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Abstract: The present study offers an alternative method for green synthesis of the formation of
two types of nanoparticles (NPs). These NPs, titanium oxide and silver NPs (TiO2 and Ag NPs,
respectively), were obtained from the amalgamation of intracellular extract of a wild mushroom,
Fomes fomentarius, with aqueous solutions of titanium isopropoxide and silver nitrate, respectively.
F. fomentarius was identified phenotypically and by 18S ribosomal RNA gene sequencing (Gene
accession no: MK635351). The biosynthesis of TiO2 and Ag NPs was studied and characterized by X-ray
diffraction (XRD), diffuse reflectance UV-Visible spectroscopy (DR-UV), fourier transform infrared
spectroscopy (FT-IR), scanning electron microscopy (SEM) and transmission electron microscope
(TEM). Success was achieved in obtaining NPs of differing sizes and shapes. The antibacterial and
anticancer activity of the NPs was significant with morphological damage being caused by both,
although Ag NPs (10–20 nm) were found to have profound effects on bacterial and cancer cells
in comparison to TiO2 NPs (100–120 nm). These metal NPs, synthesized using wild mushrooms,
hold a great potential in biomedicinedue to an effective enzyme combination, which permits them
to modify different chemical compounds to less toxic forms, which is required for ecofriendly and
safe biomaterials.
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1. Introduction

Nanoparticles (NPs) possess rare chemical, optical, photoelectrochemical, magnetic and catalytic
characteristics, having potential in medicine and other disciplines [1]. Among the vast array of NPs,
Ag NPs are the most stable and biocompatible due to their unusual physical and chemical properties.
Ag NPs are also known to possess antibacterial, antifungal, antiviral, antioxidant, anti-inflammatory
and antitumor activities, and hence they have broad possibilities as use as nano-Ag in biomedicine
for antimicrobial drugs, medical devices, medicinal products and cosmetics [2–4]. Inert and nontoxic
TiO2 is another economical material that is highly capable of absorbing UV light, due to its high
refractive index. TiO2 NPs are extensively used in cosmetics, paper, paints, food colorants, inks and
toothpaste, due to their white pigment and the fact that they are environmentally friendly catalysts [5].
Various physicochemical and biological properties, as well as the toxicity of NPs, are because of the
shape and size of NPs [6–8]. The control of NP morphology with desired characteristics demands new
measures in techniques of synthesis involving chemical and green synthesis routes. Recently, AgNPs
(~15 nm) were reported using chemical methods through an ultrasonic assisted route for metal-based
conductive ink technology. The chemical method used ascorbic acid and glucose as a mixed reducing
agent in poly(N-vinylpyrrolidone) solution [9]. Nano TiO2 with major anatase phase (>94%) has been
reported using a chemical vapor condensation technique. The experiments involve the introduction of
a titanium source (Titanium tetraisopropoxide), argon and air in the vapor phase into an alumina tube
for subsequent thermal decomposition to produce TiO NPs [10]. Nanoparticle preparation through
green synthesis is the emerging field of research that provides an alternative route to conventional
chemical methods that use tedious experimental set-up and eco-unfriendly chemicals. Present times
have identified an increased adoption of eco-friendly approaches for the synthesis of NPs, such as
the use of plants, bacteria, fungi and algae, etc. [11–15]. AgNPs and starch nanoparticles has been
reported using cheap, biodegradable resources such as pomegranate seed (Punica granatum L.) and
starch for food packing film application. The study shows that sunlight can be effectively used as a
photo-reducing agent to convert silver nitrate sources to AgNPs [16]. Biosynthesis of AgNPs with a
particle size of about 15 nm was reported using two white rot fungal strains (Ganoderma enigmaticum and
Trametes ljubarskyi). The nanoparticle synthesis via the extracellular biosynthetic route using organism
extract as reducing agents was found to be economically viable with high growth rates in lab scales [17].
Green synthesis of TiO2 NPs was reported using Azadirachta indica leaf extract. The presence of active
components (terpenoids, flavonoids and proteins) was shown to stabilize the crystalline nanoparticle
formation in sizes ranging between 15–50 nm [18].

