-1β
(Neucardin) to patients with chronic systolic heart failure and observed a sustained improvement in ejection fraction
84 days after therapy was completed. A nonsustained acute increase in cardiac output with rhNRG-1β infusion [135]
was observed, likely due to a vasodilatory response, as rhNRG-1β has negative inotropic effects on isolated myocytes
[136–138]. A phase II trial was completed by Gao et al. [117] where chronic systolic heart failure (EF<40%) patients
were administered increasing doses of rhNRG-1β again producing sustained improvement in ejection fraction at the
90 days follow up. A phase 3 study with the same form of NRG-1 has been presented in abstract form reporting a
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mortality benefit in systolic heart failure patients [139]. An ongoing phase 3 trial will provide further insight into the
potential mortality benefit with NRG-1 in systolic heart failure (Clinical Trials ID#: NCT03388593).

The larger rhNRG-1 GGF2 (Cimaglermin Alfa) has been studied in a phase 1 trial, where a single dose was asso-
ciated with a sustained improvement in LVEF after 90 days in patients with chronic systolic heart failure. The most
common side effect with both forms of rhNRG-1β was nausea. The GGF2 study reached its safety endpoint after one
patient at the highest planned dose of GGF2 developed transient hyperbilirubinemia and elevated aminotransferases
[118]. The mechanism for nausea, as well as the transient transaminitis most likely is due to on-target effects of the
recombinant NRG, given the wide tissue distribution of ErbB receptors. Mosedale et al. [140] examined the impacts of
GGF2 on the liver and found no evidence of hepatocyte necrosis but did find ´marked’ hyperplasia and hypertrophy
of bile duct epithelium. Studies in cultured hepatocytes showed that GGF2 treatment changes the expression of genes
regulating bilirubin metabolism and transport. While a major concern in the development of rhNRG-1β as a cardiac
therapy has been the promotion of tumor growth given the well-established role of ErbB2 in oncogenesis [141], such
an effect has not been reported in any trials to date.

Motivated by the potential oncogenic effects, a recombinant form of NRG that circumvents ErbB2 has been de-
veloped and studied in preclinical models. A bivalent neuregulin (bivNRG) containing two identical amino acid
sequences, corresponding to the ErbB receptor binding domain, was created by linking them through a hydrophilic,
protease-resistant spacer [142]. BivNRG promotes the dimerization (homo- and hetero-) of ErbB3 and ErbB4 recep-
tors, inducing their transphosphorylation and activation. In cancer tissues, ErbB3 receptors often interact with ErbB2
[143] to form the most biologically active heterodimer activating the PI-3K/Akt signaling pathway [144]. Through the
induction of minimally active ErbB3 homodimer formation at the expense of the more potently active ErbB2/ErbB3,
bivNRG has a cytostatic effect in cancers. Through the induction of highly active ErbB4 homodimers, bivNRG re-
tains its cardioprotective effects [145]. This unique property makes bivNRG a promising candidate for the treatment
of anthracycline-induced cardiomyopathy. BivNRG and NRG-1 have similar cardioprotective effects during cardiac
myocyte exposure to doxorubicin, while bivNRG, but not NRG-1, showed a growth-suppressive effect in a neoplastic
cell line expressing ErbB2 and ErbB3 receptors [145]. Whether bivNRG will induce cardiac repair in other circum-
stances, where ErbB3/ErbB2 activation may be necessary for antifibrotic, angiogenic, and anti-inflammatory effects
discussed previously will require further investigation.

