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Abstract: Population agglomeration and real estate development encroach on public green spaces,
threatening human settlement equity and perceptual experience. Perceived greenery is a vital
interface for residents to interact with the urban eco-environment. Nevertheless, the economic
premiums and spatial scale of such greenery have not been fully studied because a comprehensive
quantitative framework is difficult to obtain. Here, taking advantage of big geodata and deep learning
to quantify public perceived greenery, we integrate a multiscale GWR (MGWR) and a hedonic price
model (HPM) and propose an analytic framework to explore the premium of perceived greenery
and its spatial pattern at the neighborhood scale. Our empirical study in Beijing demonstrated that
(1) MGWR-based HPM can lead to good performance and increase understanding of the spatial
premium effect of perceived greenery; (2) for every 1% increase in neighborhood-level perceived
greenery, economic premiums increase by 4.1% (115,862 RMB) on average; and (3) the premium of
perceived greenery is spatially imbalanced and linearly decreases with location, which is caused by
Beijing’s monocentric development pattern. Our framework provides analytical tools for measuring
and mapping the capitalization of perceived greenery. Furthermore, the empirical results can provide
positive implications for establishing equitable housing policies and livable neighborhoods.

Keywords: multiscale GWR (MGWR); big geodata; deep learning; hedonic price model; housing
premium; public perceived greenery

1. Introduction

As a vital component of the urban landscape, urban green space provides security for
the coordinated development of social-economic-natural complex ecosystems [1]. Urban
parks and forests provide essential ecological benefits in maintaining biodiversity and per-
forming carbon fixation [2,3]. Some scattered green spaces, such as road greenery [4] and
green roofs [5], can regulate the microclimate [6,7], block noise [8], and reduce greenhouse
gases [9]. From the perspective of social service functions, urban greenery provides resi-
dents with areas for leisure and entertainment, outdoor exercise, social activities [10–12],
and psychological stress relief [13,14]; such areas also provide aesthetic beauty. In re-
cent years, population agglomeration and real estate development have extruded public
green spaces, threatening the livable human environment and perceived greenery eq-
uity. Recently, the economic premiums and equity of urban greenery have attracted
the attention from many fields, such as urban ecology, design, planning, and real estate
economics [15–20]. Deeply studying the large-scale economic benefits of urban greenery is
of great value for sustainable urban development and equitable living conditions.

Public perceived greenery can be described as residents’ visual exposure to urban
green spaces and ornamental forestland [21,22]. As a well-recognized amenity, pleasant per-
ceived greenery can be capitalized into residential and commercial property values [23–25].
For instance, a case study in Salo, Finland, showed that housing with forest landscapes is
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4.9% more expensive than regular housing [26]. Jim and Chen [27] showed that a pleasant
green view in Guangzhou, China, positively affects housing prices, with a premium rate of
6.9%. A case study in Singapore showed that tropical managed vegetation had a positive
premium on 98% of property prices, representing 3% of the average property value [28].
Recently, several empirical studies have integrated new techniques into the study of urban
greenery premiums. Kang et al. [29] used a machine learning (ML) approach to predict
the housing appreciation rate in Boston, USA. Simultaneously, Li, et al. [30] adopted an
ML-based algorithm to understand the major influential factors and their contributions in
Shenzhen, China. Chen, et al. [31] further explored the effect of environmental factors on
housing prices based on ensemble learning and indicated that there was a positive effect
when the greening level reached a certain level. However, the previous studies neglected
the spatial premium scales and variation of public perceived greenery. There is a lack of
suitable means to explain the spatial variation of the influential factors in built environ-
ments. The contribution of perceived greenery to the housing premium, as well as its spatial
pattern and impact scales, need further interpretation and discussion. Understanding the
mechanisms influencing the spatial premium of such greenery is essential to optimize the
spatial layout, equalize public resources, and formulate sustainable development policies.

Although the hedonic price model (HPM) or the HPM-based frameworks have been
widely adopted to housing premium studies and can identify the marginal prices of
specific influential factors [27,32,33], there are still deficiencies in greenery-focused HPM
studies: (1) difficulty in depicting the spatial premium patterns of influential factors
and their various impact scales and (2) a lack of large-scale sensing methods for public
greenery at the neighborhood scale. Therefore, the aim of this study is to refine HPM by
integrating novel big geodata, deep learning approaches, and multiscale spatial models into
a comprehensive analytical framework. The integrated framework was adopted to improve
the understanding of the quantitative connections between public perceived greenery and
economic premiums in large-scale scenarios, and to provide a reference for governments to
establish equitable housing policies and livable neighborhoods.

