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ABSTRACT: In this research, solar cell capacitance simulator-one-dimensional (SCAPS-1D) software was used to build and probe
nontoxic Cs-based perovskite solar devices and investigate modulations of key material parameters on ultimate power conversion
efficiency (PCE). The input material parameters of the absorber Cs-perovskite layer were incrementally changed, and with the
various resulting combinations, 63,500 unique devices were formed and probed to produce device PCE. Versatile and well-
established machine learning algorithms were thereafter utilized to train, test, and evaluate the output dataset with a focused goal to
delineate and rank the input material parameters for their impact on ultimate device performance and PCE. The most impactful
parameters were then tuned to showcase unique ranges that would ultimately lead to higher device PCE values. As a validation step,
the predicted results were confirmed against SCAPS simulated results as well, highlighting high accuracy and low error metrics.
Further optimization of intrinsic material parameters was conducted through modulation of absorber layer thickness, back contact
metal, and bulk defect concentration, resulting in an improvement in the PCE of the device from 13.29 to 16.68%. Overall, the
results from this investigation provide much-needed insight and guidance for researchers at large, and experimentalists in particular,
toward fabricating commercially viable nontoxic inorganic perovskite alternatives for the burgeoning solar industry.

1. INTRODUCTION

Machine learning (ML), a subfield of artificial intelligence
(AI),1,2 utilizes the knowledge of mathematics, statistics, and
computer science3 to build computer algorithms for specific
aims. The algorithmic system learns from the experimental or
computational data, analyzes it, and builds patterns to anticipate
behavior with the goal to make better judgments. It is, therefore,
no surprise that over the past decade, ML has become a vital tool
in all branches of STEM. The field of Material Science has
evolved in step during this time as well, allowing scientists to
utilize a broad variety of model prediction methods and tools
based on ML algorithms for use in different materials and
devices.4−6 With the use of these tools, material scientists can
now devise new ways of investigating materials’ characteristics
and improving material performance in general. Generating data
from a specific process or device followed by data wrangling,

feature generation, feature engineering, constructing models,
and eventually making choices to get optimum outputs7 are the
steps in the ML processes.
Perovskites, a material family with a crystal structure

analogous to the mineral ‘perovskite’, consisting of (CaTiO3),
8

with the generalized formula ABX3 (where A represents cation
species, e.g., CH3NH3, HC(NH2)2, Cs, etc.; B represents metal
species, e.g., Sn, Pb, Ge, etc.; and X represents halide
species9,10), have shown promising results for light capture,
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exciton production, and charge transition to corresponding
device layers for extraction.11,12 Pb halide perovskites,
particularly, have improved PCE from 3.8 to 25.2 percent in
the last decade.13−15 The wide absorption range, high diffusion
length, and excellent charge-carrier mobility of these Pb-based
perovskites are remarkable. The perovskite material may be used
alone as an absorber in different solar device designs and
architectures, but it can also be utilized in conjunction with the
standard silicon layer to lower the $/W value.16 While there are
many benefits to using perovskite solar cells (PSCs), the toxicity
and harmful consequences of Pb must be considered.17−19 Pb is
leached and transported by water, air, and soil20 (Figure 1).
Despite its excellent performance and durability,21,22 commerci-
alizing this technology on a wide scale poses substantial
challenges.23 A broad range of nontoxic materials is currently
being investigated for commercial feasibility using important
device performance characteristics such as efficiency, stability,
and degradability.24−26

The current research utilizes supervised ML to critically
investigate nontoxic perovskite devices (ABX3: A = Cs; B = Sn,
Bi, Ge, Ag, and Sb and X = I, Br) and offers researchers clear
guidance toward enhancing PCE values. Cs-based perovskites
were particularly chosen given the fact that Cs can strongly tune
the properties and performance of PSCs, in particular leading to
higher device stability. This has beenmade clear through the fact
that for the last few decades, researchers at large have strongly
concentrated on the development of Cs-based perovskites with
an aim to improve the stability, reproducibility, and spectral
properties of PSCs.27 This focus on Cs has additionally been
beneficial due to the nontoxic nature of the material.25,26 It is
encouraging to see that experimental studies have been steadily
showcasing this viability of Cs-based perovskite materials
through stability and increasing PCE measurements.24

In the present research, solar cell capacitance simulator-one-
dimensional (SCAPS-1D) was used for simulating single-
junction Cs-perovskite (Figure 2 showcases a standard CsSnI3
structure) solar devices; the perovskite (absorber) parameters
were modulated by incremental stages. A fairly large dataset
consisting of the performance outputs from 63,500 unique

devices was obtained. By utilizing the standard correlation
algorithm together with a Random Forest algorithm, models
were created and utilized to classify the properties of thematerial
as a function of the highest impact on the performance and
ultimate device PCE. The results from this investigation provide
clear recommendations for researchers to selectively focus on
and probe parameters that will impact device PCE the most,
thereby providing a plausible pathway for disruption in the
photovoltaic sector utilizing nontoxic inorganic perovskite
materials.

2. MATERIALS AND METHODOLOGY
SCAPS-1D, devised by the University of Gent’s ELIS depart-
ment,28−31 is used for our present work to simulate single-
junction perovskite solar cells’ numerical simulations. SCAPS is
a highly versatile software and is prolifically used within the
photovoltaic community. It allows for a wide range of device
architectures to be built and probed, utilizing the most realistic
and accurate back-end physical equations to mimic fundamental
photovoltaic activity such as light capture, exciton generation,
charge transport, and recombination.

