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Self-organizing Mechanism for Development
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Neurons develop distinctive dendritic morphologies to receive and process information. Previous experiments showed
that competitive dendro-dendritic interactions play critical roles in shaping dendrites of the space-filling type, which
uniformly cover their receptive field. We incorporated this finding in constructing a new mathematical model, in which
reaction dynamics of two chemicals (activator and suppressor) are coupled to neuronal dendrite growth. Our numerical
analysis determined the conditions for dendritic branching and suggested that the self-organizing property of the
proposed system can underlie dendritogenesis. Furthermore, we found a clear correlation between dendrite shape and
the distribution of the activator, thus providing a morphological criterion to predict the in vivo distribution of the
hypothetical molecular complexes responsible for dendrite elongation and branching.
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Introduction

One of the primary interests in developmental biology is
the emergence of function through morphogenesis. Morpho-
logical diversity of dendrites and its impact on neuronal
computation perfectly represents the importance of this
problem: shapes of dendrites are highly variable from one
neuronal type to another, and it has been suggested that this
diversity supports differential processing of information in
each type of neuron [1-3]. Therefore, patterning of neuronal
class-specific dendrites is a process to produce shapes that
realizes the physiological functions of neurons. Recent
advances in genetic manipulation at the single-cell level
enabled us to identify genes whose loss of function affects
neuronal morphology (reviewed in [4-6]); however, we are far
from formulating an overall picture of the underlying
mechanism of pattern formation.

Among various classes of dendrites is the “space-filling”
type, which uniformly covers its receptive field. The concept
of space-filling was introduced by Fiala and Harris [7], and we
use this term with a slightly different meaning here. Neurons
elaborating space-filling dendrites are found in various parts
of nervous system, including retinal ganglion cells [8],
trigeminal ganglion cells [9], Purkinje cells (Figure 8B) [10],
and Drosophila class IV dendritic arborization (da) neurons
(Figure 1) [11-14]. The space-filling type looks very complex
morphologically, but can be regarded as being simple in their
isotropic features and in their two-dimensionality. Most
importantly, it shows distinctive spatial regulation of pattern
formation: for instance, dendritic branches of Drosophila class
IV da neurons avoid dendrites of the same cell and those of
neighboring class IV cells, which allows complete, but
minimal overlapping, innervation of the body wall (desig-
nated as isoneuronal avoidance and tiling) (Figure 1A and 1B)
[11,13-15]. Our previous experiment together with studies by
others demonstrated that competitive dendro-dendritic
interaction underlies tiling, as shown by the fact that the da
neurons reaccomplish tiling in response to ablation of
adjacent neurons of the same class or to severing of their
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branches (Figure 1C) [11,14]. It should be noted that the
qualitatively same inhibitory dendro-dendritic interaction is
working between the adjacent neurons of the same type as
well as between dendrites of the same neurons.

There are two types of the proposed mechanisms that
support this repulsive behavior of dendrites: one is contact-
dependent retraction of dendrites and the other is repulsion
of dendrites via diffusive suppressors. The contact-dependent
mechanism seems insufficient to a clear field splitting,
because as far as dendrites do not make contacts (by passing
under other dendrites, for example) they can invade
neighboring territories. Moreover, time-lapse analysis showed
that dendrites make a turn before they are about to cross
nearby branches [16]. So we prefer diffusive signaling to a
contact-dependent one. Similar mechanisms have been
suggested to work in other model systems as well [9,17,18].
With all available information taken together, we considered
the space-filling dendrite to be an ideally suited one for us to
start modeling, due to the simplicity of its patterning and the
experimentally verified mechanism of the pattern formation.

A number of mathematical models for neurite formation
were previously proposed; and most of them assumed that
dendrite development is a consequence of stochastic sprout-
ing and subsequent growth arrest [19-22]. Different forms of
branching functions were postulated and modified so that
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Author Summary

Neurons elaborate two types of neuronal extensions. One is axon,
which sends outputs to other neurons. Another is dendrite, which is
specialized for receiving and processing synaptic or sensory inputs. Like
elaborated branches of trees, the shape of dendrites is quite variable
from one type to another, and different dendritic geometry contributes
to differential informational processing and computation. For instance,
neurons of the space-filling type (e.g., retinal ganglion cells) fill in an
open space to pick up spatial information from every corner of their
receptive field. Therefore, dendrite development is one of the
representative examples of the emergence of function through
morphogenesis. Previous experiments including ours showed that
competitive dendro-dendritic interactions play critical roles in shaping
dendrites of the space-filling type. In the present study, we
incorporated this finding in constructing a new mathematical model,
in which reaction dynamics of chemicals are coupled to neuronal
dendrite growth. Our numerical analysis suggested that self-organizing
property of the proposed system underlies formation of space-filling
dendrites. Furthermore, we provided a morphological criterion to
predict the in vivo distribution of the hypothetical molecular complexes
responsible for dendrite elongation and branching. We have now
found a substantial number of molecules involved in dendrite
development, thus it is timely to discuss the prediction from this work.

calculated dendrograms would fit dendritic arbors of real
neurons in a quantitative manner. Those studies were
descriptive and did not provide a comprehensive mechanism
of pattern formation. In this study, we developed a new class

of mathematical model for neurite formation to approach a
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avoidance

heteroneuronal
avoidance

Neurite Branching by RD System

principle of development of the space-filling dendrites. In
our neurite growth model that is based on the aforemen-
tioned inhibitory dendro-dendritic interaction, various as-
pects of pattern formation, e.g., extension, orientation of
growth, and branching of dendrites, are represented in a
single framework. Computer simulation showed that our
model develops dendritic extension and branching autono-
mously; furthermore, numerical analysis determined the
conditions for dendritic growth.