In this regard, the use of fungi for nanoparticle synthesis, particularly the unexplored higher
fungi (mushroom) is still in its infancy. The most familiar species of mushrooms belong to the group
Basidiomycota, polyporales, which constitutes an order of about 1800 species of fungi in the division [19].
Polypore, a term used for basidiocarp-producing fungi, appears tough and leathery, typically large
(>3 cm), and found mostly on live and dead trees [20]. These basidiomycetes are nonpathogenic,
nontoxic and can be grown in pure cultures, hence, they are favorable for the biosynthesis of NPs [21].
The use of basidiomycetes for NP synthesis has not been extensively explored, as compared to
synthesis using lower fungi and bacteria [22]. Herein, we report the mediation of culture filtrate of
wild basidiomycetes, F. fomentarius for the green synthesis of TiO2 and AgNPs and subsequent in vitro
studies for antibacterial and anticancer activity.

2. Experimental

2.1. Collection, Phenotypic and Genotypic Studies of F. fomentarius

For the collection of sporocarps, a standard method was followed [20]. Photographs were taken by
a Nikon D5300 DSLR Camera (Nikon, Tokyo, Japan) with a zoom lens of 18–140 VR (data of sampling
in supplementary file). Passport data and the microhabitat characteristics of collected samples has
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been recorded in the field book. Samples were properly labeled, given a voucher number and carried
to the laboratory for detailed morphometric examination.

Collected specimens were identified by keen observation of structures like pileus, stipe, their shape,
structure, gill attachment, etc., using standard keys (e.g., Mycokey, Index fungoram etc.) field guides
and manuals. The samples were dried and deposited at the herbarium of the Centre for Biodiversity
and Taxonomy, University of Kashmir, J&K, India. Microscopic features and measurements were
made from slides that were prepared and stained with lactophenol cotton Blue, 2% KOH and Melzer’s
reagent. For examination, the spores were tapped off the razor blade onto a clean and a drop of KOH or
Melzer’s reagent was added. Observation and photographs were captured at magnification between
×40 to ×100 using a Nikon Eclipse 80i microscope and phase contrast illumination (Nikon, Tokyo,
Japan).

2.1.1. DNA Isolation and PCR

DNA extraction was done using the manual CTAB method (cetyl trimethylammonium
bromide) [23]. The extracted DNA was dissolved and preserved in TE (Tris-EDTA) buffer.
The amplification was carried out for internal transcribed spacer (ITS) regions using the ITS1 and
ITS4 in a PCR System Thermocycler Applied Biosystems with following parameters—10 min of initial
denaturation at 95 ◦C, 35 cycles at 95 ◦C for 1 min, 54 ◦C for 30 s and 72 ◦C for 2 min, followed by
extension at 72 ◦C for 10 min. The purification of amplified products was done and sequenced with the
same primers. The DNA sequences were submitted to GeneBank and analyzed for homology using
BLAST on NCBI [24] (Table 1).

2.1.2. Sequence and Phylogeny Analysis

Wild mushroom was identified by ribosomal gene analysis. The small subunit sequences were
aligned with additional sequences downloaded from NCBI GenBank (http//ncbi.nim.nih.gov) using
BioEdit Sequence Alignment Editor (version 7.2.5) [25]. The sequence alignments and phylogenetic
analysis were performed using MEGA 10 software (Tamura et al., 2011). Phylogeny was studied on
ITS -18SrRNA genes by maximum likelihood method. Initial alignment was done using Clustal W
software for maximum alignment and minimum gaps. The tree was generated by using the program
DNADIST and NEIGHBOR from PHYLIP 3.69 [24].

2.2. Biosynthesis of TiO2 and AgNPs Using Fomes Fomentarius

The synthesis of TiO2 and AgNPs was conducted using the extract of F. fomentarius by adopting
a green synthesis method [23]. The F. fomentarius sample was dried to obtain powder (10 g), which
was further mixed with 100 mL of millipore water and sonicated for 25–30 min. The mixture was
further centrifuged at 4000 rpm to obtain the clarified solution. Subsequently, solution was filtered and
stored at 4 ◦C. A total of 10 mL of filtrate was mixed with 1 mM AgNO3 (100 mL) and put at room
temperature on a shaker for agitation under observation, until the appearance of color change (10 min).
A similar procedure was followed for TiO2 NPs, where 100 mL of 1 mM Titanium (IV) isopropoxide
was used as a source solution.