2.1. SCAPS Governing Equations and Definitions of
Critical SCAPS Output Parameters. SCAPS solves three

Figure 1. Schematic of environment pollution by Pb-based perovskites.

Figure 2. Crystal structure of CsSnI3.
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systems of equations for the carriers:32 transport, Poisson, and
continuity. The following is the carrier continuity equation:

∂
∂

= − ∇· − +
p
t q

J R x G x
1

( ) ( )p (1)

∂
∂

= − ∇· − +n
t q

J R x G x
1

( ) ( )n
(2)

The electron−hole current densities, respectively, are
denoted by Jn and Jp, the recombination and generation rates
are denoted by R(x), G(x), respectively, and the position-
dependent electron and hole concentrations, respectively, are
denoted by p(x) and n(x). The drift-diffusion of electron−hole
pairs is described by the following equations:
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where μp and μn denote the electron and hole mobility,
respectively, and Dn and Dp denote the electron and hole
diffusion constants, respectively. SCAPS-1D solves the Poisson
equation and continuity equations for electrons and holes
together by taking the appropriate boundary conditions at the
interfaces and contacts33 into consideration. The fill factor (FF)
of the device is defined as follows:

ν

ν
=

·

·

J

J
FF mp mp

sc oc (5)

where Vmp and Jmp represent the voltage and current density at
the maximum power points. The short-circuit current density is
denoted by Jsc, and the open-circuit voltage is denoted by Voc.
Defining how the aforementioned factors interact to produce

the research’s primary result, notably device efficiency
normalized to power input (Pin), is vital at this point

η =
· ·V J FF

P
oc sc

in (6)

2.2. Device Structure. The solar device simulated in
SCAPS and investigated in the present research is shown
schematically in Figure 3. A conventional perovskite solar device
consists of an antireflective coating, glass, a fluorine-doped tin
oxide (FTO) electrode, an electron-transport layer (ETL), a
perovskite layer, a hole transport layer (HTL), and an electrode
layer.34 In the present research, the device layers constitute
(glass/fluorine-doped tin oxide (FTO)/TiO2/Cs-based perov-
skite/Cu2O/Au). The noble metals Au, Ag, and Pt are
commonly used as electrode materials.35 This type of structure
significantly lowers electron−hole recombination and provides
the necessary diffusion length for efficient electron−hole
capture.36 In the perovskite layer, a maximum portion of the
light is absorbed to create electron−hole pairs,35 and the rest of
the light cannot be absorbed or converted to heat. As the
electron and hole pairs are generated, they are transported
through the electron-transport layer (ETL) and hole−transport
layer (HTL) to generate electric current. The ETL extracts
electrons from the perovskite layer and prevents electrons in the
FTO from recombining with holes. TiO2 has been utilized as an
ETL in most of the published perovskite solar devices.37 The
HTL serves a similar purpose as the ETL, but for holes; in the

current work, Cu2O acts as the standard device HTL. Glass and
FTO layers are used to increase optical absorption for higher
light absorption in the layers.38 However, typically, device
performance only depends on the ETL, absorber, and HTL.
Tables 1−3 list the material’s property values for each layer as
utilized in this current research and used as input parameters
into the SCAPS software. The SCAPS simulation settings were
configured tomake use of the specified spectrum of A.M. 1.5G at
an operating temperature of 300 K.

2.3. Simulation Parameters. The most fundamental
parameters of each material layer utilized in the solar device
for the current simulation are described below. These
parameters are all material properties unique to each device
layer, dependent on innate functionalities based on chemical
composition, crystallographic orientation, etc.

1. Thickness of the layers is optimized to fixed values to give
maximum efficiency.39−41

2. The bandgap of a material layer is related to its chemistry.
It determines which portion of the electromagnetic (EM)
spectrum is absorbed by the layers. Only photons having
equal or higher than bandgap energy are absorbed.42 The
ETL should have a high-energy bandgap to enable a
considerable portion of the electromagnetic spectrum to
flow through and reach the perovskite (absorber) layer.42

3. Electron affinity: The perovskite (absorber) layer’s
electron affinity is significant for the current investigation.
To produce an electric current, the electron−hole pairs
must be routed to the ETL and HTL. As the higher value
of electron affinity means a larger barrier to moving
electrons from the absorber to ETL, a minimal value of
perovskite electron affinity is required.42

4. Relative permittivity (or dielectric constant) measures
how quickly a material polarizes in an electric field.43 The
greater the value, the more likely it is to form exciton
couples. As a result, we are more concerned with the
absorber layer’s relative permittivity for our application.

Figure 3. Schematic of the solar device structure utilized in SCAPS
simulation.
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5. Conduction band density of states: In the perovskite and
ETL, a larger DoS of the conduction band is preferable.
This is a material feature that allows it to accept and
conductmore electrons in the conduction band. Electrons
will flow from the absorber’s (perovskite) conduction
band to the ETL’s conduction band as soon as pairs of
electron−hole are generated in the perovskite. Therefore,
higher values of conduction band density of perovskites
and ETL states have more influence on device PCE.42

6. Valence band density of states: The holes will conduct
from the perovskite’s valence band to the HTL’s valence
band once they are formed. Higher valence band densities
of perovskites and HTL states have more influence on
device PCE.42

7. Electron mobility: Maximal electron mobility is desired in
both perovskites and ETLs. Once the electron−hole pairs
are formed, the goal is to get the electrons out of the
device as efficiently as possible (flow from perovskite →
ETL → electrode).