This article is organized as follows. Section 2 includes five main parts: (1) the study
area, (2) a comprehensive analytical framework, (3) deep learning for perceived greenery
measurement, and (4) the formulas of the models, variable definitions, and statistics.
Section 3 introduces the experimental results, compares the model performance in detail,
explains the main findings, and provides policy recommendations.

1.1. Measuring Large-Scale Perceived Greenery Using Street Views and Deep Learning

Traditional means of quantifying perceived greenery, such as satellite remote sensing
images and aerial photography, differ greatly from the human perception perspective and
field of view [32], which makes it difficult to characterize physical setting perceptions. In
traditional visual landscape surveys, field photography is often adopted to obtain scenario
photos [33]. Then, a visual interpretation is used to quantify perceived greenery [34]. In
recent years, deep learning and big geodata approaches have led to new insights into the
quantification of urban perception globally [35,36]. Big geodata provide a reliable source
for exploring human perceived greenery [35]. As a typical geotagged data source, street
views provide excellent spatial coverage, accuracy, and costs, and are widely adopted in
studying the physical configuration and social perception of cities [37–40]. Zhang and
Dong [37] and Ye et al. [39] showed that the street-level greenery of Beijing and Shanghai
both have an enhancing effect on house prices. In addition, the combination of streetscape
images and computer vision can solve data magnitude and coverage problems [41]. Dong
et al. [42] measured the street-level greenery in Beijing’s central area based on computer
vision and found that there is a serious imbalance in the public perception of road greenery
through spatial clustering. Fu et al. [38] mapped street greenery using the PSPNet [43] deep
learning framework. The comparison found that the average greening quality in Shanghai
was better than that in Beijing. However, the previous HPM analytical frameworks for
neighborhood-level perceived greenery quantification are still immature [37,38]. In this
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paper, massive street views and deep learning are used to quantify the neighborhood-level
perceived greenery around housing estates to provide a quantitative metric for economic
premium analysis at a large scale.

1.2. A Novel Hedonic Price Modeling Framework Based on MGWR

The HPM is a classic method used to quantify and explain the characteristics that
affect the value of public goods. This approach was mainly derived from Rosen’s [44]
implicit price theory and Lancaster’s [45] heterogeneous consumption theory, which assess
marginal premiums by measuring people’s willingness to pay. According to consumer
theory [45], the satisfaction of the utility associated with a unit characteristic quantity
varies for different consumers. In the secondhand housing market, for example, economic
premiums can largely reflect the buyer’s subjective preference for various characteristics.

Previous studies have often employed the ordinary least squares (OLS) method to
construct HPMs [37–39] but ignored the spatial heterogeneity of economic premiums. The
OLS-based HPM assumes that all housing characteristics are homogenous and mutually
independent, but these assumptions differ highly from actual conditions [46]; empirical
studies have shown that geographically weighted regression (GWR) [47] is more suitable
for explaining housing characteristics and their spatial heterogeneity [48]. The premiums
of housing characteristics may appear spatially stationary or nonstationary, but the OLS-
based model ignores spatial variations, which may cause the coefficient estimates to be
biased [49,50].

A fixed bandwidth is adopted in GWR to determine the boundary of local regres-
sion [47] and approximately explain the scales of spatial processes. The GWR-based HPM
assumes that all housing characteristics have the same spatial scale; however, the scales
of spatial processes are usually heterogeneous [46,47]. Recently, Fotheringham et al. [51]
proposed the multiscale GWR (MGWR) approach in the field of spatial econometrics, which
has the following advantages. First, it allows each covariate to have an independent band-
width. Second, the multi-bandwidth approach allows MGWR to reflect actual conditions,
thereby facilitating the interpretation of variables [51,52]. In summary, this study employs
MGWR as an improved form of the HPM to analyze the spatial premium effect of public
perceived greenery in detail.

2. Materials and Methods
2.1. Study Area

Beijing has the top financial, scientific, and educational resources in China, and it
has considerable national and international influence. The agglomeration of talent and
migrants has led to fierce competition for settlement in Beijing. With residential land use
approaching saturation, secondhand transactions have become the driver of the real estate
market. At the end of 2020, the average house price in Beijing reached 60,143 RMB per
square meter.