2.3. Characterization of Biosynthesized TiO2 and Ag NPs

The crystalline phase of TiO2 and Ag NPs was measured using a benchtop X-ray powder
diffractometer MiniFlex 600 (Rigaku, Shibuya, Tokyo, Japan). The sample was measured in 2 theta
range 5–80◦, with step size of 0.02◦ and scan rate of 1◦/min. The coordination environment of TiO2

and Ag NPs were analyzed using diffuse reflectance UV-Visible spectroscopy (V-750, JASCO). The
sample for diffuse reflectance was prepared by dispersing the sample in a spherical disc with an
integrated sphere (60 mm dia, ISV-922). After pressing, the sample with 0.5 mm thickness was scanned
between wavelength range 200–870 nm. The TiO2 and Ag NPs functional groups were analyzed using
fourier transform infrared spectroscopy equipped with attenuated total reflectance (ATR) (Perkin

http//ncbi.nim.nih.gov


Biomolecules 2020, 10, 622 4 of 15

Elmer, Arcata, CA, USA). The surface morphology, distribution and features of TiO2 and Ag NPs were
studied using scanning electron microscopy (SEM) (Inspect S50) and transmission electron microscope
(TEM) (Morgagni 268). For TEM analysis, samples were prepared by dispersing in ethanol followed by
shaking in an ultrasonicator for 20 min, and then a suspended drop was dried at room temperature on
the carbon-coated copper grid [15].

2.4. Antibacterial Activity of Biosynthesized NPs

Common pathogenic bacteria Escherichia coli (E. coli ATCC35218) and Staphylococcus aureus (S.
aureus ATCC29213) were used for the antibacterial activity of synthesized TiO2 and Ag NPs by agar
well diffusion. The bacterial strains were maintained on nutrient agar media (NA). In preparation for
the antibacterial study, a homogeneous water suspension of the NPs was prepared by sonication for
15–20 min at 30 ◦C. Test organisms grown at 37 ◦C for 18 h in Mueller Hinton (MHB) were adjusted to
the cell density of 106 CFU/mL. A total of 100 µL of adjusted inoculum of each bacterial strain was
inoculated on the MHA plates. After 20–30 min, the dried plates were punched for wells using the
sterile borer. A total of 50 µL of TiO2 NP and Ag NP (100 µg/mL) suspension was placed into the wells.
Sterile water was used as a negative control. This was followed by the incubation at 37 ◦C for 24 h.
The activity of the synthesized NPs was evaluated by measuring the zone of inhibition zone around
the wells in millimeters (mm) [15].

2.5. Study of Topological Changes in Treated Bacteria by SEM

Additionally, the treated E. coli and S. aureus were studied by SEM for the morphological and
physiological alteration caused by NPs. Precisely, adjusted bacterial cells were treated with 100 µg/mL
of TiO2 and Ag NPs and further incubated at 37 ◦C for overnight. Later, the incubated mixture was
centrifuged at 12,000 rpm for 10 min for treated and untreated cells. The harvested cells were thrice
washed using PBS and primarily fixed with 2.5% glutaraldehyde for 4 h, followed by fixation with
1% osmium tetroxide for 2 h. Cells were washed multiple times and further dehydrated by varying
concentrations of ethanol (50%, 70%, 90%, 100%). The cells were placed onto the aluminum stubs
and dried using a desecrator. Finally, gold coating was done and cells were examined by SEM at an
accelerating voltage of 20 kV [26].

2.6. Cytotoxic Activity

2.6.1. Cell Culture & Treatments

Human colorectal carcinoma cells (HCT-116) were used for the study. DMEM medium was
used, which was supplemented with 10% fetal bovine serum (FBS); (10%) L-glutamine; 10% selenium
chloride; 120 µg/mL and streptomycin; and 120 Unit/mL penicillin in a 5% CO2 incubator (Thermo
Scientific Heracell-150, Langenselbold Germany) at a temperature of 37 ◦C. The cells with more than
70–80% confluency were used for the TiO2 and Ag NPs treatments. The treatment of HCT-116 cells was
carried out with different concentrations of NPs ranging from 0.5 to 8.0 µg/mL. The cells were analyzed
after a time span of 48 h. The experiment was carried out in triplicate for statistical analysis [27].