8. Hole mobility: same logic as #7 above. In this case,
maximal hole mobility is desired in both perovskites and
HTLs.

9. Donor concentration: The concept of donor concen-
tration originates in the doped semiconductor materials in
favorable conditions. There, the addition of a specific
dopant or impurity can add additional energy levels in the
band alignment and provide a favorable passage of
electrons to the conduction band. In an otherwise
intrinsic system with no additional electron in the
conductor band (which is the case for most moderate to
high bandgap semiconductor materials), the concen-
tration of electrons in the conduction band will be roughly
equal to the donor concentration. This particular property
can aid the transition and charge transfer in the
perovskite/ETL interface further facilitating more carrier
separation. However, for the HTL/perovskite interface,
such energy levels in the band may facilitate the opposite
effect. So, in an ideal perovskite solar device, the donor
concentration on HTL is expected to be negligible. To
maintain congruence with this idea, the donor concen-
tration for the HTL in our input parameter in this
simulation is kept at a null value.

10. Acceptor concentration: The acceptor energy level takes
electrons from the valence band or donates an electron to
the conduction band, upon the addition of a dopant or an
impurity. It is fundamentally related to the separatist that
occurs at the ETL/perovskite interface. So, the value of
acceptor concentration is taken from the experimental
and previously reported literature on the topic.

11. Absorption coefficient values: We have listed each
material’s absorption coefficient vs light wavelength
(400−700 nm). Also, we are more concerned with the
perovskite (absorber) layer’s absorption coefficient as
light absorption leads to exciton (electron−hole) couple
generation.

12. Recombination rate of electrons and holes: Recombina-
tion of electrons and holes can severely degrade the
performance of solar devices. To maintain congruence
with the previous investigations44,45 on the subject and
experimental data, a reactive recombination coefficient of
2.3 × 10−9 cm3/s was considered in the bulk of
perovskites. In addition, the effect of Auger recombina-
tion was considered to be negligible as the radiative mode

of recombination significantly dominates Auger recombi-
nation.46−48

For the present work, the device output data was generated in
SCAPS utilizing the parameters of ETL (TiO2) and HTL
(Cu2O) to be optimized and constant (static) while varying the
critical input parameters of the Cs-perovskite absorber layer over
ranges derived from the variation of various Cs-perovskite
materials (as listed in Table 1). As listed above, these critical
input material parameters include valence band density of state,
conduction band density of state, electron affinity, bandgap,
electron mobility, hole mobility, and permittivity. The optical
absorption coefficient α, for the absorber layer, was set from a
model given as follows:

α λ = + −i
k
jjj

y
{
zzz

B
hv

hv E( ) A ( )g (7)

Here, Eg is denoted as thematerial bandgap andA( )in
cm eV

1 and

B( )in eV
cm

are the model parameters.

The model shown in the absorption coefficient formula
contains two parameters A and B. B is a constant that is
associated with adding graded adsorption to a graded material
layer. It means that if a single layer contains a composition
gradient, then the varying absorption across the layer is modeled
by the second parameter. However, for a monolithic material
layer with no composition gradient, the B parameter is set to 0,
which is used for current simulation. So, for direct bandgap in
our simulation

α λ = −A hv E( ) ( )g (8)

A is a certain frequency-independent constant with the
following formula:49

λ
=

∈ ℏ
A

q x m
n

(2 )2
vc
2

r
3/2

0 0
3

(9)

where ℏ is reduced Plank’s constant,mr is the reduced mass that
depends on the effective mass of electrons and holes, q is the
elementary charge, n is the index of refraction, ∈0 is the vacuum
permittivity, and xvc is a matrix element that depends on the
lattice constant.
For the absorbance curve input, an average of the absorbance

curves (Figure 4) of the Cs-perovskite materials listed in Table 1
was taken.
The parameters’ ranges of the perovskite layer were chosen

based on published data for Cs-based perovskites reported and
validated through both computational and theoretical meth-
ods.41,44,45,50−56 These data have been consolidated in Table 1.
Table 2 shows the modulation range, increment δ, and the

total number of steps for all of these input material parameters.
All possible combinations of the input parameters were utilized
to generate 63,500 unique devices, and their outputs including
the key parameters defined in Section 2.1, Voc, Jsc, FF, and η, are
provided in the Supporting Document. For the ML model and
decision-making algorithm, the present research focused solely
on the value of device PCE (η), which, as shown previously in
Section 2.1, is a function of the Voc, Jsc, and FF.
A holistic breakdown of the input parameters of the three

layers (ETL, absorber, HTL) as needed by SCAPS has been
provided in Table 3. As can be seen, all parameters for the ETL
and HTL are held static, together with a few of the Cs-based
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perovskite absorber parameters (thickness, donor concentra-
tion, acceptor concentration, radiative recombination) for
ensuring focus on the more important parameters (explained
below). The values were thoroughly extracted from previously
published experiments and simulation-based litera-
ture,41,44,45,57−65 with experimental findings validated against
computational values.
It is important to reiterate the perspective and context for the

