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Abstract
With the emergence of the molecular era and retreat of the histology epoch in malig-
nant glioma, it is becoming increasingly necessary to research diagnostic/prognostic/
therapeutic biomarkers and their related regulatory mechanisms. While accumulat-
ing studies have investigated coding gene-associated biomarkers in malignant glioma, 
research on comprehensive coding and noncoding RNA-associated biomarkers is 
lacking. Furthermore, few studies have illustrated the cross-talk signalling pathways 
among these biomarkers and mechanisms in detail. Here, we identified DEGs and 
ceRNA networks in malignant glioma and then constructed Cox/Lasso regression 
models to further identify the most valuable genes through stepwise refinement. 
Top-down comprehensive integrated analysis, including functional enrichment, SNV, 
immune infiltration, transcription factor binding site, and molecular docking analyses, 
further revealed the regulatory maps among these genes. The results revealed a novel 
and accurate model (AUC of 0.91 and C-index of 0.84 in the whole malignant gliomas, 
AUC of 0.90 and C-index of 0.86 in LGG, and AUC of 0.75 and C-index of 0.69 in GBM) 
that includes twelve ncRNAs, 1 miRNA and 6 coding genes. Stepwise logical reason-
ing based on top-down comprehensive integrated analysis and references revealed 
cross-talk signalling pathways among these genes that were correlated with the cir-
cadian rhythm, tumour immune microenvironment and cellular senescence pathways. 
In conclusion, our work reveals a novel model where the newly identified biomarkers 
may contribute to a precise diagnosis/prognosis and subclassification of malignant 
glioma, and the identified cross-talk signalling pathways would help to illustrate the 
noncoding RNA-associated epigenetic regulatory mechanisms of glioma tumorigen-
esis and aid in targeted therapy.
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1  |  INTRODUC TION

Malignant glioma, the most common primary malignant tumour of 
the central nervous system, usually occurs in the sixth through eighth 
decades of life,1 has an annual incidence of 5.26 cases per 100,000 
people and usually results in quick fatality.2–4 Malignant glioma ba-
sically consists of low-grade glioma (LGG, WHO grades II–III) and 
glioblastoma multiform (GBM, WHO grade IV).3,5,6 Nearly, all LGGs 
will ultimately progress to GBM.7 The current therapy for newly di-
agnosed malignant glioma is surgical removal of the maximum safe 
amount of tumour followed by adjuvant radiation therapy and temo-
zolomide chemotherapy.8 This approach has a 2-year survival rate 
of 27% for newly diagnosed GBM, but the overall prognosis remains 
poor.1,2 Therefore, it is urgent to elucidate the mechanisms of malig-
nant glioma and find new treatments. Once upon a time, malignant 
gliomas have ever been classified, diagnosed and therapized based 
on histological characteristics and resemblance with a supposed cell 
type of origin.9 In the past decade, however, the classification, diag-
nosis and therapy of glioma have dramatically changed. Deletions in-
volving chromosomes 1p/19q, IDH mutations, and so on are closely 
related to prognosis.10–13 The latest guide incorporates molecular 
parameters, in addition to histology, into the classification, diagno-
sis and therapy of gliomas, contributing to a profound and in-depth 
molecular era.3

While accumulating studies have investigated coding gene-
associated biomarkers in malignant glioma, research on com-
prehensive coding and noncoding RNA (ncRNA)-associated 
biomarkers is lacking. Noncoding RNAs, which are an emerg-
ing class of transcripts that are encoded by the genome but are 
mostly not translated into proteins, consist of housekeeping 
RNAs, small ncRNAs (sncRNAs, including microRNAs, miscRNAs, 
circular RNAs and piRNAs, etc.), and long ncRNAs (lncRNAs).14,15 
sncRNAs and lncRNAs were once indicated as byproducts of the 
splicing procedure, until some researchers found that they may 
function in post-transcriptional modification, the organization of 
nuclear domains, and the regulation of proteins or RNA molecules, 
indicating that the biological functions of ncRNAs are more per-
vasive than previously suspected.16–21 Therefore, more research 
on these ncRNAs will lead to a greater understanding of cancer 
cell functions and may lead to novel clinical applications in on-
cology.15 The competing endogenous RNA (ceRNA) mechanism 
is one of the most important mechanisms of ncRNAs and indi-
cates that endogenous coding and noncoding RNAs may share 
common microRNA-binding sites and thus indirectly regulate the 
expression of each other by competing for microRNA binding.22 
Researchers have focused on lncRNA/miRNA/mRNA-associated 
ceRNA regulatory networks. However, ceRNA networks are not 