The built-up areas in Beijing have expanded rapidly for nearly half a century, and
they are divided by five major motorways from the inside to the outside (see Figure 1),
forming a typical monocentric ring layout. The length of the centerline of the road network
in the study area is 5640 km, and the main built-up area is concentrated in the Sixth Ring
Road (referred to as the sixth ring area for short), with a total area of 2265 km2. The Sixth
Ring Road area encompasses the working and living space of most residents in Beijing,
and the housing prices in different locations vary significantly [37,38]. The government
must address the balance between real estate development and greening configuration in
high-density and high-population areas.
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Figure 1. The Sixth Ring Road area and housing units in Beijing. Subplot (A): the location of study area. The red lines from
the inside to the outside in subplot (B) are the Second to Fifth Ring Roads.

2.2. Analytical Framework

This article proposes a three-layer framework (see Figure 2) that includes data sources,
characteristic calculations, and hedonic analysis layers. The data source layer includes
Baidu street views, AutoNavi road network data, AutoNavi points of interest (POIs), and
housing price data (Anjuke and Fang platforms’ transaction records in 2015). The character-
istic calculation layer includes the generation of equidistant samples of the road network,
panoptic segmentation, perceived greenery and accessibility indicator calculations, and the
cleaning and integration of housing data. In addition, to address multisource data fusion,
the neighborhood and structural indicators are all aggregated to the neighborhood level. In
the hedonic analysis layer, we first compare the performance and parameter estimates of the
OLS, GWR, and MGWR models; analyze the capitalization of house characteristics based
on HPM theory; and focus on the premium of perceived greenery and spatial analysis.
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The tools involved in the framework include (1) MGWR 2.2 software (Arizona State
University, Tempe, AZ, USA) [52] for OLS, GWR, and MGWR modeling and diagnosis;
(2) ArcGIS 10.8 (Environmental Systems Research Institute, Inc., Redlands, CA, USA) for
road network accessibility analysis, map visualization, and multisource data fusion; and
(3) Python scripts (version 3.8) (Python Software Foundation, www.python.org, accessed
on 23 June 2021) for data cleaning and exploratory analysis.

2.3. The Calculation of Neighborhood-Level Perceived Greenery

We employed the panoptic segmentation module to calculate the perceptual propor-
tion of greenery (trees, shrubs, and grass). Perceived greening can be defined as the overall
visual contact intensity of urban greenery in an in-situ scene. The corresponding formula
is as follows:

PG =
∑n

i=1 Areagreenry

∑n
i=1 Areatotal

× 100% (1)

where the numerator represents the total area of the street view corresponding to each
sample point (including four horizontal perspectives: east, south, west, and north) and the
denominator represents the area of greenery masked by panoptic segmentation.

We obtained 110,812 road network sample points at intervals of 50 m based on the
method of Dong et al. [42]. To match the dates of the street view and housing data and to
consider the deciduous period of trees in the study area, the results obtained from April
to October 2015 were selected from the database (78,127 effective points). In the model
training process, we used the ADE20K dataset [53] to train a deep convolutional neural
network (DCNN), and the overall classification accuracy at the pixel level reached 77.36%.
Finally, we used Formula (1) to calculate the street view scores for all sample points, and
the results are summarized in a table.

The sample points around blocks with housing units were used to measure the
neighborhood-scale perceived greenery (an 80 m border buffer). On average, there were
approximately 23 points in each plot involved in the calculation. Taking the Guoxingjiayuan
community in Beijing as an example, two streetscapes with classification masks are shown
in Figure 3. The average perceived greenery scores at points A and B were 35.8 and
46.2, respectively.

2.4. Hedonic Price Models (HPMs) and Characteristic Statistics

According to HPM theory [44,45], secondhand housing, as a heterogeneous public
good, is associated with various characteristic attributes. The impact of a characteristic
on price is called a marginal premium. The HPM often determines premiums through a
regression equation. Its basic form is as follows:

HP = f (C1, C2, . . . , Cn) (2)

where Cn represents the number i of characteristics and HP is the average price of a housing
unit. The HPM generally has three forms: linear, logarithmic, and double-logarithmic. This
article uses a logarithmic model for modeling. According to HPM theory, the logarithmic
model can explain the percentage change in housing premiums associated with a one-unit
change in the independent variable when other variables are fixed.
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2.4.1. The Ordinary Least Square (OLS) Model

The OLS method expresses the HPM in a linear form and sums the various character-
istic factors. The formula is as follows:

HP = ∑ βiCi + ε (3)

where ε is the error term, βi is the nonstandardized coefficient of the ith feature, and Ci is
the ith characteristic.

2.4.2. The Geographical Weighted Regression (GWR) Model

The GWR model is based on locally weighted regression and variable parameters, and
it embeds spatial position into the regression parameter set on a sample-by-sample basis.
The representation of the HPM is as follows:

HPj = ∑j β j(ui, vi)Cij + εi (4)

where (ui, vi) are the coordinates of the ith sample, Cij is the value of the jth characteristic
of the ith sample, and εi is the error term for the ith sample.