present research here.While the ETL andHTL layers impact the
overall performance of the device, the main focus of present
research is to probe the nontoxic absorber layer, where the most
important photovoltaic actions of light capture, exciton
generation, charge transport, and recombination occur. The
given seven parameters (relative permittivity, bandgap energy,
electron affinity, electron mobility, hole mobility, conduction
band DoS, valence band DoS) were chosen to be varied due to
the direct way they can be experimentally probed and changed
by varying material synthesis, deposition, and overall device
fabrication conditions. At the end of the day, the goal of this ML
project is to provide incisive insights into input materials’
parameter impact on final device efficiency, with an ability to
rank these impacts. This guidance can assist experimentalists
directly in making high-efficiency devices.
2.4. Machine Learning Workflow. Data wrangling is a

necessary step for a purely experimental dataset.66 There can
potentially be multiple measurements and different outputs for
the same processing input parameter values in experimental
settings. There is a need therefore to clean the data, based on
experimental reliability and other factors. For the present
research, the entire dataset was generated through simulation
utilizing SCAPS-1D software. Again, a Decision Tree model was

utilized for the current research; data preprocessing was
therefore not required since tree-based models can handle
qualitative predictors, i.e., they can generate predictions.67 By
contrast, data normalization and some other preprocessing steps
are required in other models. Therefore, the raw output data
from SCAPS, without any special data processing, was fully
utilized.
The raw imported data was a combination of the independent

input parameters as listed in Table 1 (also known in the Data
Science field as ‘features’) and the solar device outputs (which

Figure 4. Optical absorption coefficient of Cs-based perovskite
materials.

Table 1. Cs-Based Lead-Free Perovskite Material Parameters

parameter Cs2SnI6 Cs3Bi2I9 Cs2AgBiBr6 CsSn0.5Ge0.5I3 CsGeI3 Cs3Sb2I9 CsSnI3 Cs2TiBr6

bandgap (eV) 1.48 2.03 2.05 1.5 1.6 2.05 1.3 1.6
electron affinity 4.3 3.4 4.19 3.9 3.52 3.65 3.5 4.47
relative permittivity 7.2 9.68 5.8 28 18 13.04 9.93 10
conduction band DoS (cm−3) 4.76 × 1018 4.98 × 1019 1 × 1019 1 × 1019 1 × 1018 4.33 × 1018 1 × 1019 1 × 1019

valence band DoS (cm−3) 4.6 × 1019 2.11 × 1019 1 × 1019 1 × 1019 1 × 1019 7.58 × 1018 1 × 1018 1 × 1019

electron mobility (cm2/V.s) 2.3 4.3 11.81 974 20 1.8 1500 4.4
hole mobility (cm2/V.s) 2.3 1.7 1.00 213 20 0.14 585 2.5
donor concentration, Nd (cm

−3) 1 × 109 1 × 1019 1 × 109 1 × 109 2 × 1016 1 × 109 0 1 × 1019

acceptor concentration, Na (cm
−3) 1 × 109 1 × 1019 1 × 109 1 × 109 1 × 109 1 × 1015 1 × 1019

Table 2. Perovskite Layer Parameters’ Range with
Increments and Steps

parameter (with units) range
increment
delta

total number
of steps

relative permittivity (εr) 7−11 1 5
bandgap energy (eV) 1.5−1.7 0.05 5
electron affinity (eV) 4.15−4.30 0.05 4
electron mobility
(cm2/V.s)

20−100 20 5

hole mobility (cm2/V.s) 20−100 20 5
conduction band DoS
(Nc) (cm

−3)
2 × 1018−1 × 1019 2 × 1018 5

valence band DoS (Nv)
(cm−3)

2 × 1018−1 × 1019 2 × 1018 5

Table 3. Parameters of ETL and HTL

parameter/layer TiO2(ETL) perovskite (absorber) Cu2O(HTL)

layer thickness
(nm)

150 350 (static) 150

relative permittivity
(εr)

9 7−11 7.11

bandgap energy
(eV)

3.2 1.5−1.7 2.17

electron affinity
(eV)

4.26 4.15−4.30 3.2

mobility of electron
(cm2/V.s)

20 20−100 200

mobility of hole
(cm2/V.s)

10 20−100 80

donor level
concentration
(Nd) (cm

−3)

1.0 × 1016 1.0 × 109 (static) 0

acceptor level
concentration
(Na) (cm

−3)

0 1.0 × 109 (static) 1.0 × 1018

conduction band
DoS (Nc) (cm

−3)
2.2 × 1018 2.0 × 1018−1.0 × 1019 2.02 × 1017

valence band DoS
(Nv) (cm

−3)
1.8 × 1018 2.0 × 1018−1.0 × 1019 1.1 × 1019

radiative
recombination
(cm3/s)