Results

Cell Compartment Model for Dendritic Growth

As mentioned above, two-dimensionality is a characteristic
of space-filling dendrites; thus we built our model in the 2D
space, dividing the 2D space into two distinct compartments
(Figure 2A), i.e, the compartment occupied by neurons
(designated as the cell compartment or the cell region
hereafter) and the extracellular compartment. This model is
referred to as the “cell compartment model.” We assumed
that growth of the cell region, which shapes the dendritic
trees, is regulated by a hypothetical intracellular chemical,
i.e., the activator (Figure 2A). We set a restriction in terms of
the movement of the activator so that it diffuses only the
inside of cells. The activator promotes the growth of the cell
compartment when its concentration is higher than threshold
(Tr in Figure 2D). To account for the inhibitory dendro-
dendritic interaction, we hypothesized another chemical, the
suppressor. The suppressor is produced when the concen-
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Figure 1. Competitive Interactions between Dendrites Mediate Isoneuronal Avoidance and Tiling

(A) An image of Drosophila larva of NP7028 UAS-mCD8:GFP [11]. Class IV da neurons ddaC (arrows) were visualized with GFP. Dendrites of class IV da
neurons almost completely cover the body wall.

(B) A high-power image of class IV da neurons at single dendrite resolution (left). Dendrites from the left segment are colored purple; and those from
the right segment, green (right). Dendrites of the same class IV da neuron come very close, but hardly overlap each other (isoneuronal avoidance); in
addition, minimal overlap was seen between dendrites of neighboring neurons (heteroneuronal avoidance or tiling).

(C) Schematic drawing of a filling-in response (adapted from 12). Left: Branches enclosed by the dotted line were severed by laser irradiation (arrow).
Right: Neighboring dendrites filled in the open space that had been covered by the detached branches and space-filling pattern was regenerated. Black:
dendrites of the operated cell. Gray: dendrites of the neighboring cell. This experiment clarifies an essential role of inhibitory dendro-dendritic
interactions in isoneuronal avoidance and tiling. Bar, 50 um for “A” and 20 um for “B.”

doi:10.1371/journal.pcbi.0030212.g001
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Figure 2. Schematic Representation of the Cell Compartment Model

(A,B) An activator-suppressor system. Intracellular activator promotes
growth of dendrite and produces the suppressor or accelerates secretion
of the suppressor from intracellular organelles (“1” in (A)). On the other
hand, the suppressor is secreted from the cell and diffuses in extracellular
compartments. Binding of its receptor on the plasma membrane triggers
signaling to inhibit synthesis of the activator (“2” in (A)). These reactions
underlie inhibitory dendro-dendritic interactions (B).

(C) Black: core of the cell; dark gray: cell boundary. The cell compartment
is represented by collective circular domains around the core with radius
R (gray circles).

(D) Dynamics of core of the cell (c). The activator promotes cell growth
when its concentration is higher than threshold (Tr). a(u) =0.49 (u < Tr)
or a(u) =0.49 — 2.5(u - Tr) (u > Tr). Upper graph: Bothc=0and c=1 are
stable equilibrium points. Lower graph: When a(u) < 0, c=a(u) and c=1
are stable equilibrium points and ¢ =0 becomes an unstable equilibrium
point. Very small positive noise was added to ¢, so ¢ — 1 quickly. These
settings make it possible to store the history of growth of ¢, because c =
1 is a stable equilibrium point all the time.
doi:10.1371/journal.pcbi.0030212.9g002

tration of activator is high, i.e., it is produced at the actively
growing region of dendrites. The suppressor acts to decrease
the concentration of activator, but the concentration of
activator can increase by its autocatalytic production where
the activator is locally concentrated. The reaction between
activator and suppressor is the so-called “activator-inhibitor
type” [23,24] (“1” in Figure 2A). The activator-induced
production of the suppressor can be realized by either local
translation of suppressor-encoding mRNA in dendrites [25]
or secretion of suppressor proteins from intracellular
organelles. The suppressor is secreted from the cell, diffuses
throughout the extracellular space, and then binding of the
suppressor to its receptor drives intracellular signaling to
repress the production of the activator (“2” in Figure 2A). So,
the suppressor mediates long-range inhibitory interactions
between dendrites (Figure 2B). These settings endow the
system with feedback-loop regulation at two different levels:
one is between the two chemicals and the other is between
the dynamics of these chemicals and the expansion of the cell
compartment. The latter consists of the following reciprocal
interactions: the activator controls growth of the cell region
and growth of the cell region determines where the activator
can diffuse further.
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Model Formulation
Our model can be written as the following equations:

N Aut g (u,0) in @, (1a)
ot
Ov .
i dAv + yg(u,v) in Q (1b)
dc .
= vpue(a(u) —¢)(c — 1) in Q (1¢)

where u and v are concentrations of the activator and the
suppressor, respectively. Note that these equations are
already non-dimensionalized, so d is the ratio of the diffusion
coefficient between the two substances (see the section
“Original equations”). As we hypothesize that diffusion of
the suppressor is faster than that of the activator, d is larger
than 1 [26]. ¢(x, t) is a symbolic variable to indicate the “core”
of the cell (Figure 2C and 2D). The biological correlates of ¢
could be microtubules that support structural integrity of
the cell. The right-hand side of Equation 1c indicates that the
dynamics of the cell state is bi-stable and that the two steady
states are 1 and 0, indicating “core” and “not core,”
respectively, and a(u) is the switching point at which the
growth behavior of ¢ is flipped. ¢ quickly reaches 1 when w is
higher than threshold (7r). The symbol Q is the 2D real
space, and x, denotes a point in Q, where ¢ is larger than 0.5.
Qc, which is the region of the cell in Q, and is defined by
using x, as follows: Q = {|x —x/|/\/Y<R} (y is a rate
constant to rescale time and space) [26]. R is the distance
between core and the plasma membrane, and the cell
compartment is represented by collective circular domains
around the core with radius R (Figure 2C). We found that R
= 0.004 realized the finest resolution of patterns, so we used
this value of R throughout this study (see the section “R
value” for details). Describing the cell growth as a rapid
transition between bistable states is reminiscent of a way to
solve moving boundary problems in phase-field models [27].
A difference between these models and ours is whether
diffusion of the phase field is incorporated or not; a
diffusion term does not appear in Equation lc, because
diffusion of the cell state is biologically unrealistic in this
case.

flu,v) and g(u,v) represent chemical reaction terms, where
the partial derivatives satisfy the following conditions: % >0
(autocatalytic production of the activator), g—{} < 0 (inhibition
of synthesis of the activator by the suppressor), % > 0
(production of the suppressor by the activator) and % <0
(concentration-dependent degradation of the suppressor). We

used the following formulas for f and g:

f(u,v) = pu+ u? - pruv (2a)

g(u,v) = pau’ — v (2b)

We assumed that the receptor is uniformly distributed over
the dendritic surface and that the strength of the signaling
follows the local concentration of the suppressor. We
adopted the 0-fixed boundary condition for the activator at
the cell boundary:
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Figure 3. Distinctive Dendritic Patterns Obtained from the Computer Simulation of the Cell Compartment Model

(A-C) and (D-F) Two distinct patterns obtained by using different parameter values in the activator-suppressor model. Whole images of dendritic trees
(A,D), magnified images of the activator (B,E) and those of the suppressor (C,F). Examples of branch-poor arbors and branch-rich arbors were indicated
in yellow and blue, respectively, (A) and (D). Density of the activator is relatively high at the terminal of each branch (arrows in “B”). Alternatively,
dendrites elongate as new spots are generated (arrows in “E”) and bifurcate as spots undergo fission (arrowheads in “E”). Parameter values were p, =
0.9 and p,=6.5 (A-C) and p,=0.5 and p.= 2.6 (D-F). Other parameters were p, =0.8, d=30.0, p,=1.0, T,= 1.0, Apax = 30.0, R=0.004, and y=625. The

grid size is 800 X 800, dx = 0.02, and dt =1 X 10°°.
doi:10.1371/journal.pcbi.0030212.g003

u(x,t) =0, forx e dQ, (2¢)

We used the periodic boundary for the other variables v
and ¢ at the boundary of the 2D square space to model the
real 2D space Q in numerical simulation.

Autonomous Formation of Dendritic Patterns

We numerically calculated the model given by Equations
la-1c with reaction terms of Equations 2a and 2b (see
Materials and Methods). Computer simulation showed that
the cell compartment model could autonomously generate
quite distinct dendritic patterns depending on the set of
parameters employed (Figure 3). In each case where the
model produced dendritic patterns, they were generated
through repeated cycles of elongation and branching of
dendrites (two examples are shown in Videos S1 and S3). With
one set of parameters, smooth branches were formed, where
neighboring branches aligned themselves nearly parallel to
each other (Figure 3A). In such a cell, the distribution of the
activator is continuous and mostly uniform, except for every
branch terminal, where the density of the activator is
relatively high (arrows in Figure 3B; Video S2). With a
different set of parameters, the dendritic branches showed a
more rugged morphology (Figure 3D). Stubby and non-
aligned branches were formed, and the activator was
distributed in a punctate manner in that cell (Figure 3E;
Video S4). We call each punctum, where the activator was
highly concentrated, a “spot.” Dendrites elongated by
generating new spots (arrows in Figure 3E) and bifurcated
when spots fissioned (arrowheads in Figure 3E). The
suppressor was concentrated where the density of the
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activator was high, and it was distributed more broadly than
the activator (Figure 3C and 3F). This distribution underlies
long-range inhibitory interactions between neighboring
dendrites. The interactions appeared to control whether or
not dendrites would branch and in which direction dendrites
would elongate. As a result, the branching frequency
considerably varied among branchlets (compare yellow and
blue arbors in Figure 3A and 3D), whereas the branch density
was kept almost constant throughout the dendritic trees.