limited to lncRNA-associated networks; they apply to all ncRNA-
associated networks.22 Therefore, it is necessary and valuable to 
mine the comprehensive ncRNA-associated regulatory networks 
in glioma.

The emerging and accumulating applications of high-throughput 
sequencing make it easier to research and identify differentially ex-
pressed genes (DEGs) or biomarkers of various tumours. Based on 
bioinformatics methods, DEGs can be used to further mine critical 
signalling pathways or molecular mechanisms to provide guidance or 
illuminate tumour research questions. However, previous bioinfor-
matics studies on glioma usually identified biomarkers or performed 
functional enrichment analyses. Few studies have illustrated the 
cross-talk signalling pathways among these biomarkers and mech-
anisms in detail. Illustration of the cross-talk signalling pathways 
among biomarkers and mechanisms is beneficial for understanding 
glioma tumorigenesis and malignant progression, as well as promot-
ing glioma therapy.

‘Stepwise refinement’ was proposed by Swedish computer sci-
entist Wirth in the 1970s and refers to compiling executable pro-
grams not in one step but in several steps and gradual refinement, 
where the program compiled in the first step is the most abstract, 
the program compiled in the second step is less abstract, and 
the program compiled in the last step is executable.23 Here, we 
used two databases, The Cancer Genome Atlas (TCGA) database, 
whose samples were derived mainly from America (698 malignant 
glioma samples and 5 normal brain samples), and the Chinese 
Glioma Genome Atlas (CGGA) database, whose samples were 
derived mainly from Asia (1211  malignant glioma samples and 5 
normal brain samples), to produce, validate and mine the ncRNA-
associated networks. After the DEGs were identified, ncRNA-
associated ceRNA networks were constructed. Subsequently, 
Cox and Lasso regression models were used to further identify 
the most valuable genes in glioma tumorigenesis and then validate 
them in LGG and GBM. ‘Top-down’ refers to dividing complex and 
large problems into small problems, determining the key points, 
and then qualitatively and quantitatively describing the problems 
with accurate thinking. Here, logical deduction based on refer-
ences and top-down comprehensive integrative analysis, includ-
ing Gene Ontology (GO) and Kyoto Encyclopedia of Genes and 
Genomes (KEGG) functional enrichment, single nucleotide varia-
tion (SNV), immune infiltration, transcription factor binding site 
and molecular docking analyses, revealed that these genes were 
correlated with the circadian rhythm, tumour immune microen-
vironment, and cellular senescence pathways (Figure  1A,B). The 
epigenetic regulatory maps and signalling pathways among these 
genes were deduced and are discussed in the discussion section. 
This research aimed to determine the potential genes involved 
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in glioma tumorigenesis and malignant progression and to illus-
trate the cross-talk signalling pathways among these genes and 
molecular mechanisms based on references and comprehensive 
integrative analysis. As a result, our work reveals a novel model 
in which the newly identified biomarkers would contribute to a 
precise diagnosis/prognosis and subclassification of malignant gli-
oma, and the identified cross-talk signalling pathways would help 
to illustrate the noncoding RNA-associated epigenetic regulatory 
mechanisms of glioma tumorigenesis and malignant progression 
and aid in targeted therapy.