2.4.3. The Multiscale GWR Model

Multiscale GWR (MGWR) further relaxes the experimental assumptions, allowing the
relationships between the dependent variable and different independent variables to vary
at different scales (bandwidths). The corresponding expression is as follows:

HPj = ∑j βbwj(ui, vi)Cij + εi (5)

where bwj represents the bandwidth used by the coefficient of the jth variable. MGWR
uses a back-fitting algorithm to fit each smoothing term and uses the gold section method
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to search for the optimal bandwidth by default. The adaptive quadratic kernel function is
used for iterative correction. The formula is as follows:

wij =

{ [
1 −

[
dij/gi

]2]2
, i f dij < gi

0 , otherwise
(6)

where dij is the distance between sample points i and j and gi is the distance between
sample point i and neighbor K. K is the optimal number of nearest neighbors, which is
determined by the corrected Akaike information criterion (AICc). Its formula is as follows:

AICc = 2n ln(σ̂) + n ln(2π) + n(n + tr(S))/(n − 2 − tr(S)) (7)

where σ̂ is the estimated standard deviation of the error term and tr(S) is the trace of the
projection matrix S (which directly maps the true value to the fitted value). In addition, the
experiment uses the residual sum of squares (RSS) as an iterative convergence criterion.

2.4.4. Characteristic Description and Statistics

Following the analytical framework in Figure 2, this article divides the independent
variables into two categories: structure and neighborhood characteristics. The descriptions
and statistics of the indicators are shown in Table 1. Structural characteristics are indica-
tors that characterize the properties of housing units, including the usable area (AREA),
orientation of windows (ORI), number of floors (FLOOR), building age (AGE), floor-area
ratio (PR), green coverage rate (GR), and property fee (PF). Neighborhood characteristics
describe residents’ accessibility to the urban infrastructure, including the road network
distance to the nearest bus stations (BUS_D), entertainment facilities (ENT_D), hospitals
(HOS_D), supermarkets (SOP_D), subway stations (SUB_D), large green spaces (GRE_D),
and water bodies (WAT_D). In this paper, the natural logarithm of perceived greenery
(LNPG) is used as a metric to characterize the adjacent greenery quality at the block level
and introduced into the set of neighborhood characteristics

Table 1. Characteristic indicators and basic statistics.

Category Variables Description Mean Standard Error

Dependent variable LNHP Log selling price in 10,000 RMB (Chinese
currency, US $1 = RMB 6.497) 5.667 0.536

Structure characteristics

AREA Average usable area in the home (m2) 88.450 46.84

ORI Dummy variable; 1 if the building
windows face south 0.783 0.412

FLOOR Average number of floors in the building 11.539 11.861

AGE 2021 minus the year of construction of
the building 19.641 13.747

PR Floor-area ratio 2.524 1.549

GR Green coverage rate (%) 32.462 7.486

PF Property management fee
(RMB/m2/ month) 1.764 1.419

Neighborhood
characteristics

BUS_D Road distance to the nearest bus
station (km) 0.236 0.205

ENT_D Road distance to the nearest
entertainment facility (km) 0.132 0.215

HSP_D Road distance to the nearest hospital (km) 0.182 0.219

EDU_D Road distance to the nearest school (km) 0.182 0.239
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Table 1. Cont.

Category Variables Description Mean Standard Error

SOP_D Road distance to the nearest store (km) 0.097 0.172

SUB_D Road distance to the nearest subway
station (km) 1.471 1.334

GRE_D Road distance to the nearest green
space (km) 0.253 0.245

WAT_D Road distance to the nearest water
body (km) 0.732 0.503

LNPG Logarithmic of average perceived
greenery at the house level 2.798 0.337

3. Results and Discussion
3.1. Distribution Map of Neighborhood-Level Perceived Greenery

The distribution map of residents’ perceived greenery at the neighborhood scale was
drawn using ArcGIS (see Figure 4A). According to the quantile principle and a rounding up
strategy, PG was divided into five intervals: 0–10 (very low), 11–15 (low), 16–20 (median),
21–25 (high), and 26–45 (very high). Figure 4B shows that the distribution of neighborhood-
scale PG results is similar to a normal distribution, and the mean and median are very
close (17.16 and 16.69). The average PG scores in the southern parts of the Xicheng District
and the Dongcheng District, the southern part of the Haidian District, and the northern
part of the Fengtai District exhibit high-value clusters. In Figure 4C, PG values exhibit
a decreasing layout from the inside to outside areas of Beijing. Macroscopically, the PG
scores in central urban areas (within the Fourth Ring Road) are relatively high. In summary,
the neighborhood-scale PG results display obvious spatial variation, and the resident
perceptions of greenery are unequal. Overall, there is considerable room for improvement
in the PG level of housing units outside the Fourth Ring Road.
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3.2. The Empirical Results and Hedonic Premium Analysis