In a separately prepared manuscript, we addressed more
biological issues such as tiling (Figure 1A and 1B) and
regeneration in response to branch severing (Figure 1C).
Branches of multiple neurons in our computer simulation,
when they appeared in the same 2D space, avoided each other
and accomplished tiling and isoneuronal avoidance. The
neurons in our computer simulation were even able to
reaccomplish tiling after local destruction of dendritic arbors
exactly as Drosophila class IV da neurons do. Furthermore,
modifications of our model enabled reproduction of a wide
range of space-filling dendritic trees and even a non-space-
filling type. Taken together, our model succeeded in
qualitatively recapturing development of space-filling den-
drites.

Typical Behaviors of u and v at the Branch Terminals

In the all cells examined, u and v exhibited a linear
relationship at the growing tip of dendrite (Figure 4A for
smooth branches and Figure 4B for rugged ones). Starting
from u =0 at the distal margin of dendrite, « should increase
with time and it is observed as spatial change in u from distal
to more-proximal parts of dendritic terminals. In contrast,
the spatial change in v cannot be explained by reaction
dynamics: for instance, in a case of Figure 4A, u and v should
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Figure 4. Typical Changes of u and v at the Tips of Branches

(A,B) Representative data of the values of u and v were indicated on the
phase plane, where direction of dynamics and null-cline of u and v are
also shown (“A” for the cell of Figure 3A and “B” for that of Figure 3D).
The data is sampled in every grid from the branch terminals. v increases
linearly with u from the cell boundary to the interior of the cell. Solid
lines and dashed lines represent f(u,v) =0 and g(u,v) = 0, respectively. We
have found that an elongation speed is about twice slower in rugged
dendrites than in well-aligned ones (compare Videos S1 and S3). The
difference in the positioning of the u — v values relative to the isoclines
may potentially explain the difference in a velocity of pattern formation
(our unpublished data).

doi:10.1371/journal.pcbi.0030212.g004

increase and decrease, respectively, according to vector field.
Nevertheless, the supply of the suppressor from proximal
dendrites via its diffusion seems to counteract actions of
reaction functions, resulting in the increase of v in the
proximal direction. Thus, most likely diffusion plays an
essential role in determining the dynamics of the suppressor
at dendritic tips.

Classical Turing Condition and Distinctive Dendritic
Patterns

As described below, we conducted numerical analysis to
examine the generality of our cell compartment model and to
determine the conditions for growth of dendrites that could
be common to various types of neurons.

We calculated the cell compartment model by using
different parameter sets of reactions between the activator
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and the suppressor, and searched for those by which
dendritic patterns were successfully generated (Figure 5A).
We defined a dendritic pattern by the following two
conditions: first, cellular extensions bifurcated. Second, the
density of dendrites was less than a criteria value. Typical
examples of patterns violating either of these conditions are
shown in Figure 5B-5D. This analysis clearly shows that
dendritic patterns could be generated in a large parameter
region (closed circles in Figure 5A), and so formation of
dendritic patterns in our model does not appear to depend
on particular parameter sets.

As explained before, our model produced two different
types of patterns: the well-aligned smooth pattern, in which
the activator is continuously distributed (Figure 3A) and the
poorly aligned rugged pattern, in which punctate distribution
of the activator is seen (Figure 3D). Those patterns shown in
Figure 3 are two extreme examples; and intermediate
patterns could be generated, depending on parameters
employed. Interestingly, our numerical analysis revealed a
correlation between Turing instability [23] and the distinctive
shape of dendritic patterns. Turing instability, a widely
applied theory of pattern formation, indicates an ability of
chemical (in this case, activator-suppressor) interactions to
develop spatially periodic patterns. The condition of chem-
ical reaction dynamics for Turing instability was addressed by
considering the two-variable (v and v) dynamics in the
uncompartmentalized 2D space (designated as no compart-
ment model, that is, a conventional RD model), and then by
numerically calculating a parameter region for potential
Turing instability in the no-compartment model (see Equa-
tions A3a-A3d in the section “Conditions for Turing
diffusion-induced instability” and region I in Figure 5A)
[26]. We used typical values for other parameters such as p,
because changing the p, value did not significantly alter the
shape or the size of region I (unpublished data). The results of
this analysis clearly showed that relatively rugged patterns
were obtained by using the condition that satisfied Turing
instability (region I in Figure 5A); on the other hand, better-
aligned patterns were obtained by using the condition that
did not satisfy it (region II in Figure 5A). Therefore, it is
suggested that the difference in two typical dendritic patterns
obtained in our computer simulation stems from whether
chemical dynamics in themselves are able to develop spatially
periodic patterns or not.

Furthermore, we noticed that the shape of dendrites
reflected the intracellular distribution of the activator. From
bottom-left to top-right of the (p, — p,) space (Figure 5A), the
dendrite morphology became smoother; and distribution of
the activator changed from punctate in nature to more
continuous (Figure 5E1-5E4). Continuity in the activator
distribution seems to strongly depend on the shape of local
branches (Figure 5E2). Even within the same cell, the local
distribution of the activator was punctate in branch-rich
regions (e.g., right-enclosed branches in Figure 5E2), whereas
it was more continuous in branchless regions (e.g., left-
enclosed branch in Figure 5E2). Co-existence of two distinc-
tive types of distributions, punctuate and continuous, in a
single cell suggests that these two types of distributions are
locally stable structures.