2.6.2. Cancer Cell Morphology

The cell morphology of untreated and treated HCT-116 cells was examined post-48 h under an
inverted microscope (TS100F-Eclipse, Nikon, Tokya, Japan) and compared under 200×magnification.

2.6.3. Cytotoxicity by MTT Assay

The cells with confluency of 70–80% in 96-well cell culture plates were subjected to MTT assay.
After 48 h, MTT (5 mg/mL) was added in all the wells and kept for 4 h. Later, DMSO was added and
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the plate was read in an ELISA Plate Reader 570 nm wavelength (Biotek Instruments, Winooski, VT,
USA). The (%) percentage of cell viability was calculated as per given formula:

Cell Viabilty % = (A/B) × 100 (1)

A: optical density of nanoparticles, B: optical density of controls.

2.6.4. Nuclear Staining by DAPI

The cells were stained with DAPI staining to study the effect of TiO2 NPs and Ag NPs on the
cell nucleus. After 48 h, the treated and untreated HCT-116 cells were immersed in ice-cold (4%)
paraformaldehyde. Later, the cells were added with Triton X-100 and prepared in PBS for 5 min to
premetallize the cell membrane. The cells were stained using DAPI (5 µg/mL) in PBS, prepared in dark.
Washing with Triton X-100 was done, followed by examining the nuclear morphology under confocal
scanning microscope (Zeiss, Jena, Germany) equipped with a digital camera [27].

3. Results and Discussion

3.1. Phenotypic and Genotypic Studies of F. fomentarius

Various wild mushrooms are recorded to have potential anticancer and antioxidant properties,
specifically, edible mushrooms possess several bioactive molecules with unique and diverse bioactivities,
like antimicrobial, anti-inflammatory, antioxidant, antitumor and anticancer activities [28]. Based on
these reports, an attempt was made to use F. fomentarius extracts as reducing agents for the synthesis of
TiO2 and AgNPs, which was collected from an angiosperm host in the natural forest of Kashmir valley,
India. This wild mushroom has been recently reported to possess anti-inflammatory, antioxidant,
antinociceptive, antidiabetic, antibacterial, and cytotoxic activities.

The upper side of F. fomentarius is zoned concentrically with wavy furrows. The basidiomes are
perennial, leathery and hoof-shaped. The above surface is smooth and zoned, having a thick crust, and
the lower surface is pale brown and concave in shape (Figure 1a). The microscopic observations were
mainly focused on basidiospores, which were cylindrical to ellipsoid in shape, measuring 36 × 1.5
to 2 µm. Spores are bilaterally asymmetrical (inequilateral), as they are forcibly discharged from the
basidium for dispersal. The shape of the hilar appendix is beaked. The spore apex is rounded. Spore
ornamentation is smooth (Figure 1b).

The ITS1-ITS4 sequences of F. fomentarius were deposited in the NCBI Gene Bank under
accession number MK635351. The phylogenetic relationships with related species are shown in
Table 1 (phylogenetic tree is included as supplementary information).Biomolecules 2019, 9, x FOR PEER REVIEW 6 of 17 
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Table 1. Gene Bank accession numbers and top BLAST match sequences of the mushroom isolates
along with maximum identity and query coverage.

Accession Number
BLAST Match Sequence

Reference Accession Number Coverage Maximum Identity

MK635351

JX126894.1 Fomes fomentarius 100% 100%

KU1391991.1 Fomes fomentarius 100% 100%

MK9101131 Fomes fomentarius 100% 99.82%

KU863082.1 Fomes fomentarius 100% 99.82%

KX065943.1 Fomes fomentarius 100% 99.82%

3.2. Characterization of TiO2 and AgNPs

Figure 2a,b shows the X-ray diffraction (XRD) spectra of Ag and TiO2 NPs. In the case of Ag NPs,
clear diffraction lines corresponding to (111), (200) and (220) planes were observed, indicating the
presence of face-centered cubic (fcc) crystals. The presence of an additional peak at a 2-theta value
of about 51.2 and 52.3 and additional less indexed peaks can be ascribed due to AgNO3 compounds
present in the extract. Khatami et al. (2018) found a similar additional peak and ascribed it to the
additional compounds present in the dried grass extract [29]. In the case of TiO2 NPs, the formation of
crystalline TiO2 was observed with sharp peaks corresponding to the rutile phase.Biomolecules 2019, 9, x FOR PEER REVIEW 7 of 17 
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Figure 2. Powder X-ray diffraction spectra of (a) Ag nanoparticles (NPs) and (b) TiO2 NPs. The spectra
(a) represents Ag NPs with FCC structure and (b) shows TiO2 NPs crystals with rutile phase