Neuregulins in atherosclerosis
There is growing evidence that NRG maintains normal vascular function via signaling in endothelial cells, smooth
muscle cells, and macrophages, and disruptions in this signaling system may be involved in atherosclerosis. Cir-
cumstantial evidence comes from human studies, with cell and animal studies providing more mechanistic informa-
tion. Immunohistochemistry analysis of human coronary atherosclerotic lesions revealed an increased expression of
NRG-1 in macrophages [146]. In a cohort of subjects with angiographic evidence of coronary disease, reduced levels
of circulating NRG-1 was associated with the severity of disease [70]. Xu et al. [147] reported that NRG-1 reduced
cholesterol ester accumulation in monocyte-derived macrophages in a dose-dependent manner in vitro, and admin-
istration of rhNRG-1 in ApoE-/- mice produced significantly reduced aortic atheromatous plaque surface area. In ad-
dition to the lipid regulation, NRG has anti-inflammatory effects mediated by ErbB4 on macrophages. Macrophages
exposed to inflammatory cytokines increase their expression of ErbB4 (but not ErbB1, ErbB2 or ErbB3) and subse-
quent exposure to NRG-4 induces apoptosis [94]. NRG-1 suppresses macrophage cytokine release and subsequent
myocardial fibrosis induced by angiotensin II [96]. NRG-1 has protective effects against oxidative stress-induced
senescence in aortic endothelial and smooth muscle cells [148]. This could be of particular importance as the under-
lying pathophysiology of acute coronary syndrome is related to the thinning and rupture of the endothelium-smooth
muscle layer over fatty atheromatous plaques [149]. All these studies taken together provide strong evidence that NRG
has anti-inflammatory properties attributed to modulated macrophage function, and it could be a potential therapy
to prevent or treat atherosclerosis.

Neuregulin 4 and its potential role in linking metabolic syndrome,
inflammation, and coronary artery disease
Recently, NRG-4 has become an area of interest within endocrinology because of its association with obesity and the
progression to diabetes. NRG-4 was first identified in 1999 by Harari et al. [30] where they found it to be highly ex-
pressed in the pancreas, adipose tissue, and skeletal muscle. Interestingly, the EGF domain of NRG-4 is highly selective
for ErbB4 as opposed to NRG-1, which interacts with both ErbB3 and ErbB4 [30]. NRG-4 is expressed in brown adi-
pose tissue and acts in an endocrine-like function on hepatocyte regulation of gluconeogenesis and lipogenesis [150].
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Figure 5. NRG-4 protects against atherosclerosis progression

NRG-4 is released from brown adipose tissue and reduces pro-inflammatory activation of tissue-resident macrophages and their

differentiation into foam cells. NRG-4 promotes endothelial cell survival and prevents smooth muscle cell senescence, both of

which suppress atherogenesis.

Several studies have found an inverse relationship between circulating NRG-4 and metabolic syndrome [25,26,151].
In addition, it has been shown that low levels of NRG-4 are an early marker of insulin resistance [24,152]. Reduced
levels of NRG-4 have been associated with increased carotid intimal thickness [153], higher high-sensitivity c-reactive
protein [154], increased angiographic severity of coronary artery disease [27], and acute coronary syndrome [155],
suggesting that NRG-4 is an adipokine that mediates the link between metabolic syndrome and atherosclerosis (Figure
5).

As discussed previously, there are many known risk factors of atherosclerosis but few known associations be-
tween the progression of atherosclerosis to plaque rupture events. NRG-4, the ErbB4 selective ligand, has been high-
lighted throughout this review to have beneficial effects on cardiac myocytes and the endothelium while having
anti-inflammatory effects on macrophages leading to decreased tissue fibrosis and decreased atherosclerotic plaque
burden. Further prospective studies are needed to investigate the role of NRG-4 in the progression of CAD.

Neuregulin in diastolic heart failure
There are very few clinical strategies that effectively treat diastolic heart failure despite numerous trials [156,157].
NRG-1 has been postulated to be a therapy for a subtype of diastolic heart failure—diabetic cardiomyopathy [158].
The Framingham Study established that men and women with diabetes are at higher risk for developing heart fail-
ure after adjusting for comorbid conditions [159]. Diabetic cardiomyopathy is often accompanied by comorbidities,
including coronary artery disease, hypertension, autonomic neuropathy, and microvascular dysfunction. However,
diabetes is independently associated with progressive left ventricular remodeling and dysfunction characteristic of
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diastolic heart failure [160]. There are a multitude of neurohormonal factors that influence the pathophysiology of di-
abetic cardiomyopathy, but decreased myocardial compliance is a hallmark [160]. NRG-1 has consistently been shown
to increase myocardial compliance [96,161]. It has been suggested that mechanisms of NRG-1 mediated changes in
compliance are attributed to calcium homeostasis [138], reduced inflammatory response and resulting fibrosis [96],
and direct effects on sarcomeric tension [162].