The above-mentioned analysis also indicated that the
condition for developing dendritic patterns did not entirely
cover region I. In addition, it is of particular interest that
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Figure 5. Parameter-Dependency of the Pattern Formation

(A-D) Searches for parameter values for dendritic branch formation on a (p. — p,)-plane. The fixed parameters were p, =0.8, d =30.0, p, = 1.0, Tr=1.0,
Amax = 30.0, R = 0.004, and y = 625. Total calculation time was 4 X 10° steps.

(A) Closed circle: dendritic pattern; square: wide branches; triangle: no second-order branching; and star: no growth. Examples of non-dendritic patterns
of square, triangle, and star are shown in (B) (p, = 2.1 and p.=8.0), (C) p,=0.5 and p. = 4.0), and (D) (D (p, = 0.7 and p. = 6.5), respectively. Region |
satisfies conditions of Turing diffusion-induced instability described by Equations 6a-6d, whereas region Il satisfies Equations 6a-6¢, but not Equation
6d and region 0 satisfies Equations 6b-6d, but not Equation 6a. In region |, spatially periodic patterns appear in a conventional RD model, whereas

homogenous patterns are stable in region II.

(E1-E4) Distributions of the activator that were obtained at different coordinates in the phase diagram (A). p, = 0.7 for all panels; and p.=3.0 (E1), 3.5
(E2), 4.0 (E3), and 4.5 (E4). The distribution of the activator changes from a punctate pattern (E1) to a more continuous pattern (E4).
(E2) A punctate distribution of the activator in a branch-rich region (enclosed area at right) and a more continuous one in a branch-less region (enclosed

area at left).
doi:10.1371/journal.pcbi.0030212.9005

spatially non-homogeneous dendritic patterns were gener-
ated in region II, in which homogeneous distribution at the
steady state should be stable in the two-variable (v and v)
dynamics (see Discussion for details). Most likely this
discrepancy of conditions for pattern formation in the cell
compartment model and the no compartment one originates
from the structure of cell and the feedback between the
chemical reaction and cell growth in the model.

Conditions for Dendritic Patterning and those for Dot
Pattern Generation

We further examined the relationship between our model
and the Turing system. In general, the Turing system develops
dot, stripe, or reverse-dot patterns in the 2D space, depend-
ing on parameters (e.g., the distance from the equilibrium
point to the upper limitation of activator [A,,,]) [28]. So we
explored whether or not the conditions for dendritic pattern
formation were related to the property of the Turing system
to generate either a dot, stripe, or reverse-dot pattern.

By changing the upper limitation of activator (A,,,) in the
no-compartment model, we drew a phase diagram, in which
each dot, stripe, and reverse-dot pattern was mapped to a
different parameter region (Figure 6A). Subsequently we
searched for parameter sets that developed dendritic
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patterns in the cell compartment model (circles in Figure
6A); and the results of this analysis indicated that dendritic
patterns were obtained mostly in the dot domain (D in Figure
6A). Therefore the punctate distribution of the activator in
rugged dendrites (Figure 3E) can be interpreted as the typical
dot pattern of the conventional RD system being generated
inside of the cell compartment. Dendritic patterns were not
obtained in most of the stripe or reverse-dot domains (S or R
in Figure 6A). Computer simulation with parameter settings
in the stripe or reverse-dot domains generated patterns,
which did not resemble the shape of dendritic arbors of real
neurons (Figure 6B-6E). If conditions for Turing instability
were not satisfied, dendritic pattern was produced in a
parameter region adjacent to the dot domain. These results
are consistent with an intuitive understanding of the process
of dendritic pattern formation; that is, dendrites grow in
pursuit of a track of locally activated molecular complexes for
branching. In this sense, a punctate or terminally dense
distribution of activator is favored, whereas the stripe or
reverse-dot one is not.

An Analysis of Other Dynamics
It is worth evaluating whether the results of this study are
specific to a particular dynamics or if they represent more
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Figure 6. Comparative Analysis of Conditions for Dendritic Pattern
Formation and Those for Dot, Stripe, and Reverse-Dot Pattern Generation
(A) Condition of parameters for neuronal branching and Turing condition
on a (pe — Amax)-plane. Simulations of the no-compartment model
showed that dot, stripe, and reverse-dot domains are mapped to
different parameter regions (D, S, and R, respectively); and dotted lines
roughly represent boundaries between the domains. Closed circles:
dendritic patterns obtained by our cell-compartment model. The fixed
parameters were p, = 0.7, p, = 0.8, d = 30.0, p, = 1.0, R=0.004, and y =
625. We used Tr=0.95 (when A,.x=1.0), Tr=0.85 (when A, =0.9), and
Tr = 1.0 (otherwise). Total calculation time was 4 X 10° steps.

(B-E) Typical examples in the stripe domain (B,C): p.=4.0, Amax=1.1, and
Tr = 1.0, and in the reverse-dot domain (D,E): p. = 3.6 and Tr = 0.95.
Dendrites (B,D) and the distribution of the activator (C,E) are shown.
doi:10.1371/journal.pcbi.0030212.9g006

general properties of the RD system. For that purpose, we
tested several different forms of reaction terms and one of
them was as given below:

J(w0) = paw = v+ py (3a)

glu,v) =pu—v—1 (3b)

Parameter settings for potential Turing instability in the
linear dynamics described by Equations 3a and 3b were
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determined and plotted (region I in Figure 7A) as in Figure
BA.