2  |  MATERIAL S AND METHODS

2.1  |  Data acquisition

The mRNA sequencing data, miRNA sequencing data, SNV data 
and corresponding clinical data used to construct the critical gene 
network and Cox/Lasso model in malignant glioma were obtained 
from the TCGA in the National Institutes of Health - National 
Cancer Institute GDC data portal (https://portal.gdc.cancer.
gov/, data release 26.0—8 September 2020). Data included 

F I G U R E  1  Algorithm tree and Cross-talk signalling pathways. (A) Algorithm tree of the top-down stepwise refinement method. TCGA, 
The Cancer Genome Atlas; CGGA, Chinese Glioma Genome Atlas; DEGs, differentially expressed genes; DEmRNAs, differentially expressed 
mRNAs; ncRNA, noncoding RNA; DEncRNAs, differentially expressed ncRNAs; DEmiRNAs, differentially expressed miRNAs; ceRNA, 
competing endogenous RNA; miRcode, miRcode database; miRDB, miRDB database; miRTarBase, miRTarBase database; TargetScan, 
TargetScan database; K-M survival, Kaplan–Meier survival; TDROC, time-dependent receiver operating characteristic; C-index, concordance 
index; KEGG, Kyoto Encyclopedia of Genes and Genomes; GO, Gene Ontology; SNV, single nucleotide variation. (B) Cross-talk signalling 
pathways and molecular mechanisms that involve the identified noncoding RNA-associated biomarkers

https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
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698 malignant glioma samples (529 GBM samples and 169 LGG 
samples) and 5 normal brain samples. The sequencing data were 
derived from the Illumina HiSeq platform (Illumina, Inc.) The re-
search was conducted by the guidelines provided by the TCGA 
(http://cance​rgeno​me.nih.gov/publi​catio​ns/publi​catio​nguid​
elines).

The mRNA sequencing data, miRNA sequencing data and cor-
responding clinical data for validating the Cox and Lasso models 
were obtained from the CGGA (http://www.cgga.org.cn/, data re-
lease—14  June 2020). Data included 1211  malignant glioma sam-
ples (733 LGG samples and 478 GBM samples) and 5 normal brain 
samples. The mRNA sequencing data were derived from the Illumina 
HiSeq 2,000/2,500/4,000 Sequencing System, while the miRNA se-
quencing data were derived from the Agilent G2565BA Microarray 
Scanner System.

2.2  |  Extraction of DEGs and construction of the 
ncRNA-miRNA-mRNA network

The sequenced genes were mapped to the human genome refer-
ence (Homo_sapiens.GRCh38.101.chr) from the Ensembl database 
(https://asia.ensem​bl.org/index.html). The mRNAs were recognized 
and extracted using the keyword ‘protein_coding’, while the ncRNAs 
(non-miRNA) were recognized and extracted using the following 
keywords (see supplementary material section Ⅰ).

The differentially expressed mRNAs (DEmRNAs) and 
differentially expressed ncRNAs (DEncRNAs) (non-miRNA) were 
identified and depicted using the Linear Models for Microarray 
and RNA-Seq Data (LIMMA) package in R software (version 
3.5.1).24–26 The differentially expressed miRNAs (DEmiRNAs) 
were identified and depicted using the Empirical Analysis of 
Digital Gene Expression Data (edgeR) package in R software.27 
The DEGs were identified using |log2(fold change)| (|log2FC|), 
which was set to 2, and the false discovery rate (FDR), which was 
set to 0.05.

The DEncRNAs (non-miRNA) and DEmiRNAs were mapped 
to the ncRNA-miRNA network in the miRcode database (http://
www.mirco​de.org/) to identify the DEncRNAs (non-miRNA) and 
DEmiRNAs in the ceRNA network. The target mRNAs were iden-
tified through the miRDB database,28 miRTarBase database29 and 
TargetScan database.30,31 The ncRNA-miRNA-mRNA network was 
depicted using Cytoscape software32 (version 3.6.1).

2.3  |  Cox and Lasso regression models

First, the DEGs in the ncRNA-miRNA-mRNA network were added 
to the univariate Cox proportional hazards model (Cox) using the 
‘survival’ package in R software (version 3.5.1). The Cox model was 
constructed as follows:

where h0 (t) is the benchmark risk equation, which can be any non-
negative equation for time; Xi is the eigenvector of instance i; and β is 
the parameter vector, which is obtained by maximizing the Cox partial 
approximation.