Diffuse reflectance UV-visible spectra were recorded to study the coordination site of titanium
oxide and Ag NPs in the extract. Figure 3a,b shows the diffuse reflectance spectra of Ag NPs and
TiO2 NPs. The synthesized silver nanoparticle showed the presence of different oxidation states of Ag
species (Figure 3a). The presence of three clear bands was observed at 220, 350 and 410 nm. The small
band at 220 nm was ascribed due to Ag+, while a broad band at 350 and 410 nm showed the dominant
species of Agn

δ+ nanoclusters and Ag0 species. In the case of TiO2, the band at 220 nm shows the
presence of isolated Ti(IV) species, while the octahedral Ti species was found at about 300 nm. In line
with XRD analysis, the sample TiO2 showed the presence of a rutile (titania) phase at about 410 nm and
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expanded to show the presence of agglomeration among TiO2 nanoparticles with broad absorption
extending up to 700 nm.
Biomolecules 2019, 9, x FOR PEER REVIEW 8 of 17 
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δ+ and Ag0 species and (b) shows isolated Ti(IV), Octahedral Ti and rutile phase
of TiO2 NPs.

Figure 4a,b shows the Fourier transform infrared (FT-IR) spectroscopy of Ag and TiO2 NPs. The
presence of active components like flavonoids and alkaloids in the extract are reported to play an active
role in reducing Ag+ ions of a metal source to Ag NPs. A reduction in peak intensity and peak position
compared to the extract indicates an effective nanoparticle formation [30]. In the case of mushroom
extract, generally an intense peak appears corresponding to the presence of an amino and hydroxyl
functional group [31]. In our case, Ag NPs exhibited a broad peak at about 3290 cm−1 corresponding
to hydroxyl (-OH) and N-H stretching of primary amines (Figure 4a). A methylene C-H stretching
peak was observed at 2940 cm−1. The presence of an asymmetrical C-O stretching peak was observed
at 1655 cm−1. The presence of aromatic and aliphatic amines (C-N) was clearly seen with an intense
absorption peak at about 1406 and 1000 cm−1. In the case of TiO2 NPs, comparatively less intense
peak absorption values were observed between 3000–3680 cm−1 corresponding to -C-H symmetric
stretching (2956 cm−1) and the hydroxyl group of TiO2 (3420 cm−1). The presence of a hydroxyl band
Ti-OH was clearly observed at 1630 cm−1. Further, the presence of TiO2 NPs was confirmed with
absorption peaks between 766–1630 cm−1, corresponding to Ti-O, aliphatic C-N, and aromatic C=N
bands. The study showed the presence of various phytocomponents related to amino, methyl and
hydroxyl groups present in the mushroom sample assist in transformation into silver and titanium
oxide NPs.
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Figure 4. Fourier transform infrared (FT-IR) spectra of (a) Ag NPs and (b) TiO2 NPs. The spectra (a,b)
shows the presence of various phytocomponents related to amino, methyl and hydroxyl groups assist
in Ag and TiO2 NPs formation.

Figure 5 depicts SEM and TEM morphology of TiO2 and Ag NPs. Figure 5a shows that TiO2

NPs were uniformly distributed on the surface with irregular shape and formation of aggregated
NPs. The observed micrograph shows aggregates of TiO2 NPs with a rough surface. Meanwhile,
the TEM micrograph of TiO2 corresponded with SEM results, which showed that the prepared
NPs are asymmetrical particles with an average diameter of around 80–120 nm. For Ag NPs, SEM
morphology (Figure 5c) illustrated an almost spherical shape with smooth surface conglomerated with
each other [32]. TEM showed small spherical NPs distributed with an average diameter of around
10–20 nm.
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Previous studies have found mushroom species, which mediate the formation of NPs, contain
adequate proteins and enzymes and are an important group of fungi, with medicinal properties [33].
However, the exact mechanism involved in the conversion of NPs via mushroom extract is still unclear
and needs a detailed study.