2.3 × 10−9 2.3 × 10−9 (static) 2.3 × 10−9
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are the dependent variables and also called ‘target variables’).
This initial data was split into two single datasets: one containing
the features and the other containing the target variables.
After splitting the raw data into features and targets, 75% of

the dataset (the raw Data) was utilized to train the model, and
the rest (25%) was used as the test set; the test set remained
unseen, that is, independent from the model, during its
execution for predicting the output.
We employed a decision tree model, which is one of the most

used machine learning models due to its ease of understanding
and clarity.68 Even though the model’s outcomes are discrete
and appear as clustered data, it is easy to grasp and analyze,69 and
it allows the finding of the most important features and
correlations among multiple parameters using an intuitive
method. As a result, the model provides extremely precise
forecasts.70 The model was trained using the Random-
ForestRegressor class71 from scikit-learn (a highly useful library
for ML used for classification, regression, clustering, etc.). As
decision tree is identical to random forest having only one tree,72

the hyperparameter (which regulates the learning), namely, ‘n
estimators’, was chosen to the default value 1. So, the
significance of using random forest decision tree model is that
when overfitting is suspected to occur in a decision tree, it may
be possible to tune the hyperparameter ‘n estimators’, that
represents the number of trees. Overfitting is suspected if the
model performs excellently on the training set but performs
badly on the test dataset, i.e., the test accuracy is significantly
lower.73

After generating output data utilizing SCAPS, the decision
tree model was utilized to fit the dataset; after evaluating its
performance, features were generated and ranked relative to
each other. The decision tree was visualized by taking only the
most impactful parameters, together with generating a
prediction toward how to tune the parameters for attaining
higher device PCE values. The relative importance of features
can also be known from the correlation matrix74 by creating a
correlation between the features and the target variable. Feature
importance75,76 in random forest provides a similar outcome as a
correlation matrix does but can rank the input parameters as a
function of importance based on impact on the output, provided
that the model performs well.
Upon executing the random forest model, the less important

features in impacting the device PCE (valence band density of
state, conduction band density of state, electron mobility, and
permittivity) were excluded, and a new data utilizing only the
most important features was created. This new data had the
same number of rows compared to the initial data, but the
features (input parameters) were no longer unique, i.e., there
were multiple outputs with the same sets of features (Table 4).
Among the total 63,500 rows in the data, only 100 rows of
features were found to be unique. At this junction, the lowest of
the different efficiency (PCE) values from the rows with similar
feature sets were accepted in the data, thereby ensuring that at
least that device PCE may be produced for a specific set of input
parameters. This decision helped illustrate the model and paves
the way to modify the input settings to increase the ultimate
device efficiency.
The Supporting Documentation includes the Python code (in

a Jupyter notebook) used to analyze the data for the present
study.

3. RESULTS AND DISCUSSION
In this investigation, we utilized the solar cell simulation dataset
and machine learning models to delineate the relative impacts of
materials’ intrinsic parameters on the overall power conversion
efficiency. It is known that various parameters are innately
responsible for impacting the efficiency of solar devices; this
theoretical study was focused on concentrating on those
parameters that are more impactful on the device efficiency
over others.

3.1. Evaluating Decision Tree Model Performance.
Evaluating prediction accuracies for both training and testing
datasets as well as other error metrics (different performance
analyzing metrics used in statistics, e.g., RMSE, R2) were utilized
to assess the model’s performance. The initial test and train
datasets were calculated through the SCAPS-1D software. Both
datasets are based on the computational framework that utilizes
intrinsic device input parameters such as bandgap, electron
affinity, conduction band density of state, valence band density
of state, intrinsic defect density, acceptor density, etc. to provide
device scale photovoltaic output parameters such as open-circuit
voltage (Voc), closed-circuit current (Jsc), fill factor (FF), and
power conversion efficiency (PCE). For the modeled dataset in
this investigation, PCE is considered the target value as it depicts
an accurate representation of the overall output device
performance. SCAPS-1D simulation software is based upon a
rigid computational framework. Relative importance and
correlation between the intrinsic parameters were analyzed
through supervised machine learning algorithms. Both the train
and test sets show high accuracy. This is validated by evaluating
the error metrics. Figure 5 shows the parity plot for training data
and test data side by side, indicating that themodel predicts both
the train and test datasets with high levels of accuracy.
The below statistical metrics numerically validate this

observation

average test RMSE(root mean square error)

: 0.0014(0.0 for perfect prediction)

Raverage test (Rsquared): 1.0(1.0 for perfect prediction)2

However, to get an unbiased estimate of accuracy,
RepeatedKFold cross-validation from scikit-learn77 was used.
In the k-fold cross-validation process, a restricted dataset is
divided into k nonoverlapping folds. The technique can be
replicated numerous times using repeated k-fold cross-
validation. The cross-validation relied on the test train dataset
and was not compared or contrasted with any experimental data

Table 4. New Data after Excluding the Four Least Important
Input Material Parameter Columns

EA (eV) Eg (eV) h mobility (cm2/V.s) PCE (%)

0 4.15 1.5 20 11.7929
1 4.15 1.5 20 11.7865
2 4.15 1.5 20 11.7802
3 4.15 1.5 20 11.7739
4 4.15 1.5 20 11.7677
... ... ... ... ...

