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Melatonin is a circadian hormone with potent cytoprotective effects. Retinitis pigmentosa
(RP) comprises a heterogeneous group of inherent retinopathies that characterized by the
photoreceptor death in bilateral eyes. The N-methyl-N-nitrosourea (MNU) administered
mouse is a type of chemically induced RP model with rapid progressive rate. We intend to
study the melatonin mediated effects on the MNU administered mice. Melatonin was
delivered into the vitreous body of the MNU administered mice. Subsequently, the
melatonin treated mice were subjected to histological analysis, optokinetic behavior
tests, spectral-domain optical coherence tomography (SD-OCT), and electroretinogram
(ERG) examination. Multi-electrodes array (MEA) was used to analyze the status of visual
signal transmission within retinal circuits. Biochemical analysis was performed to quantify
the expression levels of antioxidative enzymes, oxidative stress markers, and apoptotic
factors in the retinas. The intravitreal injection of melatonin ameliorated effectively the MNU
induced photoreceptor degeneration. Melatonin therapy mitigated the spontaneous firing
response, and preserved the basic configurations of visual signal pathway in MNU
administered mice. MEA is effective to evaluate the pharmacological effects on retina.
Of note, the cone photoreceptors in degenerative retinas were rescued efficiently by
melatonin therapy. Melatonin afforded these protective effects by modulating the
apoptotic cascades and alleviating the oxidative stress. These findings suggest that
melatonin could act as an alternative treatment for degenerative retinopathy. Melatonin
in.org February 2020 | Volume 10 | Article 16331
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might be used in combination with other therapeutic approaches to alleviate the
photoreceptor loss and preserve the visual function of RP patients.
Keywords: neuroprotection, degeneration, retina, toxicity, therapeutics
INTRODUCTION

Retina is a light-sensitive tissue that located at the posterior pole
of eyeball. It is organized into lamellar structures with complex
microcircuits that work synergistically to process visual signal.
Insults to the retina would cause irreversible visual impairments
(Briggman et al., 2011; Galli-Resta et al., 2018). Retinal
pigmentosa (RP) is a collection of inherited retinopathies that
characterized by the progressive photoreceptor death. The
pathological process of RP is influenced by a spectrum of
molecular, cellular, and tissue-level factors (Lemos Reis et al.,
2015). In view of the enormous heterogeneity implied in etiology,
RP patients always have highly variable onset points, progressive
dynamics, and prognosis outcomes (Cai et al., 2014; Falsini et al.,
2016). These variations make the accurate diagnosis extremely
challenging. In clinical settings, no medication can halt the
photoreceptor death and visual devastations in RP patients
(Khan et al., 2017; Rapino et al., 2018). Accumulating
evidences suggest that the oxidative stress contributes to the
photoreceptor apoptosis of RP. Excessive oxidative radicals
would perturb redox metabolism, alter mitochondrial
membrane permeability, and induce cytochrome c leakage in
photoreceptors (Mao et al., 2014; Hoffman et al., 2015). As long
as the surplus oxidative radicals are scavenged by deoxidizer,
photoreceptors might survive longer and function well under
favorable circumstances. This notion is further corroborated by
the fact that molecules with antioxidative potency can improve
the visual function of RP patients (Crooke et al., 2012; Koushan
et al., 2013; Narayan et al., 2016).

Photoreceptors are extremely vulnerable to oxidative insults.
Their homeostasis necessitates abundant antioxidants that
directed against the reactive radicals (Nowak, 2013). Melatonin
is an indoleamine which is synthesized mainly by the pineal
gland in a circadian fashion. Retina is a primary recipient of
circadian signals and is considered as a “light sensitive ocular
clock” (Flynn-Evans et al., 2014; Besharse and McMahon, 2016).
In particular, melatonin is also synthesized by the photoreceptors
to improve visual sensitivity (Gianesini et al., 2016; Hull et al.,
2018). As the melatonin receptors are intensively localized at the
synapse terminals of photoreceptors, it is highly possible that
melatonin might mediate beneficial effects on photoreceptors
(Owino et al., 2018). Sever lines of evidences suggest that
exogenous melatonin confers cytoprotective effects on the
retina (Tosini et al., 2012). Melatonin can act synergistically
with vitamin E to ameliorate the nitric oxide-induced lipid
peroxidation in retina (Siu et al., 1999). Comparison analysis
shows that melatonin is approximately 100 times more potent in
inhibiting the light-induced oxidative impairments than does the
vitamin E (Marchiafava and Longoni, 1999). Melatonin can also
mitigate the oxidative stress and prevent the abnormal vascular
in.org 2
congestion in diabetic retinas (Salido et al., 2013). Another in
vitro study shows that exogenous melatonin promotes the
survival of rod photoreceptors and retinal pigment epithelial
cells, both of which are implicated in the RP pathogenesis (Liang
et al., 2004). Moreover, exogenous melatonin is also protective
against ocular disease models, such as the glaucomatous optic
neuropathy, retinal ischemia-reperfusion injury, and retinopathy
of prematurity (Siu et al., 2006). Melatonin exerts these
protective actions by scavenging the oxygen free radicals,
stimulating the activity of cellular antioxidative enzymes,
stabilizing the mitochondrial electron transport chain, and
modulating the expression of apoptotic genes (Blasiak
et al., 2016).