Subsequently, the results were incorporated into the least abso-
lute shrinkage and selection operator (Lasso) regression model using 
the ‘glmnet’ and ‘survival’ packages in R software (version 3.5.1). 
Given the objective function

the Lasso regression model would be constructed as follows:

where only β is penalized, while α is free to take any allowed value.
Finally, the results were incorporated into the multivariate Cox 

model using the ‘survival’ package in R software (version 3.5.1) to 
further filter the most valuable genes. The patients’ risk scores were 
calculated and used to group patients into the high-risk group and 
low-risk group by the median using the ‘predict’ function of the ‘sur-
vival’ package in R software (version 3.5.1) based on gene expres-
sion in the model. Specifically speaking, if a gene is downregulated 
in malignant glioma and represents a worse prognosis, then this gene 
would be recognized as a useful gene in the multivariate Cox model 
(and obtains a regression coefficient; the same below), and the pa-
tients with this gene expression lower than the control would ob-
tain a positive number score (where the concrete score is related to 
the gene expression level; the same below), while the patients with 
this gene expression higher than the control would obtain a nega-
tive number score. And if a gene is upregulated in malignant glioma 
and represents a worse prognosis, then this gene would be recog-
nized as a useful gene in the model, and the patients with this gene 
expression higher than the control would obtain a positive number 
score, while the patients with this gene expression lower than the 
control would obtain a negative number score. Finally, after testing 
each gene expression, every patient would obtain a risk score which 
is calculated by the summation of the scores of each gene. Half of 
the patients (whose risk scores are higher than the median) would be 
categorized into the high-risk group, and the others would be cate-
gorized into the low-risk group.

The final model was evaluated through the internal (TCGA) and 
external (CGGA) datasets by Kaplan–Meier survival analysis, which 
was performed and depicted using the ‘survival’ and ‘survminer’ 
packages in R software (version 3.5.1). The TDROC curve was gen-
erated and depicted using the ‘survivalROC’ package in R software 
(version 3.5.1), and the C-index was determined using the ‘survcomp’ 
package in R software (version 3.5.1). The area under the TDROC 
curve (AUC) was calculated as follows:

h(t,Xi) = h0(t) × exp(Xi ⋅ �),

1

N

N∑

i=1

f(xi , yi , �, �),

min
�,�

1

N

N∑

i=1

f(xi, yi, �, �) subject to ||�||1 ≤ t,

AUC(f) =

∑
t0∈D

0

∑
t1∈D

11[f(t0) < f(t1)]

�D0� ⋅ �D1�
,

http://cancergenome.nih.gov/publications/publicationguidelines
http://cancergenome.nih.gov/publications/publicationguidelines
http://www.cgga.org.cn/
https://asia.ensembl.org/index.html
http://www.mircode.org/
http://www.mircode.org/
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where 1
[
f
(
t0
)
< f

(
t1
)]

 denotes an indicator function that returns 1 if 
f
(
t0
)
< f

(
t1
)
 and 0 otherwise; D0 is the set of negative examples; and 

D1 is the set of positive examples.
The C-index was calculated as follows:

where the function I[C] refers to I[C]  =  1 if C is true; otherwise, 
I[C] = 0. The first summation function Σi: �i = 1 indicates that at least 
one instance of the pair has an event. The second summation func-
tion Σj: Ti < Tj represents that the recording time Tj of another pair 
must be longer than the first instance event time. The two summa-
tion functions select all pair combinations that can be used for the 
comparison.

2.4  |  SNV analysis

The median was used to divide patients into the high-risk group 
and low-risk group based on gene expression in the model through 
the ‘predict’ function of the ‘survival’ package in R software (ver-
sion 3.5.1). SNV analysis was performed and depicted using the 
‘maftools’ package (https://bioco​nduct​or.org/packa​ges/relea​se/
bioc/html/mafto​ols.html) in R software (version 3.5.1).

2.5  |  Functional enrichment analysis

The functional enrichment analyses via the GO and KEGG databases 
were performed and depicted using the ‘clusterProfiler’, ‘org. Hs.eg.
db’, ‘enrichplot’ and ‘ggplot2’ packages in R software (version 3.5.1) 
to identify the main biological functions of the genes in the model. 
The enrichment functions were identified using the adjusted p-
value, which was set to 0.05.