63,495 4.3 1.7 100 9.1986
63,496 4.30 1.7 100 9.2009
63,497 4.30 1.7 100 9.2031
63,498 4.30 1.7 100 9.2051
63,499 4.30 1.7 100 9.2070
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or input from any other source. If five-fold cross-validation was
conducted 5 times, the model’s effectiveness would be estimated
using 25 distinct sets. In the current research, while the dataset
was split once for the single train and test validation, it was now
split 5 times and the train and test sequences were repeated 5
times. The process was executed randomly, i.e., without any bias.
As before, the standard error metrics including RMSE, R2, were
repeated for the k-fold cross-validation.

average test RMSE: 0.0011(0.0 for perfect prediction)

Raverage test : 1.0(1.0 for perfect prediction)2

As before, as can be seen, the model generated high levels of
accuracy in its prediction for both train and test datasets.
These high accuracy numbers for the train and test datasets

are likely a function of overfitting, indicating the possibility of
some similar devices in the dataset. Looking closer, the 63,500
devices are stepwise cartesian products of seven parameters, i.e.,
a combination of different input parameter sets, as discussed in
Table 2. It is therefore possible that certain parameters are not
important and do not influence the output parameter. By
excluding the least important features, which have little or no
influence on device efficiency, only some of the rows will be
unique among the 63,500 rows. In the subsequent analysis, we

used the unique devices after dropping the least important
features.

3.2. Generating a Prediction. With high confidence
generated from cross-validation of the model in the previous
section, the model was then utilized to predict the most
important features, i.e., those which have the highest impact on
the target. To this end, two different analyses built into the
random forest algorithm, Feature Importance and Shapley
Additive exPlanations (SHAP) analysis, were utilized.

3.2.1. Feature Relative Importance. The random forest
model75,76 from the scikit-learn package is used to calculate
feature relative importance. There are one ormore decision trees
in a random forest model, and each decision tree is made up of
internal nodes and leaves. The choice is done at the internal
nodes by selecting a feature (valence and conduction band
density of state, electron affinity, bandgap, electron mobility,
hole mobility, or permittivity) and then splitting the data into
two separate sets. It calculates how much each attribute reduces
the “impurity” of the split (the feature with the greatest
reduction is chosen for the internal node). For random forest
regression, variance reduction is the measurement of the
decrease in impurity (reduction in variance between two sample
sets, i.e., difference between variance of a node and weighted
sum of variances of its child nodes). The methodology calculates
that for each feature variance is decreased on average. The

Figure 5. Parity plot for train and test data side by side.

Figure 6. Relative strengths of importance indices of features.
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average overall trees are the measurement of feature importance
in random forest. These results are listed in Table 5 and
graphically demonstrated in Figure 6.

Additional validation was done utilizing the correlation
matrix. The correlation of the features with the target variable
showcased the same result, as seen in Table 6.

The correlation matrix showcases the high feature importance
of bandgap energy among the seven features. The features
reported here act as input parameters for the SCAPS-1D
simulation software; Table 6 showcases the impact of these
features on the simulated device PCE (target). The outcome
from this exercise provides clarity as to which features to
modulate to ultimately impact the PCE of the simulated device.
3.2.2. Shapley Additive exPlanations (SHAP) Analysis. To

determine the ultimate importance forecast of features the
model generates, a SHAP analysis has also been performed on
thatmodel. The package Shapley Additive exPlanations (SHAP)
is a package of methods most often used for prediction; focusing
on the relative importance of features provides ameasurement of
which variables have themost effect in themodel. SHAP analysis
creates a large number of predictions and evaluates the results

through a comparative review. SHAP combines feature
significance and impact in a summary plot. The SHAP summary
plot showing the relative importance of noncorrelated features
(in descending order) on efficiency is illustrated in Figure 7.
Overall, it is observed through utilizing both methods that the

three most important features, bandgap, hole mobility, and
electron affinity (highest to lowest), have more than 97% impact
on the target variable (device PCE). This information and
insight are critical for the experimentalists, in particular, to
enable them to effectively focus their efforts on the optimization
of these parameters over the others in their efforts to improve
device power conversion efficiency.

3.3. Visualizing the Decision Tree.Many ML models are
“black boxes”; their inner workings are not interpretable to
humans. Decision trees are often chosen because they are more
explainable than other models. Here, Boolean logic can simply
explain the circumstances, making it easier to understand in
comparison to a black box model (such as an artificial neural
network).69 So, after a concise overview, most users can
comprehend decision tree models. Trees can also be visually
represented in a form that is simple to understand for
nonexperts.67 Implication of the decision tree model to similar
systems can be found in research papers.78,79 To provide clarity,
a visualization of the decision tree model utilized in this current
research has been shown in Figure 8.
From Figure 8, it can be visualized that for increasing PCE

bandgap energy, X2 < 1.625, X2 < 1.575 & X2 < 1.525, i.e.,
bandgap energy, X2 < 1.525 eV; hole mobility, X1 > 30, X1 > 50,
X1 > 70 & X1 > 90, i.e., hole mobility, X1 > 90 cm2/V.s; and
electron affinity, X0 > 4.175, X0 > 4.225 & X0 < 4.275, i.e.,
electron affinity, 4.225 < X0 < 4.275 eV.
In the given dataset, corresponding bandgap, hole mobility,

and EA for maximum device PCE (13.2912%) are 1.5 eV, 100
cm2/V.s, and 4.25 eV, respectively. From the decision tree, it can
be visualized that PCE decreases as the value of bandgap energy
(X2) increases and hole mobility (X1) decreases. It is
additionally observed that PCE decreases with either an increase
or decrease in EA (X0) from the approximate critical value of
4.25 eV while holding other parameters unchanged. This
behavior indicates that EA should be optimized to be a value
near 4.25 eV in practice. However as decision tree predictions
are piecewise constant approximations, rather than continuous
predictions, it is challenging to extrapolate them.80 This
indicates that a numerical value higher than the maximum
value of a given output cannot be predicted. The output value