Rats with diabetes, induced by streptozotocin, have impaired left ventricular function by echocardiography ac-
companied by significant fibrosis [163]. The level of NRG-1 in the hearts of diabetic rats is decreased along with
reduced phosphorylation of ErbB2 and ErbB4 [163], suggesting that diminished levels of NRG-1 could be associated
with the development of diastolic heart failure in diabetic cardiomyopathy. Animal models have suggested diabetes
mellitus Type 2 (DM2) is associated with altered phosphorylation of titin, leading to reduced compliance [164,165].
The phosphorylation balance of a specific region of titin determines the compliance of the cardiac myocyte sarcom-
ere. Hopf et al. [162] demonstrated rhNRG-1 modified the phosphorylation of titin in diabetic mice and found that
rhNRG-1 could rapidly decrease the end-diastolic pressure–volume relationship (indicating improved diastolic relax-
ation) in Zucker diabetic obese rats [158]. The significance of this study is the suggestion that NRG-1 can revert the
metabolic effects of insulin resistance on the sarcomere and supports the role of NRG-1 in the treatment of diabetic
cardiomyopathy.

Activation of the pro-inflammatory immune cells, including macrophages, has been implicated in the pathogenesis
of diabetic cardiomyopathy [160]. As previously mentioned in this review, NRG-1 and NRG-4, acting through ErbB3
and ErbB4 have been shown to induce apoptosis of the pro-inflammatory macrophages and reduce pro-inflammatory
activation of myeloid cells. NRGs ability to modulate chronic inflammation in diabetic cardiomyopathy may also be
an additional therapeutic mechanism.

Neuregulin in prevention of septic cardiomyopathy
Sepsis is a condition with life-threatening organ dysfunction caused by a dysregulated host response to infection
[166]. Sepsis is characterized early on by an increase in cardiac output, but in some cases of sepsis, there is transient
cardiomyopathy with reduced ejection fraction. [167]. Based on the observation of reduced NRG-1 in neuromus-
cular junctions during sepsis, Zhou et al. [168] suggested that exogenous NRG-1 may be beneficial during sepsis.
They found that treatment of rats with rhNRG-1 improved survival. Hemodynamic measurements revealed improved
mean arterial pressure, isovolumetric relaxation, and decreased left ventricular end-diastolic pressure accompanied
by reduced levels of troponin, TNF-, IL-1β, and IL-6 in the NRG-1 treatment group [168]. The reduction of in-
flammatory cytokines and improved mortality suggest that NRG-1 has protective effects in septic cardiomyopathy
via down-regulation of immune response-related cardiac injury. Kang et al. [169] further investigated the effects of
NRG-1 in sepsis by examining the impact in endothelial cells where they demonstrated an inhibitory effect of NRG-1
on ICAM-1, VEGF, and nitric oxide, factors which increase in sepsis. The investigators also found that NRG-1 in-
hibited RhoA/ROCK signaling, which has previously been shown to promote endothelial cell shedding and increase
vascular permeability [169]. Along with improvements in cardiac dysfunction in sepsis, NRG-1 appears to protect
endothelial cell injury and the resulting loss of barrier function that contributes to multi-organ failure [170].