2.6  |  Analysis of infiltrating immune cells in 
malignant glioma

‘The Estimation of Stromal and Immune Cells in Malignant Tumor 
Tissues Using Expression Data’ (ESTIMATE, https://r-forge.r-proje​
ct.org/proje​cts/estim​ate/) package in R software (version 3.5.1) 
was used to predict tumour purity and the presence of infiltrating 
stromal/immune cells in glioma tissue. The correlation between the 
risk score and the immune filtration score was calculated and de-
picted using the ‘ggplot2’, ‘openxlsx’, ‘ggpubr’ and ‘ggExtra’ pack-
ages in R software (version 3.5.1). The proportion of each kind of 
immune cell in malignant glioma tissues based on various gene ex-
pression levels or risk scores was calculated and depicted using the 
‘ggplot2’, ‘ggthemes’, ‘ggpubr’ and ‘ggcorrplot’ packages in R soft-
ware (version 3.5.1).

2.7  |  Molecular docking analysis

RNA sequences were obtained from the NIH genetic sequence 
database (GenBank),33 while protein sequences were obtained 
from the UniProt database.34 The minimum free energy (MFE) 
secondary structures of the RNAs were constructed using a 
loop-based energy model and the dynamic programming algo-
rithm.35 The three-dimensional structures of the RNAs were 
constructed based on the MFE secondary structure using the 
two-step procedure36 and distance geometry (DG) method.37 The 
three-dimensional structures of the RNAs were evaluated using 
all-heavy-atom knowledge-based statistical potential (3dRNAs-
core).38 The three-dimensional structures of the proteins were 
obtained from the worldwide Protein Data Bank (PDB) database 
(https://www.wwpdb.org/) if they were known; otherwise, they 
were constructed using remote homology detection methods.39 
The interactions between RNAs and proteins were evaluated 
using the hybrid docking algorithm of template-based modelling 
and free docking (HDOCK).40 The interactions between RNAs 
or proteins were evaluated using the docking energy score in 
HDOCK. The score used to evaluate the interaction between 
RNAs was set to −200, which means that a docking energy less 
than −200 could be recognized as a stabilized interactive con-
formation. Similarly, the docking energy score used to evaluate 
the interaction between proteins or RNAs and proteins was set 
to −300. The results were depicted using PyMOL software (The 
PyMOL Molecular Graphics System, Version 2.3.0 Open-Source, 
Schrodinger LLC).

2.8  |  Transcription factor binding site analysis

The 2000  bp sequences upstream of the 5’-untranslated region 
(5’-UTR) are recognized as the potential sequences where promot-
ers are located. The potential sequences where promoters are lo-
cated were obtained from the National Center of Biotechnology 
Information (NCBI). Transcription factor binding sites were pre-
dicted using JASPAR software.41 The possibility of binding (relative 
score) was set to 0.9.

2.9  |  Tissue samples collection

The glioma tissues and corresponding adjacent tissues (NC) 
were collected from the patients who underwent surgery at 
Xijing Hospital, Fourth Military Medical University. All the tis-
sue samples that were obtained from the operation room were 
immediately frozen and then stored in liquid nitrogen until RNA 
and protein detection or staining. All the tissues were confirmed 
and graded by the department of pathology of Xijing Hospital, 
Fourth Military Medical University, according to the WHO stage 
guideline.

1

M

∑

i : 𝛿i = 1

∑

j : Ti < Tj

I[S(Ti ,Xi) < S(Tj ,Xj)],

https://bioconductor.org/packages/release/bioc/html/maftools.html
https://bioconductor.org/packages/release/bioc/html/maftools.html
https://r-forge.r-project.org/projects/estimate/
https://r-forge.r-project.org/projects/estimate/
https://www.wwpdb.org/
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2.10  |  Reverse-transcription and quantitative real-
time polymerase chain reaction