Table 5. Parameters and Their Relative Importance

parameter/absorber layer relative importance (%)

bandgap energy 77.40
hole mobility 10.32
electron affinity 9.70
valence band DoS 1.31
conduction band DoS 1.26
relative permittivity 0.01
electron mobility 0.00

Table 6. Correlation of Features with the Target

features (input material parameters) correlation

bandgap energy 0.868535
hole mobility 0.302746
electron affinity 0.149510
conduction band DoS 0.104182
valence band DoS 0.068954
electron mobility 0.000688
relative permittivity 0.000307

Figure 7. Noncorrelated features’ contribution on device PCE as measured by SHAP with random forest regression (in decreasing order).
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beyond the maximum point loses any physical meaning. If the
parameters are modulated any other way, the output value starts
decreasing. For the present research and with the generated
datasets, these observations, therefore, indicate that the device
PCE increases as the bandgap energy decreases from 1.5 eV and
the hole mobility increases from 100 eV. The inequality for each
parameter sets the PCE that the solar device can produce and is
tabulated in Table 7.

The above conditions are ‘AND’ conditions. So, bandgap
energy has to be <1.5 eV AND hole mobility has to be >100
cm2/V.s AND electron affinity is static at approximately 4.25 eV.
The three-dimensional (3-D) representation in Figure 9 and

the contour plot (a graphical representation of a 3-D surface in a
two-dimensional (2-D) format by drawing constant z slices) in
Figure 10 both show that the device PCE increases with
decreasing bandgap energy and increasing the hole mobility.
These representations additionally suggest that device PCE is
maximum at an EA value of 4.25 eV.

4. DEVICE OPTIMIZATION THROUGH SCAPS-1D
Supervised machine learning on the selective devices in the
earlier discussion (Section 3) provided a set of critical intrinsic
material parameters for a champion device. As indicated from

Figure 8. Branch of the decision tree with only pure leaf nodes, demonstrating a route to achieve higher PCE.

Table 7. Most Impactful Parameters and Their Inequalities
for Increasing Device PCE

parameter/absorber Layer inequality for increasing efficiency

bandgap energy (eV) ≤1.5
hole mobility (cm2/V.s) ≥100
electron affinity (eV) ≈4.25

Figure 9. PCE as a function of changing bandgap and holemobility, and
at a constant EA 4.25 eV.
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the target analysis, the parameters for that particular device are
likely to yield excellent photovoltaic performance. Further
optimizations of absorber layer thickness, back contact metal
work function, and bulk defect density can significantly impact
the device performance. In this section, step-by-step optimiza-
tions have been conducted through SCAPS-1D simulation
software. An additional set of critical analyses including
interfacial defect and device stability showcases the experimental
viability of the champion device. The modulations and PCE
values that have been calculated to facilitate this investigation are

purely based on computational modeling. The calculations
highlighted in this section have been carried out through the
SCAPS-1D simulation software. The intuition generated from
these calculations to improve device performance can ultimately
be applied to experimental settings.

4.1. Bulk Absorber Layer Thickness Optimization.
Inorganic and organic perovskite devices are fabricated through
various deposition methods. In most cases, high bulk layer
thickness leads to the high absorption of solar energy. But after a
certain thickness, most perovskites become susceptible to

Figure 10. Contour plots showing the relation of bandgap and hole mobility with device PCE at different EA values (A) 4.15, (B) 4.20, (C) 4.25, and
(D) 4.30 eV.

Figure 11. J−V characteristic parameters as a function of absorber (perovskite) thickness: (a) Voc, (b) Jsc, (c) FF, and (d) PCE.
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intrinsic and extrinsic defects. For this section, absorber layer
thickness was varied from 0.3 to 1.6 μm. The results illustrated in
Figure 11 indicate that peak PCE of 16.68% occurs at 1 μm
perovskite layer thickness. For this particular device, therefore, it
can be concluded that the highest PCE value of 16.68% can be
obtained for the absorber thickness of 1 μm provided there are
no additional defects in the bulk of the absorber. The overall
trends indicate that Voc and FF decrease with increasing
absorber layer thickness owing to the proportionate increase of
defect sites within the film. Since a bulkier absorber generates

more electron−hole pairs, Jsc rises with absorber layer thickness,
resulting in a higher photocurrent.

4.2. Bulk and Interfacial Defect Investigation. The bulk
defect is a critical cause of low performance for most organic and
inorganic Sn-based devices. In atmospheric conditions, Sn-
based perovskites have the tendency to be oxidized to Sn2+,
which compromises the photovoltaic energy conversion.
Although defect level densities are highly dependent on
experimental process routes, device performance at different
defect energy and defect concentration can provide a

Figure 12. Characteristic device parameters: (a) Voc, (b) Jsc, (c) FF, and (d) PCE at different defect concentrations and energy levels for the bulk
absorber layer.