N-methyl-N-nitrosourea (MNU) is an alkylating toxicant
that induces rapid photoreceptor cell death via systemic
administration (Tsubura et al., 2011). The MNU administered
mouse is typically used as a chemically induced RP model
(Tsuruma et al., 2012). MNU interacts with DNA and yields
the 7-medGua DNA adduct selectively in photoreceptor nuclei at
6 h after MNU administration. The apoptosis cascade in
photoreceptors is activated at 12 h after MNU administration
as evidenced by the down-regulated Bcl-2 level. At this time
point, internucleosomal DNA fragmentation is seen in the
photoreceptors (Tsubura et al., 2010). At 24 h after MNU
administration, the first evidence of histological alterations can
be detected. Photoreceptors show pyknosis of the nuclei, and
shortening of the inner and outer segments (Nakajima et al.,
1996a; Nakajima et al., 1996b). At 48 h after MNU
administration, the destruction of photoreceptor nuclei is most
prominent. Eventually at day 7, active signs of photoreceptor
degeneration are indistinct due to photoreceptor loss (Yoshizawa
et al., 1999; Yoshizawa et al., 2000; Tsubura et al., 2010). This
study is designed to explore the melatonin induced protective
effects on photoreceptor degeneration. Melatonin is delivered
into the vitreous body of the MNU administered mouse. We
aimed to find whether melatonin exerts beneficial effects on the
photoreceptor survival, visual function, and visual signal
transmission of MNU administered mice. In particular, we
intend to quantify the therapeutic efficiency of melatonin via
topographic analysis. These findings would enrich our
understandings of melatonin, and shed light on the
development of a new medication for RP.
MATERIALS AND METHODS

Animals and Study Design
The animals were handled following the Association for Research
in Vision and Ophthalmology (ARVO) guidelines for the Use of
February 2020 | Volume 10 | Article 1633
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Animals in Ophthalmic and Vision Research. All the procedures
and protocols were conducted as approved by the Institutional
Animal Care and Use Committee of Chinese PLA general
hospital (OOC-20187813). Totally 280 mice (C57/BL, 8–9
weeks old with both sexes, body weight range between 19 and
23 g) were used in this study. Animals were maintained in the
specific pathogen free facility (18–23°C, 40–65% humidity, 12-h
dark/light cycle) with food and water available. These mice were
randomly assigned into four subgroups: 1) normal controls:
mouse without any pharmacological administration; 2) MNU
group: mouse received an intraperitoneal injection of MNU (60
mg/kg; Sigma-Aldrich Corp., MO, USA); 3) MNU+melatonin
group: mouse received an intravitreal injection of melatonin (150
mg/kg body weight; Sigma-Aldrich Corp., MO, USA) 2 h post-
MNU administration. 4) MNU+vehicle group: mouse received
an intravitreal injection of 2 ml vehicle 2 h post-MNU
administration. In the dose effects analysis, the MNU
administered mouse received an intravitreal injection of
melatonin at the dose of 50, 100, 200, and 250 mg/kg,
respectively. MNU (Sigma; St. Louis, MO) was kept at −4°C in
dark. MNU was dissolved in the physiologic saline containing
0.05% acetic acid just before use. Generally, the MNU induced
retinal degeneration accomplishes within 7 days with the dose of
60 mg/kg (Gao et al., 2010; Tsubura et al., 2011). This
administered dose has been used in multiple ophthalmological
studies (Tsubura et al., 2010). It costs a period of time for
experimental animals to recover from trauma after the MNU
administration. To minimize their sufferings, we left the mice in
shielded cages for 2 h and verify if there was any abnormal
symptom in them. If no adverse effect was evident in the MNU
administrated animal, the intravitreal injection was then
performed. The preparation of melatonin solution followed a
previous described method (Andrés-Guerrero et al., 2009; Berger
et al., 2017). The melatonin was firstly dissolved in 5% dimethyl
sulfoxide (DMSO) and then further diluted with phosphate-
buffered saline (PBS) at various concentrations. Control animals
received vehicle injection containing the same amount of PBS
and DMSO as given to the melatonin treated groups. The dose of
melatonin selected in this study was based on data from other
investigators who have studied its protective effects against
Frontiers in Pharmacology | www.frontiersin.org 3
retinopathy (Yilmaz et al., 2004; García-Caballero et al., 2018).
Figure 1 is a schematic illustration of the experiment protocols.

Optokinetic Behavioral Test
Optokinetic behavior was evaluated via a two-alternative forced
choice paradigm as described previously (McGill et al., 2012).
The response threshold was determined by the stepwise
functions of correct track responses. The initial stimulus was
set as 0.200 cycle/degree sinusoidal pattern with a fixed
100% contrast.

Electroretinogram Examination
All the animals were dark adapted for at least 12 h. Subsequently,
the ERGs of the mice were recorded by the RETIport system
(Roland Consult, Germany) as described previously (Tao
et al., 2015).

Spectral-Domain Optical Coherence
Tomography
Mice were transferred to the recording plane of an ultrahigh-
resolution instrument when they were still anesthetized
(Bioptigen, Durham, NC, USA). Methylcellulose lubricant
(Allergan Inc, Dublin, Ireland) was applied on the corneas of
mice, and the probe was positioned near the cornea until the
retinal image appeared on the screen. A corresponding box was
focused on the optic nerve head (ONH) for orientation and eight
measurements at the same distance (0.3 mm) from the edge of
the ONH on either side were executed.