Parameter dependency of dendritic pattern formation was
examined, and we found that dendritic patterns were
generated in both outside and inside of region I (Figure 7B
and 7D, respectively). Therefore, classical Turing conditions
were not necessary or sufficient for dendritic pattern
formation in this linear dynamics, either. Furthermore,
whether the function was linear or non-linear, the activator
distribution well-correlated with the shape of branches
(Figure 7C and 7E; compare them to Figure 5E); and dendritic
patterns were generated preferentially in the dot domain, but
not in the stripe or reverse-dot domain (unpublished data).
Collectively, all of the results suggest that a wide range of
parameter settings and different dynamics of chemical
reactants allow development of dendritic patterns in the cell
compartment model.

Morphological Measures for Predicting In Vivo
Distribution of the Activator

Finally we found that our cell compartment model
provides a prediction for future experiments. As described
before, the numerical simulation of the model unraveled a
strong correlation between shapes of dendrite and distribu-
tions of the activator (Figure 5E and Figure 7E). We noticed
that dendritic trees of some real neurons were reminiscent of
those of the smooth type in our computer simulation (Figure
8A and 8B) and that terminal branches of some other real
neurons were less aligned (Figure 8C and 8D). Accordingly, if
the developmental machinery proposed by this study is
actually functioning in vivo, the intracellular distribution of
the hypothetical activator could be predicted on the basis of
the morphological features of dendrites. More specifically,
the distribution of the activator may be terminally dense in
neurons of the smooth type and punctate in the rugged type
(for instance, Figure 8A and 8B and Figure 8C and 8D,
respectively).

To support the validity of our prediction, we set a
quantitative measure called a “dispersion of orientation of
branches” (DOB) to characterize dendrite morphology. DOB
is the coefficient of variation of directions of branch
segments in each local region of dendritic trees (Figure 9
and Materials and Methods); hence the smaller is the DOB,
the better-aligned are the local branches. Quantification of
the DOB for the smooth and rugged types of the obtained
patterns in our computer simulation confirmed that it was
significantly smaller in the former type (double asterisks in
Figure 8E). We next quantified the DOB for real neurons and
found that values for the smooth type (Figure 8A and 8B)
were significantly smaller than those for the less-aligned type
(Figure 8C and 8D; asterisks in Figure 8E). These results
suggest that geometry of real neurons may also be charac-
terized by DOB and that we can use DOB as a morphological
measure for predicting the intracellular distribution of the
activator in vivo.

Discussion

Self-organizing Mechanism in Dendrite Pattern Formation

In this study, we developed the first mathematical model
that sheds light on autonomous pattern formation of neuro-
nal dendrites. The cell compartment model, which is based on
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(A) Region | indicates a parameter region on a (p, — py)-plane that satisfies the classical Turing condition. p, does not appear in the Turing condition.

Region Il is as described in the legend of Figure 5.

(B,C) and (D,E) Examples of patterns generated in region Il and region |, respectively. Magnified images of dendrites (B,D) and those of activator
distributions (C,E). Parameter values were p,=0.5, p, = 2.5, and p.=0.16 (B,C) and p,= 0.6, p, = 2.9, and p.=0.2 (D,E). Other parameters were the same
as in Figure 3A, except for Anax = 10.0 and Tr = 0.75. Conditions of simulation were as described in the legend of Figure 3.

doi:10.1371/journal.pcbi.0030212.9g007

the experimentally verified dendro-dendritic interaction,
autonomously develops dendritic elongation and branching.
It should be noted that dendritic patterns are defined not only
by the numerical parameters such as the terminal number,
but also by other properties such as mutual avoidance. Our
model places emphasis on the latter aspects of the space-
filling dendrites, which are difficult to characterize by
quantitative measures, and indeed qualitatively recaptures
developmental regulation of the space-filling dendritic
patterns. Collectively, we believe that this study offers a new
concept in developmental biology, a self-organizing mecha-
nism in neuronal dendrite pattern formation.

Many of the previous models assumed that elongation and
branching of dendrites are controlled by probability func-
tions, in which each parameter separately codes individual
growth rules such as degree- or segment length- dependent
rate of elongation and/or branching [19,20]. In contrast,
dendritic patterns are autonomously generated without
embedding different parameters to control each branching
frequency, branch angle, and self-avoidance of dendrites in
our model. Considering that we are presently far from
understanding the entirety of the molecular mechanisms of
chemical reactions occurring in vivo, the high performance
of the proposed system obtained with diverse forms of
reaction function takes on significance, because it may
support a future application of the model to the dendrito-
genesis of a whole variety of real neurons.