According to the analytical framework used in this article (see Figure 2), we employed
OLS, GWR, and MGWR to construct HPMs and compare the fitting performance, estimated
parameters, and biases of different models. Then, the best-performing model was chosen
to explain the marginal effects of characteristics in the study area. Finally, an analysis of
the PG premium and its spatial patterns was performed.

3.2.1. The Regression Result of the Global OLS Model

The coefficient of determination (R2) of the OLS model reached 0.65, and most vari-
ables were significant at the 0.01 level (see Table 2). Regarding structural characteristics,
AREA, FLOOR, AGE, GR, and PF were significantly positively correlated with housing
prices, and the results for AREA, FLOOR, and GR were consistent with those of a previous
study [37], but the AGE and PF results were opposite. Notably, the OLS model ignores the
estimation bias caused by spatial autocorrelation.

Table 2. Performance of OLS regression (n = 3175).

Variables
Model 1: OLS Regression

Unstandardized Coefficients Standard Error p-Value

Constant 4.752 ** 0.071 0.000

Structure characteristics

AREA 0.007 ** 0.000 0.000

ORI 0.012 0.017 0.484

FLOOR 0.004 ** 0.001 0.000

AGE 0.001 ** 0.001 0.001

PR 0.005 0.004 0.248

GR 0.003 * 0.001 0.003

PF 0.056 ** 0.006 0.000

Neighborhood characteristics

BUS_DIS 0.173 ** 0.034 0.000

ENT_DIS −0.075 0.040 0.061

HSP_DIS −0.104 * 0.040 0.010

EDU_DIS −0.091 * 0.031 0.004

SOP_DIS −0.102 0.057 0.072

SUB_DIS −0.069 ** 0.005 0.000

GRE_DIS −0.012 * 0.028 0.010

WAT_DIS 0.060 ** 0.013 0.000

LNPG 0.105 ** 0.020 0.000

R2 0.653

Adjusted R2 0.650

AICc 2723

RSS 433
** significant at the 1% level; * significant at the 5% level.

Among the neighborhood characteristics, BUS_D (0.17), WAT_D (0.06), and LNPG
(0.11) were significantly positively correlated with housing prices. However, ENT_D
(−0.08), EDU_D (−0.09), GRE_D (−0.01), and SUB_DIS (−0.07) displayed negative cor-
relations. Compared with GRE_D, LNPG (0.105) made a larger positive contribution. In
addition, LNPG displayed strong spatial autocorrelation (Moran’s I = 0.24, Z-value = 15.62).
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Therefore, to explain the spatial variations in coefficients, it is necessary to use spatial
regression models for further discussion.

3.2.2. Performance Comparison

By comparing the performance of Models 1 to 3 (see Tables 2 and 3), we found that
first, the coefficient of determination (0.802) of MGWR was better than that of GWR (0.782)
and OLS (0.650), and the coefficients of both AICc and RSS were significantly lower. Second,
the signs of the coefficients of GWR and MGWR were consistent, and the coefficients of
the variables fluctuated slightly. The coefficients of LNPG in the GWR and MGWR models
were 0.019 and 0.041, respectively, indicating that GWR underestimates the contribution of
PG. Third, the standard error of the variables in MGWR was lower than that in GWR, and
the coefficient estimates were comparatively more reliable. Fourth, there was a significant
difference in bandwidth between the GWR and MGWR models. The optimal adaptive
bandwidth of GWR was 360, which corresponds to a scale close to the block scale; the
bandwidth of different variables in MGWR notably varied from 122 to 3175, corresponding
to the local-to-global scales. Therefore, based on the global performance of the three models,
we adopted the results of MGWR to further explain the characteristic premium.

Table 3. Performance of GWR and MGWR (n = 3175).