Multi-Electrode Array Recording
Multi electrode array (MEA) recording was performed following
a previously described method (Tao et al., 2015). Briefly, retinal
specimens were placed in the recording chamber of the
electrodes array. The analog extracellular responses of retinal
neurons were recorded by the MED-64 system (Alpha Med
Sciences, Osaka, Japan). The waveforms of field potentials were
processed with a band pass filter (100 to 3,000 Hz) for spike
evaluation. Peristimulus time histograms (PSTHs) and the raster
plots were used for retinal ganglion cells (RGCs) categorization.
ON and OFF responses were analyzed according to the PSTHs.
FIGURE 1 | (A) Massive photoreceptor degeneration was induced by an intraperitoneal administration of N-methyl-N-nitrosourea (MNU). Melatonin was injected into
the vitreous body of MNU administered mice in the therapeutic section. (B) A schematic illustration of the experimental protocols.
February 2020 | Volume 10 | Article 1633
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Histological and Immunohistochemical
Analysis
Retinal sections and whole mount preparations were prepared
following a previously described method (Tao et al., 2015). For
immunohistochemistry, the peanut agglutinin (PNA) conjugated
to a Alexa Fluor 488 (1:200, Invitrogen, USA), S-cone opsin, or
M-cone opsin antibodies (1:400, Millipore, MA, USA) were
incubated with retinal specimen, respectively. After thorough
rinses with PBS, the retinal specimens were incubated in Cy3-
conjugated anti-rabbit immunoglobulin G (IgG) (1:400, Jackson
ImmunoResearch Laboratories, USA) and 4′,6-diamidino-2-
phenylindole (DAPI). Cone cells within four 420x420 mm bins
surrounding the ONH were quantified using AxioVision
Rel. software.
Terminal Deoxyuridine Triphosphate
Nick-End Labeling Assay
Terminal deoxyuridine triphosphate nick-end labeling (TUNEL)
assay was conducted using the in situ cell death detection POD
Kit (Roche Diagnostics GmbH, Mannheim Germany). Apoptotic
index (AI) of the outer nuclear layer (ONL) was calculated as
(number of TUNEL-positive nuclei/total number of
photoreceptor cell nucleix100).
Quantitative Reverse Transcription-
Polymerase Chain Reaction
Mice were killed and their eyes were enucleated. Total RNA was
extracted from retinal patches with a commercial reagent
(TRIzol, Gibco Inc., Grand Island, NY), followed by
complementary DNA (cDNA) synthesis using the mMACS™
DNA Synthesis kit (Miltenyi Biotec GmbH, Bergisch-Gladbach,
Germany). The primers used in quantitative real-time (qRT)-
PCR were: Bax: 5'-AGCTCTGAACAGATCATGAAGACA-3'
(forward) and 5'-CTCCATGTTGTTGTCCAGTTCATC3'
(reverse); Bcl-2:5'-GGACA ACATCGC TCTGTG GATGA-3'
(forward) and 5'-CAGAGACAGCCAGGAGAAATCAA-3'
(reverse); caspase-3: 5'-TGTCGATGCAGCTAACC-3'
(forward) and 5'-GGCCTCCACT GGTATCTTCTG-30
(reverse); Calpain-2: 5'-CCCCAGTTCATTATTGGA GG-3'
(forward) and 5'-GCCAGGATTTCCTCATTCAA-3' (reverse).
All primers were quality controlled by sequencing the template
on a genetic ABI analyzer (Applied Biosystems Inc., Foster City,
CA, USA). The results were normalized with housekeeping gene
beta-actin. Reactions were performed with SYBRR Green Master
Mix (Bio-Rad Laboratories, Reinach, Switzerland) on a real-time
CFX96 Touch PCR detection system (Bio-Rad Laboratories,
Reinach, Switzerland). The amplification program consisted of
polymerase activation at 95°C for 5 min and 50 cycles of
denaturation at 95°C for 1 min, annealing and extension at 95°
C for 30 s. Duplicate RT-qPCR reactions were performed for
each gene to minimize individual tube variability, and an average
was taken for each time point. Threshold cycle efficiency
corrections were calculated, and melting curves were obtained
using cDNA for each individual-gene PCR assay. The relative
Frontiers in Pharmacology | www.frontiersin.org 4
expression levels were normalized and quantified to obtain the
DDCT values (DATA assist Software v2.2, Applied Biosystems).
Determination of Antioxidative Enzymes
and Oxidative Stress Marker Levels
Retina tissue was added into the PBS containing 0.5% Triton X-
100 (pH 7.4) and then was homogenized in ice cold by Grinders.
The tissue was centrifuged at 500 g for 5 min at 4°C. The
suspension was assayed for protein contents to normalize
enzyme activity and content of oxidative stress markers.
Superoxide dismutase (SOD) activity and malondialdehyde
(MDA) concentration were measured as described previously
(Du et al., 2018). The Cu-Zn-SOD activity was analyzer with the
SOD Assay Kit-WST (Jiancheng Biotech Ltd., Nanjing, China).
One unit (U) of Cu-Zn-SOD activity was defined as the amount
of enzyme causing half inhibition in the nitroblue tetrazolium
reduction rate. A spectrophotometer with ultra-micro-cuvettes
was used to measure the absorbance values. The absorbance
value of each sample in an ultra microcuvette was measured on a
spectrophotometer at 550 nm, and the value was expressed as U/
mg protein. The concentration of MDA was assessed using a
thiobarbituric acid (TBA) colorimetric assay under the guidance
of the manufacturer's protocol (Jiancheng Biotech Ltd., Nanjing,
China). The intensity of the resulting pink color was read at 532
nm, and the lipid peroxide levels (formed MDA) were expressed
as nmol/mg protein. The manganese-dependent SOD (Mn-
SOD) activity was measured using commercially available kits
under the guidance of the manufacturer's instructions (Jiancheng
Biotech Ltd., Nanjing, China). The Mn-SOD activity was
expressed as U/mg protein. The 8-hydroxy-2'-deoxyguanosine
(8-OHdG) concentration was quantified by a by competitive
ELISA assay kit (Jiancheng Biotech Ltd., Nanjing, China) under
the guidance of the manufacturer's protocol. The 8-OHdG
concentration was expressed as µg/mg DNA.
Statistical Analysis
Statistical difference was processed using the ANOVA analysis
followed by Bonferroni's post-hoc analysis. All the values are
presented as mean ± standard deviation (SD). P value < 0.05 was
considered statistically significant.
RESULTS