3.3. Antibacterial Activity of Synthesized NPs

The antibacterial activity of TiO2 NPs and Ag NPs was performed by an Agar well diffusion
method using E. coli and S. aureus. The zone of inhibition was seen for both the gram-positive and
gram-negative species against both the tested NPs (Figure 6). E. coli had a clear zone of 15 mm and
22 mm in diameter, against TiO2 NPs and Ag NPs, respectively. Whereas S. aureus was observed
with 11 and 15 mm of clear zones, against TiO2 NPs and Ag NPs, respectively. The obtained results
indicated that both the NPs have significant activity against both bacteria, with the elevated activity
obtained against E. coli, when treated with Ag NPs.
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This study of antibacterial activity of TiO2 NPs and Ag NPs against the Gram-negative and
Gram-positive bacteria depicted that NPs could arrest the functioning of the cell. Ag NPs are more
effective obstructing agents, as silver ions (Ag+) get released from Ag NPs and interact with the
phosphorus moieties in bacterial DNA, leading to inactivation of replication, therefore preventing
growth [33]. The current results agree with several studies conducted previously, pointing towards the
antibacterial activity of biosynthesized Ag NPs using mushrooms, however, this is a first report of
synthesis of mushroom-mediated TiO2 NPs, to the best of our knowledge.

Nithya and Ragunathan synthesized NPs by Pleurotus sajor-caju, which was studied against P.
mirabilis and P. Aeruginosa, and recorded the zone of inhibition of 14 and 12 mm, respectively [34].
Manzoor et al. studied Ag NPs through Agaricus bisporus, which is a nutritionally and medicinally
important species of mushrooms [31]. Birla et al. recorded enhanced activity of E. coli and P. aeruginosa
compared to Staph aureus by Ag NPs synthesized through Phoma glomerata [35]. Additionally, Panáček
et al. and Balaji et al. suggested that Ag NPs could be combined with antibiotics for better efficacy
against number of pathogenic microbes [36,37].

The present study is also in agreement with the studies conducted by Swathi et al. on TiO2 NPs
synthesized by the green method, against Gram-negative and Gram-positive bacteria, indicating the
elevated activity against Gram negative organism [23,38].

Topological changes caused by synthesized NPs in E. coli and S. aureus were further evaluated by
SEM. The untreated (control) E. coli cells appeared to be rod-shaped, having a consistent and intact cell
surface (Figure 7a). However, treated E. coli cells were no longer intact, with abnormal and irregular
appearance at the cellular surfaces (Figure 7b). The cells treated with Ag NPs appeared more affected
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than those of the TiO2 NPs (Figure 7c). The E. coli cells treated with TiO2 NPs showed mild alteration,
whereas E. coli cells were severely damaged by Ag NPs. This was due to pit formation and distortion
of cellular wall and membrane, reflecting the loss of the cellular integrity, which possibly cause the
bacterial death.Biomolecules 2019, 9, x FOR PEER REVIEW 12 of 17 
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Figure 7. SEM micrographs of E. coli: (a) control (untreated cells); (b) Ag NPs at 100 µg/mL; (c) TiO2

NPs at 100 µg/mL.