Model 2: GWR Model 3: MGWR

Variables
Unstandardized

Coefficients
(Mean)

Standard Error Bandwidth
Unstandardized

Coefficients
(Mean)

Standard Error Bandwidth

Constant 4.750 ** 0.446 360 4.560 ** 0.240 54

Structure
characteristics

AREA 0.008 ** 0.001 - 0.008 ** 0.001 122

ORI 0.073 0.005 - 0.007 0.001 3175

FLOOR 0.002 ** 0.005 - 0.004 ** 0.000 3175

AGE −0.002 ** 0.003 - −0.002 ** 0.000 3175

PR −0.007 0.011 - −0.009 0.000 3175

GR 0.002 ** 0.004 - 0.003 ** 0.000 3175

PF 0.044 ** 0.037 - 0.020 ** 0.000 3175

Neighborhood
characteristics

BUS_D 0.034 ** 0.117 - 0.031 ** 0.004 3172

ENT_D 0.045 * 0.219 - 0.062 * 0.056 1735

HSP_D 0.035 * 0.144 - 0.026 * 0.003 3175

EDU_D −0.039 * 0.173 - −0.028 * 0.003 519

SOP_D 0.038 0.235 - 0.028 0.009 3132

SUB_D −0.016 ** 0.052 - −0.019 ** 0.001 3175

GRE_D −0.003 ** 0.124 - −0.019 ** 0.003 3175

WAT_D 0.024 ** 0.107 - 0.083 ** 0.029 1063

LNPG 0.019 ** 0.121 - 0.041 ** 0.000 3175

R2 0.810 0.814

Adjusted R2 0.782 0.802

AICc 883 378

RSS 185 179

** significant at the 1% level; * significant at the 5% level (average performance).
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3.2.3. Explanation of Marginal Premiums

For the structural characteristics of Model 3 (see Table 3), increases in the AREA,
FLOOR, GR, and PF of a unit can result in 0.8% (22,607 RMB), 0.4% (11,304 RMB), 0.3%
(8478 RMB), and 2% (56,518 RMB) premium increases on average, respectively. The positive
correlation between AREA and housing prices has been verified in other studies [54,55].
The FLOOR trend indicates that Beijing residents are more inclined to buy apartments
in high-rise buildings because of their relatively low age and complete infrastructure.
This result is similar to the findings of a case study in Hong Kong [56]. The variable GR
reflects the green coverage within a housing estate, indicating that homebuyers prefer
better living conditions with more greenery [38]. PF reflects the level of property service to
a certain extent. The Beijing and Shanghai cases show that there is a significant positive
correlation between PF and housing prices [38,39]. When housing in a community faces
south (ORI = 1), the average housing price is 0.7% (19,781 RMB) higher than that for other
orientations. AGE and PR are negatively correlated with housing prices, and unit increases
in these variables cause prices to decrease by 0.2% (5652 RMB) and 0.9% (25,433 RMB),
respectively. Thus, homebuyers are willing to pay for newer buildings and larger daily
activity spaces. According to MGWR, the bandwidth of the model shows that AREA has
the smallest influence scale, indicating that AREA fluctuates greatly in the study area, while
other structural features are significant at the global level, indicating that they display
spatial stability.

Of the neighborhood characteristics, BUS_D, ENT_D, HSP_D, and SOP_D were pos-
itively correlated with housing prices, which means that homebuyers are more inclined
to buy houses far from these facilities because crowds and transportation facilities are
associated with relatively high emissions and noise [8], which may reduce physical and
mental health. In contrast, the housing prices of units close to schools, subway stations,
and green spaces tended to be higher, and a 1 km decrease in distance to these facilities
was associated with housing price increases of 2.8% (79,125 RMB), 1.9% (53,692 RMB),
and 1.9% (53,692 RMB), respectively. This conclusion is consistent with those of previous
studies [16,21,23]. The model results suggest that buyers have negative attitudes toward
nearby water bodies. For every 1 km between a water body and a home, the average house
price increases by 8.3% (234,550 RMB). This finding is contrary to that reported in a study
by Luttik [57] in the Netherlands.

The spatial impact scale of neighborhood feature variables is heterogeneous. The ac-
cessibility bandwidths of ENT_D and WAT_D were 1735 and 1063, respectively, indicating
that these spatial variations in characteristics are not significant. The bandwidth of EDU_D
was small (519), which indicates that the parameter surface significantly changes in the
study area. Because the educational resources in the Haidian District of Beijing far exceed
those in other administrative regions, many Chinese families are willing to pay a high
premium to purchase school district housing, improve the quality of education for their
children, and enhance the competitiveness of future generations [58–60]. In addition, the
bandwidths of other neighborhood characteristics reflect their relative spatial stability.

