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INTRODUCTION–WHY DO WE MONITOR?

Environmental degradation and loss of ecosystem services due to anthropogenic activities 

are an issue of global concern (Cardinale et al., 2012). Lakes act as effective sentinels of 

environmental change as they respond to atmospheric, terrestrial, and hydrological processes 

(Williamson et al., 2008). Understanding lake dynamics can help determine the scale and 

frequency of occurring changes, establish control measures and maintain ecosystem 

integrity. Thus, monitoring is necessary, but it is rendered impossible since there are over 

117 million lakes globally (Verpoorter et al., 2014).

Monitoring strategies that range from long-term time-series on individual lakes to short-term 

snapshot surveys of up to thousands of lakes from disparate locations serve different 

purposes and cover different temporal- and spatial-scales of ecological phenomena. For 

example, phytoplankton dynamics can be driven by long-term environmental change 

(Monchamp et al., 2016), inter-annual variability (Anneville et al., 2004), seasonal 

succession (Sommer et al., 2012), and diel changes (Ibelings et al., 1991). To efficiently 

capture their temporal and spatial variability, the appropriate monitoring strategy needs to be 

chosen (Supplementary Table 1).

Implementation of long-term monitoring strategies face many challenges. Water quality 

monitoring programs are usually restricted to priority ecosystems (e.g., socio-economically 

important or “easier to reach”), creating geographical biases in observations which may not 

be representative of broader regions or even nearby waterbodies (Ruiz-Jaen and Aide, 2005). 

Thus, long term monitoring alone is insufficient. To develop a global understanding of 

environmental response, we need to consider both the sampling frequency and efficiency of 

monitoring. Combining different monitoring strategies such as automated high frequency 

and multi-lake snapshot surveys, may allow studying numerous lakes over many years and at 

the continental or even global scale.

Here, we explore the advantages and disadvantages of widely used sampling strategies. We 

focus on multi-lake snapshot surveys and discuss the limitations of the approach. This 

strategy allows broad spatial coverage, while remaining affordable. We use mostly 

phytoplankton examples, because of its rapid response to environmental change (Carpenter 

et al., 2006).

DIFFERENT MONITORING STRATEGIES

Long-Term Monitoring From Routine (Discrete) Sampling

Long-term monitoring from routine (discrete) sampling—typically bi-weekly to monthly—

addresses ecosystem change under environmental pressure over time by measuring both 

coarse and fine-resolution responses (e.g., phytoplankton taxonomy) and environmental 
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drivers (e.g., nutrients) that cannot be sampled with automated or remote sensing 

approaches. The resulting datasets can elucidate long-term impacts on lakes such as 

eutrophication (North et al., 2014). Such datasets contributed to developing and validating 

ecological theories, e.g., the alternative stable state theory (Scheffer and van Nes, 2007), 

which was successfully implemented in lake restoration programs (Ibelings et al., 2007). 

Long-term sampling may, however, introduce data inconsistencies over time, due to changes 

in the sampling protocols, analysis methods and staff employed (Straile et al., 2013). Also, 

the frequency of routine sampling associated with long-term monitoring does not necessarily 

assure correct capture of lake processes.

Long-Term Monitoring From Automated High-Frequency Sampling

Long-term monitoring from automated high-frequency sampling allows characterization of 

fine-scale temporal dynamics. High-frequency sampling can reveal the buildup and break-

down of episodic phytoplankton blooms that cannot be captured with routine sampling 

(Pomati et al., 2011). Grassroots initiatives like GLEON, support the use of automated high-

frequency lake stations worldwide (Weathers et al., 2013). In most cases the characterization 

of phytoplankton dynamics remains limited to chlorophyll-a measurements from 

fluorescence sensors. Methods like flowcytometry (Pomati et al., 2011) or image analysis 

(Sosik and Olson, 2007) are expensive, while data handling requires qualified personnel. 

Affordable fluorescence probes (e.g., Fluoroprobe-Moldaenke, Germany) that measure 

pigments of different phytoplankton classes could be an alternative but offer limited 

taxonomic information to determine community dynamics.

Remote Sensing

Remote sensing provides broad spatial coverage and relatively frequent images. The Landsat 

satellites have operated since 1972, with a 16-day location-specific revisiting time and 

spatial resolution of 30–79 m. The newly launched Sentinel satellites have a 5-day revisiting 

time and spatial resolution of 10–60 m (Toming et al., 2016). The advanced radiometric 

resolution of Sentinel satellites along with published band ratio algorithms that estimate 

chlorophyll-a, colored dissolved organic matter and dissolved organic carbon, make them 

highly suitable for monitoring lakes (Toming et al., 2016). Remote sensing can, however, be 

limited by cloud cover (Ibelings et al., 2003), and thus needs to be integrated in a 

multiplatform monitoring approach (Vos et al., 2003) with airborne based remote sensing 

and good quality in-situ data for ground truthing.