Melatonin Mediated Effects
on Photoreceptor Survival
The OCT examination showed that the retinal architecture of the
MNU group was severely destroyed (Figure 2A). The retinal
thickness in the MNU+vehicle group was not significantly
different from that in the MNU group (P > 0.05; n = 10),
suggesting that the surgical procedures of intravitreal injection
would not affect the outcome of MNU induced retinal
degeneration. Retinas of the MNU+melatonin group had
relatively more intact architectures compared with MNU group.
February 2020 | Volume 10 | Article 1633
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The retina thickness was significantly larger in the MNU
+melatonin group than that in the MNU group (P < 0.01.
n = 10). The ONL was undetectable in the histological sections
of the MNU group, while several layers of cell nucleus were
retained in the ONL of the MNU+melatonin group (Figure 2B).
The mean ONL thickness of the MNU+melatonin group was
significantly larger compared with the MNU group (P < 0.01; n =
10). Numerous TUNEL-positive cells were found in the ONL of
the MNU group (Figure 2C). Conversely, less TUNEL-positive
cells were found inONL of theMNU+melatonin group. Apoptosis
index (AI) was significantly smaller in the MNU+melatonin group
than that in the MNU group (P < 0.01; n = 10). Furthermore, the
dose-effect analysis showed that the mice in the 150 mg/kg group
had larger retinal thickness (Figure 2D) and ONL thickness
(Figure 2E) than those mice in the 50 and 100 mg/kg groups
(P < 0.01; n = 10). On the other hand, the AI of 150 mg/kg group
was significantly smaller compared the 50 and 100 mg/kg groups
(P < 0.01; n = 10; Figure 2F). These morphological indicators in
Frontiers in Pharmacology | www.frontiersin.org 5
the 150 mg/kg group were not significantly different from those in
the 200 and 250 mg/kg groups (P > 0.05; n = 10).

Melatonin Mediated Protective Effects
on Visual Function
Typical ERG responses were induced in the normal controls
(Figure 3A). In accordance with previous studies, the ERG
responses of the MNU group were undetectable [23]. The b-
wave amplitudes of the MNU+melatonin group were
significantly larger compared with the MNU group (P < 0.01;
n = 10; Figures 3B, C). The scotopic and photopic b-wave
amplitudes in the MNU+melatonin group were 56.1 and 62.7%
of the normal controls, respectively. These data suggested that
melatonin therapy conferred pronounced protection on the
visual function of MNU administered mice. The dose-effect
analysis showed that mice in the 150 mg/kg group had larger
b-wave amplitudes than those mice in the 50 and 100 mg/kg
groups (P < 0.01; n = 10; Figures 3D, E). The b-wave amplitudes
FIGURE 2 | (A) Optical coherence tomography (OCT) examination showed clear differences in the retinal thickness among the four animal groups. The retinal
thickness of the melatonin treated mice was significantly larger compared with the N-methyl-N-nitrosourea (MNU)+vehicle group. (B) The retina structure of the
normal controls was highly organized, whereas the retinal structure of MNU group was severely destroyed. The average ONL thickness of the melatonin treated mice
was significantly larger compared to MNU group. (C) The terminal deoxyuridine triphosphate nick-end labeling (TUNEL)-labeled cells in the melatonin-treated group
were prominently less compared with the MNU group. The apoptotic index (AI) of the melatonin treated group was significantly smaller compared with MNU group.
(D, E) The mice in the 150 mg/kg group had larger retinal thickness and ONL thickness than those mice in the 50 and 100 mg/kg groups. (F) The apoptotic index (AI)
of 150 mg/kg group was significantly smaller compared the 50 and 100 mg/kg groups (GCL, ganglion cell layer; IPL, inner plexiform layer; OPL, outer plexiform layer;
ONL, outer nuclear layer; INL, inner nuclear layer; ANOVA analysis followed by Bonferroni's post-hoc analysis, #P < 0.01, for differences between groups; *P < 0.01,
for differences compared with previous dose group; n = 10).
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in the 150 mg/kg group were not significantly different from those
in the 200 and 250 mg/kg groups (P > 0.05; n = 10). In the
optokinetic tests, the mice of the MNU group were insensitive to
the raster stimulus. The MNU+vehicle group had a visual acuity
essentially identical to that in the MNU group (P > 0.05; n = 10;
Figure 3F). The visual acuity in the MNU group was
significantly smaller compared with the MNU+melatonin
group (P < 0.01; n = 10). Moreover, the contrast sensitivity in
the MNU+melatonin was significantly larger compared with the
MNU group (P < 0.01; n = 10; Figure 3G). The dose-effect
analysis showed that the mice in the 150 mg/kg group had larger
visual acuity and contrast sensitivity than those mice in the 50
and 100 mg/kg groups (P < 0.01; n = 10; Figures 3H, I).
Moreover, these functional indicators in the 150 mg/kg group
were not significantly different from those in the 200 and 250 mg/
kg groups (P > 0.05; n = 10).