Instability of Chemical Dynamics and That of Cell
Boundary Contribute to Dendritic Pattern Formation
Our numerical analysis showed that generation of dot
patterns of the activator in rugged dendrites could be
attributed to a property of chemical dynamics, which is
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supported by Turing instability. On the other hand, classical
Turing diffusion-induced instability alone cannot give us a
comprehensive explanation of the pattern formation in our
model, because dendritic patterns were successfully devel-
oped even when the spatially homogeneous pattern at the
steady state of chemical reaction dynamics was stable. We
think that the compartmentalized structure in our model may
increase instability of the dynamics of the cell growth.
Actually, it was shown both in experiments and in computer
simulation that a straight interface could become unstable to
make complex spatial patterns in certain bistable dynamics
[27,29]. Hence, analyzing the model based on the idea of front
instability may be one way to understand the behavior of our
model. From a viewpoint of experimental biology, these
results suggest that simultaneous, high-resolution imaging
analyses on molecular interactions and plasma membrane
dynamics would be informative.

Distribution of the Activator In Vivo

We introduced new criteria to categorize patterns of
dendrites in real neurons and to predict the intracellular
distribution of potential molecular complexes for dendrite
growth. Two distinctive dendritic patterns were found in
both computer-simulated and real neurons, and it is
suggested that the distribution of the activator is character-
istic of the shape of branches. Further advances in our
understanding of the molecular mechanisms involved in
dendrite development are required to address whether the
prediction from our cell compartment model is valid or not.
Yet, there are a couple of interesting observations that may
indicate periodicity in dendrites of real neurons. For
instance, Golgi apparatus is distributed in a punctate manner
in da neurons and pyramidal neurons [30-32]; and its
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Figure 8. Two Distinctive Branching Patterns of Real Neurons

(A,B) Smooth and well-aligned type. A neuron in thalamic nuclei in
monkey (A) and Purkinje cell at postnatal day 25 (B).

(C,D) Rugged and less-aligned type. A neuron of inferior olivary complex
of monkey (C) and a remodeled class | da neuron at a pupal stage, which
was visualized with ppk-GAL4 UAS-mCD8:GFP [49] (D). Images in (A and
C) were taken from [50].

(E) Quantification of DOB in the generated patterns in our computer
simulation. Data are presented as the means = SD. A single asterisk
indicates p < 0.01 (t-test), and double asterisks indicate p < 0.001 (t-test).
doi:10.1371/journal.pcbi.0030212.9g008

@ PLoS Computational Biology | www.ploscompbiol.org

Neurite Branching by RD System

localizations at branch points are important for branch
formation. In addition, staining for microtubule-associated
protein 2 in the absence of detergents reveals that regions of
high signal intensity are found in a spatially periodic manner
along dendrites and that dendritic branch points are
preferentially associated with these regions [33]. It would be
interesting to review these observations in the perspective of
our model.

Enlarged Editions of the Cell Compartment Model

Our cell compartment model is a simplified version of
dendrite growth in vivo, and new elements can be installed
depending on needs or researchers’ interests. For instance,
although generated patterns in the present model are highly
homogeneous, less homogeneous patterns could be obtained
if stochastic aspects or noise are strengthened (for example,
by fluctuating 7r along dendritic branches). It is also
interesting to extend our model to include activity-depend-
ent processes, such as synaptotropic dendrite growth [34,35]
and refinement of pre-existing branches during late stages of
development [36,37]. Furthermore, we are now trying to
reproduce development of non-space-filling type dendrites,
which are anisotropic in terms of the direction of elongation
and inhomogeneous in terms of coverage of a field, by
incorporating a guidance mechanism and/or an RD system of
intracellular activator and suppressor. Although we should
bear in mind that overlaying these additional features could
modify the properties of the system, we hope that combina-
tion of biochemical experiments with enlarged editions of
this mathematical model may clarify the comprehensive logic
underlying neuronal dendrite development.

Insights to Other Types of Branching Morphogenesis
Colony formation by Bacillus subtilis is a well-known
example of dendritic patterning in biology. Bacillus subtilis
generates distinctive colony patterns depending on the
substrate softness and nutrient concentration [38], and
formation of most of the colony patterns was well-reproduced
by RD models [39,40] and a cell automaton model [41].
Similarity between neuronal dendrites and bacteria colonies
is found not only in terms of their morphology, but also with
respect to repulsive behaviors; i.e., when two colonies are in
close proximity, they avoid each other just as do space-filling
neurons [42]. In addition, interesting parallels can be also
found between dendrite development and other branching
morphogenesis such as coral [43], vertebrate lung [44], and
trachea of Drosophila [45]. These systems accomplish physio-
logical functions that can be regarded as similar to space-
filling dendrites. For instance, trachea must elaborate its
branches to deliver oxygen to the whole body. Mathematical
models for these pattern formations have been proposed
[43,44,46,47], and it is suggested that branching morpho-
genesis in general can be understood as the following: a part
of the structure that happens to sprout due to some
fluctuation locally speeds up its growth and eventually
develops a visible branch. We observed a similar behavior of
dendrites in our computer simulation. Furthermore, recent
works revealed the molecular basis of lateral inhibition
between the neighboring lung epithelium and between
growing tips of trachea that may correspond to long-range
inhibitory dendro-dendritic interactions in the development
of space-filling dendrites [44-46]. Therefore, our model on
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Figure 9. Procedures for Quantification of DOB

Step 1: Skeletonize images with ImagelJ. Step 2: Crop four pairs of
squares. Step 3: Approximate each dendritic segment between the two
branching points by a line segment connecting those points. Measure
the angle of a branch segment with respect to the horizontal direction.
Repeat measurement for all segments in each local area and calculate
the coefficient of variation, DOB.

doi:10.1371/journal.pcbi.0030212.9g009

neurite formation would be potentially informative in under-
standing the above-mentioned branching morphogenesis.