Disparate Data

The assembly of multi-lake datasets from disparate sources is flourishing. Disparate data 

provide a broader representation of environmental change at larger spatial-scales and 

complementary temporal coverages. International collaborations support such efforts and 

promote open science to achieve deeper understanding of lake ecosystems globally (Soranno 

and Schimel, 2014). LAGOS-NE comprises thousands of lakes with diverse geographic 

conditions and land use histories (Soranno et al., 2017). Disparate data have resulted in 

important insights into lake functioning (e.g., O’Reilly et al., 2015). Integrating disparate 

data, however, is a great challenge. Lack of standardization in data protocols and 

heterogeneity in data formats and units necessitates manual integration (Soranno et al., 
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2017). Such data inconsistencies should be resolved to successfully attribute environmental 

change to regional characteristics and not to protocol differences (Moe et al., 2008). 

Trustworthy databases of disparate data require time and qualified specialists, making it a 

laborious and costly project (Soranno et al., 2017).

Multi-Lake Snapshot Surveys (MLSS)

Multi-lake Snapshot Surveys (MLSS) sample many lakes across large geographic distances, 

only once, within a predefined period. We define snapshot sampling as the acquisition of 

biological, chemical, and physical parameters at intervals that violate the Nyquist-Shannon 

sampling theorem. According to this theorem, in order to fully capture a phenomenon, we 

need to sample at a Nyquist rate which exceeds twice the maximum component frequency 

(i.e., Nyquist frequency) of the sampled function (Marcé et al., 2016). If for example we 

study diel re-positioning of algal communities in the water column—which is the outcome 

of processes that operate on short time-scales—we should sample at hourly intervals 

(Ibelings et al., 1991). Inadequate sampling rate may result in a loss but also a distortion of 

sampled information (i.e., aliasing—Jerri, 1977).

ADVANTAGES OF THE MLSS

Status Assessment of Freshwater Systems Across Large Geographical Areas

MLSS mostly use standard protocols that minimize sampling effort per lake without 

sacrificing data quality (Mantzouki and Ibelings, 2018; Pollard et al., 2018). Hence, 

numerous lakes can be sampled across large geographical areas to frequently assess 

ecological status (e.g., EU Water Framework Directive, Nordic freshwater inventory—

Skjelkvale et al., 2001) and provide ecological understanding. For example, the South 

American Lake Gradient Analysis (SALGA) investigated the role of temperature on 

cyanobacterial occurrence in shallow lakes along a latitudinal gradient (Kosten et al., 2012). 

The National Lake Assessment (NLA) of the US Environmental Protection Agency (US-

EPA), sampled over 1,000 lakes in 2007 and 2012 (Pollard et al., 2018) to study water 

quality (Rigosi et al., 2014), food web issues (Doubek and Carey, 2017) and changes over 

time (Leech et al., 2018). The European Multi-Lake Survey (EMLS) sampled 400 lakes to 

investigate how temperature and nutrients determine variation in algal and cyanobacterial 

biomass and toxins (Mantzouki et al., 2018).

Standardized Data Across Large Geographical Areas

MLSS can produce highly comparable datasets, with uniform, synchronic data. Data 

curators can more easily manipulate the collected data (e.g., outliers’ identification) and 

perform better quality assurance and control. Thus, data integration can be performed with 

high fidelity. For complete data integration, data collectors should strictly follow 

standardized procedures. In the EMLS, representatives from 27 European countries jointly 

defined the research questions and developed the protocols, during a 3-day training school. 

The trainees obtained hands-on experience in the agreed protocols and then disseminated the 

information at the national level. Centralization of key analyses (done by one person on one 

machine) was also a significant step to assure successful data integration (Mantzouki and 

Ibelings, 2018).
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Selection of MLSS lakes is based on sound scientific criteria. The NLA uses a Generalized 

Random Tessellation Stratified Survey Design (GRTS) which is a spatially-balanced 

probabilistic design that avoids clumping of sampling locations (Kincaid et al., 2013). 

MLSS typically engage numerous data collectors that sample many lakes simultaneously. 