Melatonin Mediated Protective Effects
on the Survival of Cone Photoreceptors
Intense PNA fluorescence was found at the inner segments of the
normal controls (Figure 4). The PNA fluorescence in the retinal
sections of MNU group was extremely faint. Conversely, evident
PNA fluorescence was found at the inner segments of the
MNU+melatonin group. The retinal flat mounts of the
MNU+melatonin group showed fairly well-preserved PNA
fluorescence. The PNA-positive cell count averaged 723 ± 58
in MNU+melatonin group versus 15 ± 10 in the MNU group (P <
0.01; n = 10; Table 1). These findings suggested that the
melatonin therapy result in a significant improvement in the
cone photoreceptor survival. In the retinal flat mounts of MNU
FIGURE 3 | (A) The representative electroretinogram (ERG) waveforms of mice. There was a prominent reduction in the ERG amplitudes of the N-methyl-N-
nitrosourea (MNU) group. The ERG waveforms in the MNU+ melatonin group were less deteriorated. (B, C) The scotopic and photopic b-wave amplitudes in the
MNU+ melatonin group were significantly larger compared with the MNU group. (D, E) The mice in the 150 mg/kg group had larger b-wave amplitudes than those
mice in the 50 and 100 mg/kg groups. The b-wave amplitudes in the 150 mg/kg group were not significantly different from those in the 200 and 250 mg/kg groups.
(F, G) The mice in the MNU+vehicle group showed no significant improvement in optokinetic tests. Conversely, the visual acuity and contrast sensitivity were both
significantly larger in the MNU+ melatonin group than those in the MNU group. The mice in the 150 mg/kg group had larger visual acuity (H) and contrast sensitivity
(I) than those mice in the 50 and 100 mg/kg groups (ANOVA analysis followed by Bonferroni's post-hoc analysis, #P < 0.01, for differences between groups;
*P < 0.01, for differences compared with previous dose group; n = 10).
FIGURE 4 | Immunostaining assay on the retinal sections and flat-mounts.
The peanut agglutinin (PNA) fluorescence in the retinal specimens of N-
methyl-N-nitrosourea (MNU) administered mice was extremely faint.
Conversely, evident PNA fluorescence was found in the retinal specimens of
the MNU+melatonin group. Moreover, the vitality of cone population was
examined using opsin-specific antibodies. Both the M- and S-opsin positive
cells were found in the retinal flat mount of MNU+melatonin group (OS, outer
segments; IS, inner segments; OPL, outer plexiform layer; ONL, outer nuclear
layer; INL, inner nuclear layer; ANOVA analysis followed by Bonferroni's post-
hoc analysis).
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+melatonin group, the PNA-positive cell count of the dorsal-
temporal (DT) quadrant was the largest, suggesting that the cone
photoreceptors in this region were preferentially rescued by
melatonin. Moreover, the M-opsin or S-opsin staining was
undetectable in the retinal specimens of the MNU group.
Conversely, these cone stainings were efficiently persevered in
the retinas of the MNU+melatonin group. The average count of
M- and S-opsin-positive cell was significantly larger in the MNU
+melatonin group than that in the MNU group (P < 0.01; n = 10;
Table 1). The average count of M- and S-opsin-positive cell in
the MNU+melatonin group was 48.6 and 44.8% of the normal
control, respectively.

Melatonin Mediated Protective Effects
on the Visual Signal Transmission
MEA were classified into three categories: the central, the mid-
peripheral, and the peripheral electrodes channels (Figure 5A).
The field potential waveform was undetectable in the MNU
group (Figure 5B). Conversely, the melatonin therapy
preserved the field potential waveforms in the MNU
+melatonin group. The mean amplitude of field potential was
significantly larger in the MNU+melatonin group than that in
the MNU group (P < 0.01; n = 10; Figure 5C). In MNU
+melatonin group, the field potentials in the peripheral region
had larger amplitudes than those in the mid-peripheral and
TABLE 1 | Cell counts in different quadrants of retina whole mounts.