Despite the afore-mentioned similarities, there is one big
difference between bacteria colony models and ours. The
former relies on non-linearity in diffusion and reaction
function for pattern formation [39]. On the other hands,
dendritc growth in our model does not require such non-
linearity (Figure 7). It might be that unambiguous boundary
of the cell in our model plays an equivalent role to non-linear
diffusion terms in bacteria colony models. Taking advantage
of the fewer constraints in chemical dynamics in our model,
we addressed the relationship between Turing instability and
biological branching morphogenesis. Other branching mor-
phogenesis might obey the conditions that were clarified in
this study. Again, generality of the proposed mechanism
would be significant for testing this possibility in other
systems of interest.
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Materials and Methods

Numerical analysis. To calculate the model, we used the finite
difference method, a simple explicit scheme. The simulation starts
from a small cell body. The initial value of the activator is 0.5+ small
random deviations in each position inside of the cell body and 0 in
other places, whereas the value of the suppressor is 0.1* small
random deviations in the cell body and 0 otherwise. Changes in initial
conditions of the activator or the suppressor affected the results only
slightly. Small noise was added to the diffusion coefficient of the
activator in every calculation step to cancel the anisotropy of the grid
in numerical simulation.

Quantification of dispersion of orientation of branches. Image
processing and measurement were done with Image]. First, we
superimposed a square on individual dendritic trees (those in Figure
3A and 3D and Figure 8A-8D; see also Figure 9). The size of each
square was normalized to that of the entire dendritic tree (the size of
the tree was defined as that of a polygon connecting dendritic tips).
As for the obtained patterns in computer simulation (those in Figure
3A and 3D), we skeletonized them and sampled four pairs of squares
that were located at the same coordinates (“1” and “2” in Figure 9).
Each branch segment was approximated by a line segment connecting
two edges of the branch segment (“3” in Figure 9). We measured the
angle of the line segment with respect to the horizontal direction,
repeated measurement for all segments in each small square, and
calculated the coefficient of variation, which we called the DOB.
Average values of DOB for each dendritic tree are shown with means
* SD in Figure SE.

Imaging collection of Dendritic trees. Imaging and single cell
labeling of Drosophila sensory neurons were done as described
[11,13,48]. Strains used were NP7028 UAS-mCD8:GFP [11], ppk-GAL4
UAS-mCD8::GFP [49], elav-GAL4 UAS-mCDS8:GFP hsFLP, tub-Gal80
FRT40A, and FRT40A [13].

Original equations. Original equations of the activator-suppressor
model were as follows:

du

e dyAu + f(u,v) in Q, (4a)
v .
— = dyAv +g(u,v) in Q (4b)
ot

de .

= pre(a(u) —¢)(c — pr) in Q (4¢)

where u and v are the concentration of the activator and that of the
suppressor, respectively. d, and d,, are diffusion coefficients. Original
chemical reaction terms were:

flu,v) = kkyu + ko — kyuv — ksu (5a)

g(u,v) = kg® — ks (50)

We non-dimensionalized Equations 4a-4c and Equations 5a-5b to
obtain Equations la-1c and Equations 2a-2b.

R value. The value of R determines the thickness of the branches as
expected. Smaller R resulted in thinner branches, thus finer patterns.
However, there seems to be a minimum value of R to support
dendrite growth. The minimum value may be necessary to produce a
new spot of the activator, which is separated from the pre-existing
spot, in the vicinity of the cell boundary. We confirmed that the
minimum value of R was independent of the spatial grid size in
numerical simulation, and thus the above results are not an artifact of
numerical simulation. So we used R = 0.004, which gave the finest
dendritic patterns (R = 0.0041 yielded nearly equal results to those
obtained with R = 0.004).

Conditions for Turing diffusion-induced instability. Conditions for
Turing diffusion-induced instability [23] are the following:

of Og
9f 0g  Of Og X
%%7%%>0 (6b)
of  0Og

da+&>0 (6¢)
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where the partial derivatives of f and g are evaluated at the steady
state (uo,vp) which satisfies f(uy,v9) = 0 and g(ug,vy) = 0 [26]. Equations
6a and 6b describe conditions for a stable equilibrium point in the
absence of diffusion. Equations 6c and 6d describe conditions for an
unstable periodic solution in the presence of diffusion.

Supporting Information

Video S1. Formation of a Well-Aligned Dendritic Pattern
One frame of this movie is shown in Figure 3A.
Found at doi:10.1371/journal.pcbi.0030212.sv001 (84 KB MOV).

Video S2. Continuous, but Terminally Enriched Distribution of the
Activator During Dendritic Growth Shown in Video S1

Five frames of this movie are shown in Figure 3B.
Found at doi:10.1371/journal.pcbi.0030212.sv002 (24 KB MOV).

Video S3. Formation of a Rugged Dendritic Pattern
One frame of this movie is shown in Figure 3D.
Found at doi:10.1371/journal.pcbi.0030212.sv003 (189 KB MOV).
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