Conclusions
NRGs have therapeutic effects in multiple forms of cardiac disease through direct actions on cardiac myocytes, en-
dothelial cells, inflammatory cells, and fibroblasts. Recent literature has expanded our knowledge of NRGs regulation
of metabolism in multiple tissues, implicating NRGs as potential links between metabolic syndrome, diabetes, and
coronary artery disease. The mechanisms by which NRG/ErbB signaling is cardioprotective have been elucidated, but
the mechanisms by which these cardioprotective pathways are regulated in vivo remain unanswered. Promising clini-
cal trial results with two distinct forms of recombinant NRG-1 in systolic heart failure support further investigation of
this biologic therapy. Future NRG research is warranted that focuses on NRG-4/ErbB4 due to new literature suggest-
ing the connection between metabolic syndrome, diabetes, and coronary artery disease. Acute coronary syndrome
remains a plague on the cardiology community as we have excellent risk stratification tools for the development of
CAD but no means to predict who is at risk for plaque rupture events and the deadly consequences. NRG-4 could be
a biomarker for the risk of ACS as well as a potential therapy. NRG is protective of cardiovascular systolic dysfunc-
tion, and the literature supports a protective role of NRG in CAD, diastolic heart failure, diabetes, and inflammatory
conditions affecting the heart. There remain many questions regarding the differential response between different
NRGs and ErbB combinations across different tissue types and understanding these pathways in greater detail has
the potential to greatly expand the clinical utility of NRG (Figure 6).
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Figure 6. Current challenges and questions

Large inter-individual variability in both NRG’s and ErbB receptors expression, the presence of active and inactive forms of NRG’s,

and their interaction with different ErbB receptors expressed on a variety of cardiac cells form a complex NRG/Erbb signaling

network. A better understanding of cell-type- specific effects mediated by NRG’s in the heart is necessary for the development of

cardioprotective therapies.
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75 Kivelä, R., Hemanthakumar Karthik, A., Vaparanta, K. et al. (2019) Endothelial Cells Regulate Physiological Cardiomyocyte Growth via
VEGFR2-Mediated Paracrine Signaling. Circulation 139, 2570–2584, https://doi.org/10.1161/CIRCULATIONAHA.118.036099

76 Gutiérrez, E., Flammer, A.J., Lerman, L.O., Elı́zaga, J., Lerman, A. and Fernández-Avilés, F. (2013) Endothelial dysfunction over the course of coronary
artery disease. Eur. Heart J. 34, 3175–3181, https://doi.org/10.1093/eurheartj/eht351

77 Davignon, J. and Ganz, P. (2004) Role of Endothelial Dysfunction in Atherosclerosis. Circulation 109, III–27-III-32
78 Rahimzadeh, M., Farshidi, N., Naderi, N., Farshidi, H. and Montazerghaem, H. (2020) Clinical significance of serum concentrations of neuregulin-4, in

acute coronary syndrome. Sci. Rep. 10, 5797, https://doi.org/10.1038/s41598-020-62680-x
79 Nethery, D.E., Ghosh, S., Erzurum, S.C. and Kern, J.A. (2007) Inactivation of neuregulin-1 by nitration. 292, L287–L293
80 Lee, H., Akita, R.W., Sliwkowski, M.X. and Maihle, N.J. (2001) A naturally occurring secreted human ErbB3 receptor isoform inhibits

heregulin-stimulated activation of ErbB2, ErbB3, and ErbB4. Cancer Res. 61, 4467–4473
81 Crone, S.A., Zhao, Y.Y., Fan, L. et al. (2002) ErbB2 is essential in the prevention of dilated cardiomyopathy. Nat. Med. 8, 459–465,

https://doi.org/10.1038/nm0502-459
82 Garcı́a-Rivello, H., Taranda, J., Said, M. et al. (2005) Dilated cardiomyopathy in Erb-b4-deficient ventricular muscle. Am. J. Physiol. Heart Circ. Physiol.

289, H1153–H1160, https://doi.org/10.1152/ajpheart.00048.2005
83 Liu, X., Gu, X., Li, Z. et al. (2006) Neuregulin-1/erbB-activation improves cardiac function and survival in models of ischemic, dilated, and viral

cardiomyopathy. J. Am. Coll. Cardiol. 48, 1438–1447, https://doi.org/10.1016/j.jacc.2006.05.057
84 Zhao, Y.Y., Sawyer, D.R., Baliga, R.R. et al. (1998) Neuregulins promote survival and growth of cardiac myocytes. Persistence of ErbB2 and ErbB4