The coefficient of LNPG is estimated to be 0.041, and the corresponding economic pre-
mium (115,862 RMB) is much higher than those of GR (8478 RMB) and GRE_D (53,692 RMB).
In addition, the bandwidth of LNPG (3172) indicates that the economic premium of per-
ceived greenery is spatially stable. The development intensity of built-up areas in the
study area is very high, but large-scale green parks and forests are relatively limited. The
perceived greenery in residential areas mainly comes from the surrounding road greenery,
corridors, and pocket parks. The relative scarcity of greenery resources has led to the
urgent need for more perceivable greenery for the residents of Beijing.

3.3. The Spatial Patterns of Perceived Greenery Premiums

We further visualized the coefficients and premiums of PG at the neighborhood scale
to explore the corresponding spatial distribution patterns. The PG coefficients and their
premium maps are shown in Figure 5.



Int. J. Environ. Res. Public Health 2021, 18, 6809 12 of 16

Int. J. Environ. Res. Public Health 2021, 18, 6809 11 of 15 
 

 

3.3. The Spatial Patterns of Perceived Greenery Premiums 

We further visualized the coefficients and premiums of PG at the neighborhood scale 

to explore the corresponding spatial distribution patterns. The PG coefficients and their 

premium maps are shown in Figure 5. 

 

Figure 5. Spatial distribution of PG coefficients and premiums. Subplot (A) shows the distribution 

of PG coefficients. Subplot (B) takes Tiananmen as the center and uses an interval of 2.5 km to create 

a multiring buffer and show the PG premium gradient. The dotted brown line is the extension of 

Beijing’s east-west line. Subplot (C) is the premium gradient and the fitting line, and the solid brown 

line represents the reference positions of the five-ring roads, e.g., the abbreviation “RR2” represents 

the Second Ring Road. 

Figure 5A depicts the coefficient surface of LNPG. All 3175 plots involved in the cal-

culation were significant at the 0.01 level. The coefficient surface of PG reflects the clus-

tering characteristics of high inside and low outside, as well as high in the north and low 

in the south; additionally, the overall spatial fluctuation is small (from 0.0408 to 0.0416). 

In the northwestern parts of the Chaoyang District and the Haidian District, high-value 

clusters radially extend outward, and low-value clusters appear in the southern and west-

ern areas near the Sixth Ring Road. The coefficient surface shows that homebuyer de-

mands for perceived greenery exhibit spatial stationarity. Additionally, the overall per-

ceived greenery premium rate is close to 4.1%. 

The LNPG premium reflects the marginal price increase (/10,000 RMB) for every 1% 

change in the housing-scale PG. We found that the spatial distribution of PG premiums is 

unequal. Due to the large spatial variations in PG at the neighborhood level (Figure 3), 

when the marginal coefficient of PG is stable (Figure 5A), the economic premium displays 

obvious spatial heterogeneity. As shown by the multiring buffers and regression results 

(Figure 5B,C), the average premium of PG varies from 0.72 to 3.40 million RMB and dis-

plays a linear decrease from the inside to the outside of Beijing. The gradient fitting model 

of PG is close to y = −0.00025x + 17.753, and R2 reaches 0.85. This finding implies that for 

every 1 km increase in the Euclidean distance from a house to Tiananmen Square, the 

potential PG premium will decrease by approximately 2500 RMB on average. In addition, 

the PG premiums display very significant north-south spatial disparities (see Figure 5B). 

Figure 5. Spatial distribution of PG coefficients and premiums. Subplot (A) shows the distribution of PG coefficients.
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Figure 5A depicts the coefficient surface of LNPG. All 3175 plots involved in the
calculation were significant at the 0.01 level. The coefficient surface of PG reflects the
clustering characteristics of high inside and low outside, as well as high in the north
and low in the south; additionally, the overall spatial fluctuation is small (from 0.0408
to 0.0416). In the northwestern parts of the Chaoyang District and the Haidian District,
high-value clusters radially extend outward, and low-value clusters appear in the southern
and western areas near the Sixth Ring Road. The coefficient surface shows that homebuyer
demands for perceived greenery exhibit spatial stationarity. Additionally, the overall
perceived greenery premium rate is close to 4.1%.