Figure 13. Characteristic parameters: (a) Voc, (b) Jsc, (c) FF, and (d) PCE at different defect concentrations and energy levels for the HTL/absorber
interface.
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comparative study that can be utilized for optimizing
experimental conditions. The results of solar output parameters
as a function of defect level and energy are illustrated in Figure
12.
From the data, it is apparent that higher defect concentration

may decrease the device performance significantly. Lowering the
defect to 1 × 1014 cm−3 can yield up to a 40% increase in the
device performance. However, such a low defect concentration
is yet to be practical with the commercial thin film deposition
route and a realistic 1 × 1016 cm−3 concentration of defect is
considered for this investigation.

Defect concentration in the interfaces can severely impact the
device performances as well. In Figures 13 and 14, defect
concentrations at the HTL/absorber and ETL/absorber
interfaces were investigated. From the outputs, it can be seen
that higher defect concentrations at the HTL/absorber interface
lower the device performance more severely than defects at the
ETL/absorber interface.
The results of the bulk and interfacial defect analyses also

clarify the influence of various defects on overall device
performance. For instance, in the device bulk layer, defects
with energies ranging from 0.3 to 1.4 eV may be categorized as

Figure 14. Characteristic parameters: (a) Voc, (b) Jsc, (c) FF, and (d) PCE at different defect concentrations and energy levels for the ETL/absorber
interface.

Figure 15. Characteristic parameters: (a) Voc, (b) Jsc, (c) FF, and (d) PCE utilizing different back contact metal work functions.

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.2c01076
ACS Omega 2022, 7, 22263−22278

22274

https://pubs.acs.org/doi/10.1021/acsomega.2c01076?fig=fig14&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c01076?fig=fig14&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c01076?fig=fig14&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c01076?fig=fig14&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c01076?fig=fig15&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c01076?fig=fig15&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c01076?fig=fig15&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c01076?fig=fig15&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.2c01076?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


deep defects, which have a significant negative influence on the
device’s performance and should be avoided as far as possible. In
contrast, at the interfaces between the absorber and the HTL,
defects between the energy level of 0 and 1.1 eV can be classified
as deep defects. It can be concluded that the severity of the
defects in the photovoltaic performance is also subjective and
dependent on the position, concentration, and energy level of
the subsequent defect.
4.3. Choice of Back Contact Metals. Perovskite solar

devices are in general integrated into the circuit board through
the soldering of precious metals like silver and gold. The
selection of the material can provide a better engineering and
economic choice for the design of the subsequent devices. For
the device simulation, the metal work function (which is the
characteristic indicative parameter for every subsequent back
contact metal) has been varied to analyze its impact on the
photovoltaic performance.
From the results showcased in Figure 15, it is apparent that

back contact metals with their corresponding work function
values of above 4.9 eV will yield relatively consistent device
performance. Popular back contact metals like silver yield a
lower work function of 4.6 eV and thereby should be considered
a poor choice for this device.44,81

4.4. Quantum Efficiency and the J−V Curve of the
Champion Device. Quantum efficiency for solar devices is a
reliable metric that indicates the solar energy absorption
potential. For solar devices to absorb high photovoltaic energy
from the irradiation of the sun, high quantum efficiency in the
region between 1.5 and 3 eV radiation is recommended.82

External quantum efficiency (EQE) as a function of photon
energy for the given optimized device (optimized through bulk
absorber thickness, defect concentration, and back contact
metal) is illustrated in Figure 16. The device demonstrated

excellent EQE (85−95%) for the photons within the range of 2−
3.5 eV energy. These results highlight the beneficial absorption
potential for this discovered device under normal solar
irradiation.
Characteristic J−V parameter optimizations through step-by-

step modulation of absorber layer thickness, defect density, and
back contact metal have a remarkable impact on the overall
performance of the device, as can be seen from Figure 17. The
device PCE of the champion devices of the fully optimized
device (16.68%) is significantly higher than that of the
unoptimized device 13.29%.

5. CONCLUSIONS
An ML exercise was performed on Cs-perovskite-based solar
devices, focusing on key input materials with an intent to
delineate their impacts on ultimate device PCE. Supervised
machine learning was conducted on the simulated parameters of
the SCAPS-1D software where the target value was the
theoretical photovoltaic efficiency of the device. It was
demonstrated that the energy bandgap, hole mobility, and
electron affinity of the absorber perovskite were the most
impactful parameters, rendering them to be areas of focus and
modification to obtain high device PCE. After generating these
impactful parameters and excluding the rest, the decision tree for
the model was visualized. It was demonstrated that the electron
affinity of the perovskite material should be optimized to a
specific value while maintaining critical inequality ranges for the
bandgap and hole mobility. The combination of these criteria
can lead to the realization of improved device PCE. Further
improvement on the device performance was conducted
through the optimization of several intrinsic parameters like
bulk absorber thickness, defect concentration, and back contact
metal that remarkably improved the overall PCE of the device
from 13.29% (unoptimized) to 16.68% (optimized). It is
important to note that the current investigation is theoretical in
nature; further clarification can be obtained from experimental
data. The insights provided herewith nonetheless should offer
experimentalists a keen sense of targeting specific material
parameters over others together with validating their impacts on
device PCE.
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