The RNAiso plus (TAKARA) was used for isolating high purity 
of total RNA from tissues. RNA yields were determined with 
Nanodrop (Thermo Fisher Scientific). For microRNA reverse-
transcription analysis, the PrimeScriptTM RT reagent Kit (TAKARA) 
was used, and for other non-microRNA reverse-transcription anal-
ysis, the PrimeScriptTM RT Master Mix (TAKARA, Kusatsu, Japan) 
was used. The stem-loop method was used to detect microRNA, 
and the procedure for microRNA reverse-transcription was (1) 
42℃ for 15 min, (2) 85℃ for 5 s, (3) 4℃ for +∞; and the process 
for non-microRNA reverse-transcription was (1) 37℃ for 15 min, 
(2) 85℃ for 5 s, (3) 4℃ for +∞. For qRT-PCR, the SYBR Fast qPCR 
Mix (TAKARA) was used. The program for qRT-PCR was 1), Reps: 1, 
95℃ for 30 s; (2), Reps: 40, 95℃ for 5 s, 60℃ for 30 s; (3), Reps:1, 
95℃ for 15 s, 60℃ for 60 s. Relative expression of RNA was de-
termined using the 2−△△CT method. All Ct values were normalized 
to glyceraldehyde 3-phosphate dehydrogenase mRNA or vampy-
rus U6  spliceosomal RNA. The primer sequences were given in 
Supplementary Table 1.

2.11  |  Immunohistochemistry (IHC)

The slides were retrieved by the method of heat-induced epitope 
retrieval and then blocked in 5% goat serum (LOT NO: SP-9001, 
ZSGB-bio) for 10 min. Then the primary antibody (anti-TBPL1 an-
tibody, LOT NO: PA5-28088, 2 μg/ml, Invitrogen) was added and 
incubated with gentle agitation overnight at 4°C. After washing 
with PBS three times, the secondary antibody working solution 
(Goat Anti-Rabbit IgG H&L, HRP, LOT NO: SP-9001, ZSGB-bio) 
was subsequently added and incubated for 10 min at room tem-
perature. The slides were washed with PBS three times, and then 
the Streptavidin/HRP working solution (LOT NO: SP-9001, ZSGB-
bio) was added and incubated for 10  min at room temperature. 
After washing with PBS three times, the fresh DAB working solu-
tion (LOT NO: SP-9001, ZSGB-bio) was added and incubated for 
5 min at room temperature. The slides were washed, haematoxylin 
stained, and finally observed under the inverted fluorescence mi-
croscopy (Olympus IX73).

2.12  |  Statistical analysis

The interactions between RNAs or proteins were evaluated using 
the docking energy score in HDOCK. The score used to evaluate 
the interaction between RNAs was set to −200, which means that 
a docking energy less than −200 could be recognized as a stabilized 
interactive conformation. Similarly, the docking energy score used 
to evaluate the interaction between proteins or RNAs and proteins 
was set to −300. The DEGs were identified using |log2(fold change)| 
(|log2FC|), which was set to 2, and the FDR, which was set to 0.05. 
The enrichment functions were identified using the adjusted p-value, 
which was set to 0.05. Patients were grouped into the high-risk 
group and low-risk group using the median. All statistical analyses 
were performed using R software (version 3.5.1).

2.13  |  Ethics approval

The glioma tissues and corresponding adjacent brain tissues were 
collected from the patients who underwent surgery at Xijing 
Hospital, Fourth Military Medical University. All the obtained tissues 
were approved by the Ethics Committee of Xijing Hospital, Fourth 
Military Medical University. The written informed consent was ob-
tained from all patients or their relatives.

3  |  RESULTS

3.1  |  The DEGs and ceRNA network potentially 
involved in malignant glioma tumorigenesis

3.1.1  |  DEGs in malignant glioma

To determine the genes related to malignant glioma tumorigenesis 
and progression, gene expression was analysed in 698 malignant gli-
oma samples (169 GBM samples and 529 LGG samples) and compared 
to that in five normal brain samples. Ultimately, 4094 DEGs were 
identified: 2126 DEncRNAs (non-miRNA) (Figure 2A), 67 DEmiRNAs 
(Figure 2B), and 1901 DEmRNAs (Figure 2C). The DEncRNAs (non-
miRNAs) accounted for almost half of the DEGs, which also highlights 
their importance in malignant glioma tumorigenesis and progression.