Location Normal control MNU MNU+Melatonin MNNU+vehicle

PNA-Positive Cell Counts
S T 1,698 ±113‡§∮ 23 ±12†§ 951±62†‡∮ 20±13†§

IT 1,711 ±106‡§∮ 18 ±9†§ 754±55†‡∮ 16±8†§

C 1,681 ±112‡§∮ 10±5†§ 660±51†‡∮ 15±7†§

IN 1,662 ±114‡§∮ 13±7†§ 573±53†‡∮ 19 ±8†§

SN 1,678±113‡§∮ 9±6†§ 699±60†‡∮ 18±9†§

Average 1,686±112‡§∮ 15±10†§ 723±58†‡∮ 18±11†§

M-Opsin Positive Cell Counts
ST 1,240 ±71‡§∮ 18+9†§ 762±63†‡∮ 19+7†§

IT 1,156±78‡§∮ 13+9†§ 595±51†‡∮ 14+5†§

C 1,142 ±76‡§∮ 9+5†§ 429±40†‡∮ 9+4†§

IN 1,140±69‡§∮ 6+3†§ 383±35†‡∮ 8+3†§

SN 1,213±68‡§∮ 8+5†§ 698±57†‡∮ 11+6†§

Average 1,178±73‡§∮ 11±7†§ 573±52†‡∮ 12±5†§

S-Opsin Positive Cell Counts
ST 305±48‡§∮ 0†§ 219±29†‡∮ 0†§

IT 521 ±41‡§∮ 0†§ 246±35†‡∮ 0†§

C 839±57‡§∮ 8±6†§ 320±38†‡∮ 10±3†§

IN 920±66‡§∮ 12±7†§ 401±40†‡∮ 19±6
†

SN 805±60‡§∮ 10±6†§ 332±34†‡∮ 15±5†§

Average 676±66‡§∮ 6±5†§ 303±37†‡∮ 9±6†§
†P < 0.05 for difference compared with control group.
‡P < 0.05 for difference compared with MNU group.
§P < 0.05 for difference compared with MNU+Melatonin group.
∮P < 0.05 for difference compared with MNNU+vehicle group.
All values are presented as mean ± SD; n = 10 per group.
FIGURE 5 | (A) Electrodes were classified into three categories according to their position. (B) The field potential waveforms were undetectable in the N-methyl-N-
nitrosourea (MNU) group. The field potential waveforms of the MNU+melatonin group were effectively preserved. (C) The mean amplitude of field potential was
significantly larger in the MNU+melatonin group than that in the MNU group. In the MNU+melatonin group, the field potentials in peripheral region had larger
amplitudes than the other regions. (D) The mice in the 150 mg/kg group had larger amplitude of field potential than those mice in the 50 and 100 mg/kg groups.
(ANOVA analysis followed by Bonferroni's post-hoc analysis, #P < 0.01, for differences between groups; *P < 0.01, for differences compared with previous dose
group; ∮P < 0.01, for differences compared with the central region; †P < 0.01, for differences compared with the mid-peripheral region; §P < 0.01, for differences
compared with the peripheral region; n = 10).
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central regions (P < 0.01; n = 10). The dose-effect analysis
showed that the mice in the 150 mg/kg group had larger
amplitude of field potential than those mice in the 50 and 100
mg/kg groups (P < 0.01; n = 10; Figure 5D). Moreover,
amplitude of field potential in the 150 mg/kg group were not
significantly different from those in the 200 and 250 mg/kg
groups (P > 0.05; n = 10). The spontaneous firing rate was
significantly higher in the MNU group than that in the normal
controls (P < 0.01; n = 10) (Figure 6A). Melatonin therapy
reduced significantly the spontaneous firing rate in degenerative
retinas (P < 0.01; n = 10). Furthermore, the RGCs were
categorized according to their light induced responses (Figure
6B). The total firing rate of light induced response was
significantly higher in the MNU+melatonin group than that
in the MNU group (P < 0.01; n = 10). Both the ON and OFF
response intensities were significantly larger in the MNU
+melatonin group than those mice in the MNU group (P <
0.01; n = 10). In particular, the OFF response was more
Frontiers in Pharmacology | www.frontiersin.org 8
efficiently preserved than the ON response. The ON response
intensity was 38.1% of the normal controls, while the OFF
response intensity was 69.9% of the normal controls. The dose-
effect analysis showed that the mice in the 150 mg/kg group had
smaller spontaneous firing rate and larger light induced firing
rate than those mice in the 50 and 100 mg/kg groups (P < 0.01;
n = 10; Figures 6D, E). The firing rates of ON and OFF
responses in the 150 mg/kg group were also significantly
larger than those in the 50 and 100 mg/kg groups (P < 0.01;
n = 10; Figures 6F, G). These indicators in the 150 mg/kg group
were not significantly different from those in the 200 and 250
mg/kg groups (P > 0.05; n = 10).

Mechanisms Underlying Melatonin
Induced Protective Effects
The messenger RNA (mRNA) levels of caspase-3, calpain-2,
and Bax in the MNU+melatonin group were significantly lower
compared with the MNU group (P < 0.01; n = 10; Figure 7).
FIGURE 6 | (A) The spontaneous firing spikes of retinal ganglion cells (RGCs). The spontaneous firing rate was significantly higher in the N-methyl-N-nitrosourea
(MNU) group than that in the normal controls. The spontaneous firing rate was significantly lower in the MNU+melatonin group than that in the MNU group. (B) Main
categories of RGCs were isolated on the basis of their peristimulus time histograms (PSTHs). (C) The total firing rate in the MNU group decreased significantly
compared with normal controls. The total firing rate was significantly higher in the MNU+melatonin group than that in the MNU group. In the melatonin treated mice,
the OFF pathway was more efficiently preserved than the ON pathway. The mice in the 150 mg/kg group had smaller spontaneous firing rate (D) and larger light
induced firing rate (E) than those mice in the 50 and 100 mg/kg groups. The firing rates of ON and OFF response in the 150 mg/kg group were also significantly
larger than those in the 50 and 100 mg/kg groups (F, G). (ANOVA analysis followed by Bonferroni's post-hoc analysis, #P < 0.01, for differences between groups;
*P < 0.01, for differences compared with previous dose group; n = 10).
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On the other hand, The mRNA level of Bcl-2 in the MNU
+melatonin group was significantly higher compared with the
MNU group (P < 0.05; n = 10). These findings suggested that
the anti-apoptotic mechanism was, at least partly, responsible
for the melatonin induced protection. The retinal MDA (a
stable metabolite of lipid peroxidation) was 1.89± 0.303 nmol/
mg in MNU+melatonin group versus 4.88± 0.521 nmol/mg in
the MNU group (P < 0.01; n = 10). The retinal 8-OHdG (an
indicator of DNA oxidative damage) was 89.71 ± 8.40 mg/mg in
MNU+melatonin group versus 140.60 ± 11.37 mg/mg in the
MNU group (P < 0.01; n = 10). These findings suggested that
the melatonin therapy could alleviate the oxidative stress of
degenerative retinas. Mitochondria impairments would result in
the release of inter-membrane space proteins, and the
subsequent activation of mitochondrial-dependent apoptosis
(Mao and Sun, 2015). The retinal level of MnSOD, a
mitochondrial protein with reactive oxygen species (ROS)
scavenging potency, was 33.84 ± 5.37 U/mg in the MNU
+melatonin group compared to 18.55 ± 4.29 U/mg for the
MNU group (P < 0.01; n = 10), suggesting that melatonin
therapy conferred beneficial effects on the mitochondria of
photoreceptors. The retinal level of SOD was 160.455 ±
21.802 U/mg in the MNU+melatonin group compared to
71.831 ± 15.270 U/mg for the MNU group (P < 0.01; n =
10). These findings suggested that the melatonin therapy could
enhance the activity of endogenous antioxidative enzymes in
MNU administer mice.
Frontiers in Pharmacology | www.frontiersin.org 9
DISCUSSION