The LNPG premium reflects the marginal price increase (/10,000 RMB) for every 1%
change in the housing-scale PG. We found that the spatial distribution of PG premiums
is unequal. Due to the large spatial variations in PG at the neighborhood level (Figure 3),
when the marginal coefficient of PG is stable (Figure 5A), the economic premium displays
obvious spatial heterogeneity. As shown by the multiring buffers and regression results
(Figure 5B,C), the average premium of PG varies from 0.72 to 3.40 million RMB and displays
a linear decrease from the inside to the outside of Beijing. The gradient fitting model of
PG is close to y = −0.00025x + 17.753, and R2 reaches 0.85. This finding implies that
for every 1 km increase in the Euclidean distance from a house to Tiananmen Square,
the potential PG premium will decrease by approximately 2500 RMB on average. In
addition, the PG premiums display very significant north-south spatial disparities (see
Figure 5B). The average premium in the north is approximately 1.45 million RMB, and that
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in the south is approximately 1.07 million RMB. The neighborhood-scale PG and premium
performance within the Fourth Ring Road (central city) are significantly better than those
from the Fourth to Sixth Ring Roads (outer urban areas). Therefore, the housing-scale PG
premiums are mainly restricted by the monocentric ring development pattern and relative
central location.

3.4. Policy Recommendations

The overall PG at the neighborhood scale in Beijing displayed positive externalities.
The quality of public green spaces in Beijing still has room to improve, especially in areas
adjacent to residential blocks, as manifested by the low PG values of home buyers around
such blocks. Our results show that greening services around neighborhoods in outer urban
areas (especially those located in southern Beijing) lag behind those in developed and built-
up urban areas. The supply capacity of greening services around residential blocks at the
edge of the sixth ring is insufficient. The government should strengthen the establishment
of vertical greenery in outer urban areas. For instance, trees with large canopies and narrow
spacing can be planted to enhance the neighborhood-level PG. Improved PG in outer urban
areas will result in two main benefits: it will help attract migrant populations to outer
urban satellite towns, thus playing a certain role in decongesting the population in the
central city, and it will provide greening resource equality and have positive effects on the
overall ecological benefit and stability of the urban ecosystem.

From the residents’ perspective, home sellers are the direct beneficiaries of housing
premiums (real estate appreciation). They not only enjoy greening services around housing
units, but also receive premium benefits from them. Nevertheless, home buyers pay
premium costs out of actual need. The government can levy an appropriate “greening
premium fee” obtained from sellers when secondhand houses are sold because they acquire
the utility and dividends of public green spaces but do not offer any direct maintenance
costs. Through model 3 in this paper, the PG associated with each housing unit premium
can be obtained for different locations based on the economic premium map (Figure 5B).
Moreover, assuming that the green perception of all communities was to increase by
one unit, the “greening premium fee” was unified at 0.02% of a home sale price, which
could result in a total monetary premium exceeding 8.82 million RMB across the city.
The government can coordinate the above premium funds and deploy them in future
urban forestry and greening projects, thereby promoting equity in the development of
neighborhood eco-environmental and economic benefits.

3.5. Limitations and Future Work

There is some room for improvement in this paper. First, in future studies, submarket
HPM analysis can be performed for different school districts. Second, MGWR has high
computational complexity and time costs, and the algorithm efficiency needs to be im-
proved. In our experiment, it took nearly one hour to use the MGWR tool for one round
of calculations (with an Intel i7-1065G7 CPU and 32 GB RAM). The current version of
the MGWR tool struggles to run regional- and national-scale HPM models with massive
records [52]. According to the road network topology, the road distance-based bandwidth
could be added into the MGWR tool to improve realism. Finally, the analytical frame-
work has large application potential, which can be deployed in other cities to analyze and
compare the spatial patterns of housing premiums, thus providing an analytical pathway
for assessing the connections between the economic benefits of real estate properties and
public perceived greenery.

4. Conclusions

Public perceived greenery is an important influential factor that affects the health
and sustainable development of urban residents. In this study, we provided a novel
and comprehensive analytic framework coupling MGWR-HPM, multi-source geographic
big data, and deep learning to explore the spatial impact of economic premiums at the
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neighborhood level. By conducting a comparison with the classic OLS and GWR model
forms, we found that the MGWR-based HPM framework performs better in terms of
fitting performance, the coefficient of determination, and error estimations. According
to our analytical framework and empirical results, homebuyers in Beijing have a strong
demand for neighborhood-level perceived greenery enhancement globally, and the average
premium rate reached 4.1%. The perceived greenery premium displays an imbalanced
distribution, which is close to linearly decreasing with north-high and south-low patterns.
Specifically, for every 1 km increase in distance from the city center (Tiananmen), the
perceived greenery premium decreases by approximately 2500 RMB on average. The
neighborhood-level perceived greenery outside the Fourth Ring Road in Beijing and the
premiums there have enormous development potential, which could increase additional
economic benefits for sustainable greening optimization and government management.
The results of this study can help the government assess the premium of neighborhood-
level perceived greenery and coordinate the equitable development of the real estate
economy and livable neighborhoods.
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