F I G U R E  2  Potential DEGs and the ceRNA network in malignant glioma tumorigenesis and progression. Volcano plot of the differentially 
expressed (A) ncRNAs, (B) miRNAs and (C) mRNAs between malignant glioma and normal brain tissues; blue dots represent downregulated 
RNAs, and red dots represent upregulated RNAs; FC, fold change; FDR, false discovery rate. (D) Venn diagram of the differentially 
expressed ncRNAs involved in the ceRNA network; blue, ceRNA network; red, differentially expressed ncRNAs; intersection, a total of 369 
differentially expressed ncRNAs involved in the ceRNA network were identified. (E) Venn diagram of the differentially expressed miRNAs 
involved in the ceRNA network; blue, miRNAs involved in the ceRNA network; red, differentially expressed miRNAs; intersection, a total of 
23 differentially expressed miRNAs involved in the ceRNA network were identified. (F) Venn diagram of the differentially expressed mRNAs 
that serve as miRNA targets; blue, miRNA-targeted mRNAs; red, differentially expressed mRNAs; intersection, a total of 117 differentially 
expressed mRNAs that serve as miRNA targets were identified. (G) ceRNA network of the differentially expressed ncRNAs, miRNAs and 
mRNAs in glioma; rectangle, ncRNA; ellipse, miRNA; diamond, mRNA; blue, downregulated RNAs; red, upregulated RNAs
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3.1.2  |  ncRNA-associated ceRNA networks among 
DEGs in malignant glioma

Considering that the ceRNA mechanism is one of the most common 
and critical mechanisms of ncRNAs, where an ncRNA competitively 
binds to a miRNA to modulate a regulatory complex and thus indi-
rectly regulate mRNA expression,42,43 DEGs were screened through 
the ceRNA network. First, the 2126 DEncRNAs (non-miRNAs) were 
mapped to the ncRNA-miRNA network in the miRcode database, 
and 369 ncRNA- 249 miRNA pairs remained (Figure 2D). Second, the 
67 DEmiRNAs intersected with the 249 miRNAs that existed in the 
369 ncRNA- 249 miRNA pairs and 23 miRNAs remained (Figure 2E). 
Third, the target mRNAs were identified through the miRDB da-
tabase, miRTarBase database, and TargetScan database based on 
the remaining 23 miRNAs. Only the mRNAs that were recognized 
by all three databases were considered candidate target mRNAs. 
Finally, the target mRNAs were intersected with the DEmRNAs, 
and 117  mRNAs remained (Figure  2F). The ncRNA-miRNA-mRNA 
network was constructed based on these 509 genes (369 ncRNAs, 
23 miRNAs and 117 mRNAs) (Figure 2G).

3.2  |  Potential genes for diagnosis, 
prognosis and therapy in malignant glioma

3.2.1  |  Construction of the Cox and Lasso 
regression models

The 509 genes in the ceRNA network are obviously not suitable for 
evaluating malignant glioma patients and illustrate the signalling 
pathways in malignant glioma because of their quantity. Therefore, 
we needed to further screen the most valuable genes among these 
509 genes. First, 509 genes (369 ncRNAs, 23 miRNAs and 117 mRNAs) 
in the ncRNA-miRNA-mRNA network (Figure 2G) were incorporated 
in the univariate Cox regression model, and ultimately, 116 genes (51 
ncRNAs, 2 miRNAs and 63 mRNAs) remained. Second, 116 genes were 
incorporated in the Lasso regression model, and the results showed 