Eye is a unique organ with transparent anterior structures and
highly compartmentalized anatomy. These features will facilitate
the drug delivery under direct visualization and subsequent non-
invasive imaging in vivo. Intravitreal injection is a precise
delivery approach which can maximize the drug intensity
within eyeball (Haas et al., 2016). After injected into the
vitreous humor, the therapeutic agents can touch a substantial
fraction of the outer retina, avoiding the side effects on unwanted
organs. To corroborate this point, we deliver melatonin into the
vitreous cavity of the MNU administered mice. Melatonin could
mitigate the photoreceptor loss in degenerative retinas.
Melatonin is a lipophilic and hydrophilic molecule that can
readily diffuse across concentration gradient, pass through the
internal limiting membrane, and bathe the photoreceptor
adequately (Doonan and Cotter, 2004; Huang et al., 2013). In
this context, the intravitreal delivery would ensure high
melatonin concentration in the retina. These findings lay the
groundwork for future intraocular application of melatonin.

Gene therapy is a promising therapeutic strategy against RP
(Fischer, 2016). However, the heterogeneous etiology of RP is
challenging for any gene therapy that seek to rectify the primary
defects. In the absence of genetic background for a given RP
patient, pharmacologic therapy could be a temporizing measure
until a genetic diagnosis can be made and a specific therapy
devised (Drack et al., 2012). The common pathological process
FIGURE 7 | The messenger RNA (mRNA) levels of apoptotic factors in retina. The expression levels of malondialdehyde (MDA) and 8-hydroxy-2'-deoxyguanosine
(8-OHdG) were significantly lower in the N-methyl-N-nitrosourea (MNU)+melatonin group compared with the MNU group. The retinal levels of superoxide dismutase
(SOD) and manganese superoxide dismutase (MnSOD), were significantly higher in the MNU+melatonin group than those in the MNU group. (ANOVA analysis
followed by Bonferroni's post-hoc analysis, *P < 0.05, #P < 0.01, for differences between groups; n = 10).
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underlying photoreceptor degeneration might afford an
alternative therapeutic target (Sancho-Pelluz et al., 2008). For
instance, excessive oxidative stress contributes to the
photoreceptor degeneration with variable et iologic
backgrounds (Tsuruma et al., 2012; Narayan et al., 2016;
Donato et al., 2019). This is the rationality to build the
therapeutic strategy on antioxidants. Melatonin is a circadian
hormone that is primarily produced by the pineal gland (Back
et al., 2016; Reiter et al., 2016). Photoreceptors are also capable of
synthesizing melatonin and releasing them into retinal tissue
(Tosini et al., 2012). Retinal melatonin participates in a broad
spectrum of physiological activities, such as maintaining the light
responsiveness, regulating intraocular pressure, and adjusting
circadian rhythms (McMahon et al., 2014; Crooke et al., 2017). A
recent study shows that endogenous melatonin can modulate
photoreceptor viability via the MT1 receptors (Baba et al., 2009).
On the other hand, systematic administration of exogenous
melatonin is reported to protect the RGCs from hypoxic
injuries (Kaur et al., 2013). The exogenously applied melatonin
can stabilize the mitochondria and reduces the cytochrome c
leakage into the cytosol of RGCs. Another in vitro study shows
that adding the melatonin to culture solution can protect
photoreceptors from light-induced oxidation (Marchiafava and
Longoni, 1999). For P23H rats carrying a mutation defect,
adding melatonin into the drinking water alleviates the
photoreceptors loss and visual impairments (Lax et al., 2011).
Daily injection of melatonin also retards the photoreceptor
degeneration in the rd10 and rds mice (Liang et al., 2001; Xu
et al., 2017). More excitingly, a clinical investigation shows that
the age-related macular degeneration (AMD) patients have lower
melatonin level, and the oral melatonin supplements delay the
macular degeneration and improve the visual acuity of these
patients (Crooke et al., 2017). Herein, we show that a single
intravitreal injection of melatonin is potent enough to alleviate
the MNU induced photoreceptor degeneration. Typically, the
MNU induced photoreceptor degeneration accomplishes within
1 week (Tsubura et al., 2011; Tsuruma et al., 2012). In this
context, robust protective strategies are necessary to arrest the
rapid photoreceptor apoptosis. In particular, the melatonin
mediated protection follows a dose-dependent manner. As a
well known anti-oxidant, melatonin is not only able to scavenge
directly the free radical, but also to enhance the production of
endogenous anti-oxidative enzymes (Rodriguez et al., 2004). We
show that the melatonin therapy enhances the expression levels
of Cu-Zn-SOD and MnSOD, both of which are ubiquitous
oxidation protectors in retina (Akpinar et al., 2007; Biswal
et al., 2017). On the other hand, melatonin could reduce the
level of MDA and 8-OHdG, which are classic markers of lipid
and DNA peroxidation (Celebi et al., 2002; Deliyanti et al., 2018).
These findings suggest that melatonin may be beneficial for the
retinopathies related to oxidative stress. Nevertheless, several
pharmacological issues should be addressed before further
clinical application. Melatonin must be applied at the
appropriate chance and in the feasible way to RP patients. The
optimal dosages, administration routes, and therapeutic time
Frontiers in Pharmacology | www.frontiersin.org 10
window of melatonin therapy should be well characterized.
Additionally, the potential adverse effects of the high-dose
melatonin should be evaluated by a large scale clinical trial.