Confounding effects of seasonality can thus be avoided. For example, the EMLS sampled 

during the locally warmest 2-week period to focus on cyanobacterial blooms—a distinct 

feature of summer phytoplankton (Sommer et al., 2012).

Cost and Time Efficiency

Cost and time efficiency is an important advantage of MLSS that can enable global 

participation and thus investigate landscape-related variation in lakes at large spatial-scale 

(Sadro et al., 2012). The one-time sampling in a MLSS reduces costs and permits the 

sampling of numerous lakes. MLSS are particularly suited to grassroots approaches that 

typically have limited financial means and rely on the motivation and dedication of many 

scientists from different countries. This low-cost approach allows the participation of 

researchers and institutes with different levels of funding and equipment, since it does not 

rely on expensive instrumentation. Because the individual sampling effort in MLSS is not 

particularly time demanding, numerous environmental parameters can be sampled and 

analyzed at a higher analytical resolution. Thus, MLSS can provide a deeper insight into 

specific ecological relationships (NLA- and EMLS-related references) which cannot be 

achieved by high-frequency monitoring strategies.

Space-for-Time Substitution (SfTS)

Frequently, MLSS aim to capture environmental differences at geographical gradients to 

provide insight into impacts of future environmental change. MLSS may use space-for-time 

substitution (SfTS) (Blois et al., 2013) to study present-day spatial phenomena instead of 

long-term records that often are unavailable (Pickett, 1989). Sampling numerous lakes is 

needed for an adequate SfTS. The statistical power generated by sampling many different 

lakes can overcome the risk of gaining idiosyncratic results from long-term monitoring of 

only a few lakes.

To develop reliable SfTS we need to consider that drivers of temporal change are not 

necessarily constant across various time-scales. Drivers of large-scale spatial variation rather 

than of shorter-term temporal variation may be better predictors of long-term climatic 

change in ecosystems. For example, in grassland communities, geographic rather than 

temporal variation in annual precipitation and plant community structure better predicted 

climate-driven changes in precipitation (Adler and Levine, 2007). See also Taranu et al. 

(2012) on the importance of scale on temporal change.

Temporal drivers of lake change may also differ from spatial drivers, at a short temporal-

scale (<20 years) probably because the time-scale (rate and persistence) of change differs in 

space and time (Weyhenmeyer, 2009). Spatial data may capture the lake’s history over time, 

i.e., the long-term impact of an environmental predictor but not its short-term impact. For 

instance, dissolved organic carbon (DOC) and partial pressure of CO2 (pCO2) are related at 

the spatial-scale (Lapierre and Giorgio, 2012) but fast processes such as flushing-rate can 

Mantzouki et al. Page 5

Front Ecol Evol. Author manuscript; available in PMC 2020 March 17.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript



result in a decoupling of the two parameters on a temporal-scale (Nydahl et al., 2017). 

However, long-term and spatial-scale ice breakup data showed similar patterns of 

temperature effects on ice-off timing (Weyhenmeyer et al., 2004). Similarly, in 1,041 boreal 

lakes the correlation of chemical variability with increased temperature was consistent 

across space and time (Weyhenmeyer, 2009). Climate change is emerging as a major driver 

of both spatial and temporal variation in lake dynamics (Weyhenmeyer, 2009), thus a SfTS 

may be a suitable solution to predict change.

CONCLUSIONS

There are obvious trade-offs between monitoring strategies and no single strategy can 

provide answers to all research questions, lake management, or water governance 

requirements. An ideal approach might be to organize a yearly MLSS, with both previous 

and new lakes sampled every year and revisited at a certain time-interval to assess changes 

in the lake status at a broad spatial-scale. Additionally, time-series from key lakes could be 

obtained to develop tailor-made SfTS predictive models. We argue that MLSS, if properly 

designed and executed, comprise a promising solution for assessing lakes globally, ensuring 

data integration and engaging researchers, managers, policy makers, and citizens 

(Weyhenmeyer et al., 2017). For a successful MLSS, sampled environmental parameters 

should be carefully chosen to ensure a reliable SfTS. Numerous lakes, well-spread 

geographically, should be sampled to cover wide environmental gradients. If the right pre-

conditions are met and a standardized sampling plan is established, then MLSS can be an 

accurate and cost-efficient solution. International, grassroots efforts are increasingly 

establishing automated high-frequency monitoring stations worldwide. These efforts, along 

with more MLSS initiatives, could eventually contribute toward a better understanding of 

both spatial and temporal environmental patterns in lakes.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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