On the other hand, the control cells (untreated) S. aureus cells were found in normal coccus shape,
with a smooth and continuous cell surface (Figure 8a). Contrary to this, the treated S. aureus cells were
irregular in shape and had a distorted cell surface. Both the samples, Ag NPs and TiO2 NPs, had
almost similar effects on Gram-positive cells. The cell surface was seen as irregular with a distorted
cellular surface. The obtained results suggested that the E. coli cells were more severally affected as
compared to S. aureus, when treated with Ag NPs (Figure 8b,c).
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The obtained results demonstrated the significant activity with Ag NPs, which could be owing to
their smaller size of 10–20 nm in comparison to TiO2NPs, ranging in size from 80–120 nm. The enhanced
activity could be also due to the efficient attachment of spherical-shaped Ag NPs to the cellular surface,
which could play a vital role in achieving good bactericidal activity. Although there are several reports
about the antimicrobial action of silver nanoparticles, the actual mode of action is still unclear [39,40].
Some studies speculate the interaction of physical entities and electrostatic forces between the positively
charged NPs and the negative charge on the cell surface of bacteria [41,42]. The potential of Ag NPs as
antimicrobials can be credited to various possible metabolic processes, like inactivation of enzymes
and proteins, degradation of DNA, etc. [35]. The future prospectus of these NPs lies in their relatively
smaller size and increased surface area, which might have a huge impact on metabolic processes like
respiration, energy generation and permeability to pathogens [41]. Ag NPs are reported to easily attack
proteins which contain phosphorous and sulfur as the cell constituent and genetic material, leading to
cell lysis [3,7]. Such properties of Ag NPs have potential for the development of effective antimicrobial
drugs for application in food packaging materials and other durable polymeric materials.
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Quite recently, the antibacterial activity of green-synthesized TiO2 NPs has been reported against
two pathogens, E. coli and S. aureus [38]. Lusvardi et al. demonstrated the formation of spherical
aggregates of TiO2 NPs, having a profound activity in the reduction of colony count of a bacterial
strain Pseudomonas [43]. From the above results, it becomes clear that the synthesized NPs by a green
approach is not only environmentally friendly, but also has a great future in pharmaceutical and
biomedical industries.

3.4. Anticancer Activity of Synthesized NPs

The impact of biosynthesized NPs was examined for microscopic observations and by an MTT
assay. Both TiO2 and Ag NPs showed dose-dependent effects on cancer cell survivability, as examined
by MTT assay. The treatment of AgNP3 also showed strong cytotoxic effects on cancer cell viability, as
a larger majority of the cells were found dead after treatments of lower than 0.5 µg/mL (Figure 9A). The
treatment exhibited significant alterations in cell morphology and the cell nucleus, as revealed by DAPI
staining. Clear evidence of condensation and disintegration of the nucleus was seen, with lots of cancer
cells found dead during the observation. NP treatment caused significant loss of nuclear staining
as compared to control cells (Figure 9B). Data represented are the means ± SD of three replicated
experiments. No significant damage was found in the control group.
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Figure 9. Cell viability by MTT Assay. The HCT-116 cells treated with different concentrations of Ag
NPs after 48 h (A). (B). Cell morphology of HCT-116 cells on treatment with (a) Ag NPs control and (b)
treated with 8.0 µg/mL, analyzed by a light microscope. (c) Control and (d) treated with 8.0 µg/mL
analyzed by a confocal scanning microscope. Difference between two treatment groups were analysed
by student’s t test where ** p < 0.01.

The treatment with TiO2 NPs also showed strong cytotoxic effects on cancer cell viability as a larger
majority of the cells were found dead after treatments of lower than 0.5 µg/mL (Figure 10A). Significant
changes in cell structure and nucleus were depicted by DAPI staining. The nuclear disintegration and
condensation were indicated, with many dead cells seen. Control cells were found unaffected during
treatment (Figure 10B).

Ag NPs have been reported to activate the apoptotic pathway via generation of free oxygen radicals,
which result in antitumor and antiproliferative effects. Such nanomaterials that have antiangiogenic
activities are known for promising abilities to alter the mechanism of proteins that are expressed
abnormally [44,45]. Additionally, TiO2 NPs synthesized via green methods have also been reported to
possess antiproliferative activity against cell lines such as the Mg 63 osteosarcoma and rat embryo
fibroblast lines [46,47]. However, the exact mechanism of cancer cell death at the molecular level is still
to be fully known. Therefore, it would be fascinating to unravel the apoptotic pathways involved in
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TiO2 and Ag NP-mediated cancer cell death. Interestingly, there are several reports of NPs that are
known to cause nuclear fragmentation and disintegration in various cancer cell lines [48].
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4. Conclusions

The aqueous extract of F. fomentarius from Kashmir Himalaya mediated the synthesis of TiO2 and
Ag NPs with varying sizes and shapes. The chemical environment of NPs and morphological features
were characterized using different characterization tools. The antibacterial and anticancer activity
depicted the significant effect of NPs on the tested cells. Hence, the present study supports the green
synthesis of TiO2 and Ag NPs, using a wild mushroom, as an environmentally sustainable approach.
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