expression in neonatal and adult ventricular myocytes. J. Biol. Chem. 273, 10261–10269, https://doi.org/10.1074/jbc.273.17.10261
85 Kuramochi, Y., Lim, C.C., Guo, X., Colucci, W.S., Liao, R. and Sawyer, D.B. (2004) Myocyte contractile activity modulates norepinephrine cytotoxicity

and survival effects of neuregulin-1β. Am. J. Physiol.-Cell Physiol. 286, C222–C229, https://doi.org/10.1152/ajpcell.00312.2003
86 Fukazawa, R., Miller, T.A., Kuramochi, Y. et al. (2003) Neuregulin-1 protects ventricular myocytes from anthracycline-induced apoptosis via

erbB4-dependent activation of PI3-kinase/Akt. J. Mol. Cell Cardiol. 35, 1473–1479, https://doi.org/10.1016/j.yjmcc.2003.09.012
87 Giraud, M.N., Fluck, M., Zuppinger, C. and Suter, T.M. (2005) Expressional reprogramming of survival pathways in rat cardiocytes by neuregulin-1beta.

J. Appl. Physiol. (1985) 99, 313–322, https://doi.org/10.1152/japplphysiol.00609.2004
88 Hedhli, N., Huang, Q., Kalinowski, A. et al. (2011) Endothelium-derived neuregulin protects the heart against ischemic injury. Circulation 123,

2254–2262, https://doi.org/10.1161/CIRCULATIONAHA.110.991125
89 Bersell, K., Arab, S., Haring, B. and Kuhn, B. (2009) Neuregulin1/ErbB4 signaling induces cardiomyocyte proliferation and repair of heart injury. Cell

138, 257–270, https://doi.org/10.1016/j.cell.2009.04.060
90 Polizzotti, B.D., Ganapathy, B., Walsh, S. et al. (2015) Neuregulin stimulation of cardiomyocyte regeneration in mice and human myocardium reveals a

therapeutic window. Sci. Transl. Med. 7, 281ra45, https://doi.org/10.1126/scitranslmed.aaa5171
91 Mahmoud, A.I., O’Meara, C.C., Gemberling, M. et al. (2015) Nerves Regulate Cardiomyocyte Proliferation and Heart Regeneration. Dev. Cell 34,

387–399, https://doi.org/10.1016/j.devcel.2015.06.017
92 Simmons, L.J., Surles-Zeigler, M.C., Li, Y., Ford, G.D., Newman, G.D. and Ford, B.D. (2016) Regulation of inflammatory responses by neuregulin-1 in

brain ischemia and microglial cells in vitro involves the NF-kappa B pathway. J. Neuroinflamm. 13, 237, https://doi.org/10.1186/s12974-016-0703-7
93 Ryzhov, S., Matafonov, A., Galindo, C.L. et al. (2017) ERBB signaling attenuates proinflammatory activation of nonclassical monocytes. Am. J. Physiol.

Heart Circ. Physiol. 312, H907–H918, https://doi.org/10.1152/ajpheart.00486.2016
94 Schumacher, M.A., Hedl, M., Abraham, C. et al. (2017) ErbB4 signaling stimulates pro-inflammatory macrophage apoptosis and limits colonic

inflammation. Cell Death Dis. 8, e2622, https://doi.org/10.1038/cddis.2017.42
95 Galindo, C.L., Kasasbeh, E., Murphy, A. et al. (2014) Anti-remodeling and anti-fibrotic effects of the neuregulin- 1beta glial growth factor 2 in a large

animal model of heart failure. J. Am. Heart Assoc. 3, e000773, https://doi.org/10.1161/JAHA.113.000773
96 Vermeulen, Z., Hervent, A.S., Dugaucquier, L. et al. (2017) Inhibitory actions of the NRG-1/ErbB4 pathway in macrophages during tissue fibrosis in the

heart, skin, and lung. Am. J. Physiol. Heart Circ. Physiol. 313, H934–H945, https://doi.org/10.1152/ajpheart.00206.2017
97 Sadoshima, J. and Izumo, S. (1997) The cellular and molecular response of cardiac myocytes to mechanical stress. Annu. Rev. Physiol. 59, 551–571,

https://doi.org/10.1146/annurev.physiol.59.1.551
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