Photoreceptor apoptosis reduces the oxygen consumption
and exacerbates the oxidative stress in retinal tissue
(Campochiaro and Mir, 2018). Oxidative stress in turn
activates the apoptotic cascade, and accelerates the death of
photoreceptors (Talcott et al., 2011). TUNEL assay is a reliable
method to identify the apoptotic cells in retina (Nagar et al.,
2017). Our TUNEL results show that intravitreal injection of
melatonin is able to inhibit the MNU induced photoreceptor
apoptosis. Furthermore, melatonin reduces significantly the
mRNA level of apoptotic factors. These findings suggest that
that modulating the apoptotic threshold might be beneficial for
photoreceptor survival (León et al., 2005; Fernández et al., 2015;
Yang et al., 2015). Accordingly, melatonin might provide a
mutation-independent medication that can be generalized to
RP patients with different etiologic backgrounds.

Our MEA data shows that the photoreceptors in peripheral
retina are more efficiently preserved than other areas. As a
metabolically active tissue, retina is characterized by the intense
oxygen consumption (Yu and Cringle, 2001). The blood supply of
central retina depends exclusively on the choroidal vessel system,
while the peripheral retina relies on both the retinal and choroidal
vessel system (Blasiak et al., 2016). Hence, the detrimental factors
in the peripheral regions can be eliminated instantly by blood
circulation. Previous studies have shown that the photoreceptors
in the central retina are more vulnerable to chemical or
pathogenetic factors than those in the peripheral region
(Jimenez et al., 1996; Stone et al., 1999; Homma et al., 2009).
For instance, the MNU induced photoreceptor degeneration is
remarkably more severe in the central retina, while the peripheral
photoreceptors can survive longer as their blood supply is much
more abundant. Therefore, the differences in therapeutic efficiency
should be ascribed to the comparative vulnerability across retinal
regions (Tao et al., 2015a; Tao et al., 2015b).

Similar to other RP animal models (Masland, 2001),
spontaneous RGCs hyperactivity occurs in the MNU
administered mice. The spontaneous RGCs hyperactivity is
detrimental to the visual signaling, since it would add
unnecessary noise into retinal circuits (Marc et al., 2007; Lin
et al., 2009; Wu, 2009; Bisti, 2010; Barrett et al., 2015). Melatonin
therapy can restrain the spontaneous hyperactivity and enhance
the light induced response inMNU administeredmice. Exogenous
melatonin is unlikely to alter the cellular membrane, dominant
receptive fields, and intrinsic activities of the RGCs, since the
melatonin receptors are rarely expressed on the RGCs of mice
(Wiechmann and Sherry, 2013). A possible mechanism
underlying these benefits may be attributed to the melatonin
induced effects on the retinal circuits which are presynaptic to
the RGCs (Baba et al., 2009). RGCs receive simultaneously the
excitatory inputs from bipolar cells and the inhibitory glycinergic
inputs from amacrine cells. Electrophysiological activity of RGCs
is shaped delicately by this antagonistic system. Any changes in the
presynaptic inputs would produce secondary effects on the RGCs
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(Protti et al., 1997; Euler and Schubert, 2015). It is noteworthy that
melatonin plays a critical role in the signaling of amacrine cells
(Lundmark et al., 2006; Huang et al., 2013). Melatonin can
potentiate the glycine receptor-mediated post-synaptic currents
in RGCs, thereby activating the inhibitory inputs from glycinergic
amacrine cells (Zhao et al., 2010). Therefore, it is reasonable to
speculate that the melatonin inhibits the spontaneous RGCs
hyperactivity via the glycinergic system. Moreover, visual signal
pathway reorganization occurs in the melatonin treated mice: the
balance between ON and OFF pathway is disturbed, and the OFF
signal pathway would dominate the visual signal transmission.
Glycinergic amacrine cells are essentially involved in the crossover
inhibition between ON and OFF pathways in the inner retinal
circuits (Hsueh et al., 2008; Molnar et al., 2009). Bymodulating the
inhibitory signals from glycinergic amacrine cells, melatonin may
drive the OFF-RGCs to a more hyperpolarized level, which would
enable these cells to detect subtle contrast at night (Zhao et al.,
2010; Wiechmann and Sherry, 2013). These benefits may
collectively contribute to the improved efficiency of visual
signaling (Lin et al., 2009; Jones et al., 2016).

Admittedly, some shortcomings are implied in this study.
While the melatonin treatment is able to ameliorate the MNU
induced photoreceptor degeneration, these findings confine
themselves to study on animal models. MNU is equally toxic
to both rod and cone photoreceptors. The observation that cones
are also killed by MNU toxicity does not correspond to cone
degeneration in RP patients, since demise of this population
occurs in a secondary wave of cell death, long after rods have
degenerated (Narayan et al., 2016). Furthermore, the rodent
retinal has a cone distribution primarily as a ring in the
equatorial retina which is quite different from the fovea
dependence on cones in human (Szél et al., 1996). The two
cone populations (M- and S-cone) are not uniformly distributed
across the mouse retina. Our immunostaining results showed
that M-cones in DT quadrant are preferentially rescued by
melatonin treatment. This disequilibrium is also found in the
hereditary RP animal models: the superior quadrant with patches
of late-surviving cones is the most resistant in the rd1 mouse
(Narayan et al., 2016). However, regarding the situation in RP
patients, it is still disputed if an isolated protection of cones
would work once the rods are lost. Therefore, the melatonin
induced beneficial effects on cones should be further validated in
the large animal model which has retinal architectures more
similar to human.
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In conclusion, intravitreal delivery of melatonin can alleviate
the MNU induced photoreceptor degeneration. Melatonin can
also rectify the abnormities in visual signal transmission within
inner retinal circuits. Melatonin affords these benefits by
inhibiting apoptosis and mitigating oxidative stress. These
findings highlight the possibility that intravitreal delivery of
melatonin might be beneficial for the visual function of RP.
Further studies are necessary to characterize the exact
mechanism underlying the melatonin induced protection.
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