that when logλ was close to −3.6, the deviance was the lowest; thus, 
31 genes remained (19 ncRNAs, 1 miRNA and 11 mRNAs) (Figure 3A,B). 
Subsequently, the 31 genes were incorporated in the multivariate Cox 
regression model, and 19 genes remained: 12 ncRNAs (AC020907.1, Y_
RNA, TMEM72-AS1, KRT16P2, DLX6-AS1, AP002414.1, AC008738.2, 
AC102941.1, AL136115.1, CT62, DPY19L2P1 and KCNH1-IT1), where 
Y_RNA was a miscRNA, KRT16P2 and DPY19L2P1 were transcribed 
unprocessed pseudogenes, AP002414.1 was a processed pseudo-
gene, and the others were lncRNAs—1  miRNA (hsa-miR-424) and 6 
coding genes (TBPL1, C9ORF40, CRY2, ETNK1, NPAS2 and VPS33B) 
(Figure 3C). These results demonstrate the importance of the ncRNA-
associated network, not limited to the lncRNA-associated network. 
Among these 19  genes, hsa-miR-424 was upregulated in malignant 
glioma, and the others were downregulated. Moreover, DLX6-AS1, 
KRT16P2, TMEM72-AS1, AC020907.1, Y_RNA and AP002414.1 would 
competitively bind to hsa-miR-424, while hsa-miR-424 would bind to 
TBPL1 mRNA according to the ceRNA network (Figure 3C). Functional 
enrichment analyses via the GO and KEGG databases were performed 
to identify the biological functions of the 19 genes (Figure 3D,E). The 
results showed that the circadian rhythm and secretory granule organi-
zation would be the most important biological processes.

3.2.2  |  Evaluation of the model in malignant glioma

The model was validated at the internal and external levels. According 
to the expressions of these 19 genes (Figure 3F) which were used to 
calculate the median of risk score, the whole malignant glioma patients 
(Figure 3G), LGG patients (Figure 3K), and GBM patients (Figure 3O) 
were grouped into two categories, a high-risk group and a low-risk 
group. The numbers of deceased patients among the whole malignant 
glioma patients (Figure 3H), LGG patients (Figure 3L), and GBM patients 
(Figure 3P) in the high-risk group were greater than that in the low-
risk group. Kaplan–Meier survival analysis showed that the survival 
time of the whole malignant glioma patients (Figure 3I), LGG patients 
(Figure 3M), and GBM patients (Figure 3Q) in the high-risk group was 
significantly shorter than that in the low-risk group (p < 10−20 in the 

F I G U R E  3  Critical genes for diagnosis, prognosis and therapy in glioma. (A) Cross-validation fitting into Lasso regression to select 
the best model. For each λ value, around the mean of the target parameter shown in the red dot, a confidence interval for the target 
parameter can be obtained. The two dashed lines indicate two particular λ values: λ.min (dashed line on the left) refers to the minimum 
target parameter mean value in all λ values, while λ.1se (dashed line on the right) refers to the value of λ that gives the simplest model in a 
range of variances. (B) Tracing independent variable coefficients. Each curve represents the change in the trajectory of each independent 
variable coefficient. The ordinate is the coefficient value, and the lower abscissa is log (λ), while the upper abscissa is the number of 
nonzero coefficients in the model at this time. (C) Multivariate Cox regression yielded 19 genes to construct a model to predict and evaluate 
malignant glioma. Rectangle, ncRNA; ellipse, miRNAs; diamond, mRNAs; red, upregulated RNAs; blue, downregulated RNAs. (D) the risk 
group and the gene expression level of the 19 genes. (E) GO functional enrichment analysis: BP, biological process; CC, cell component. (F) 
KEGG functional enrichment analysis. The group of (G) the whole malignant glioma patients, (K) the LGG patients and (O) the GBM patients. 
Each dot represents a patient; red dot, high-risk group patients; blue, low-risk group patients. Survival state of (H) the whole glioma patients, 
(L) the LGG patients, and P) the GBM patients; Each dot represents a patient; The dots on the left of the dashed line, low-risk group patients; 
the dots on the right of the dashed line, high-risk group patients; Red dots, deceased patients; blue dots, living patients. Kaplan–Meier 
survival analysis of I) the whole glioma patients, (M) the LGG patients, and (Q) the GBM patients; red, patients in the high-risk group; blue, 
patients in the low-risk group; p<10−20 is shown as 0. TDROC curve of (J) the whole glioma patients, (N) the LGG patients, and (R) the GBM 
patients; red, 1-year curve; blue, 2-year curve; orange, 3-year curve
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whole malignant glioma group and LGG group, p = 1.747×10−5 in GBM 
group). A time-dependent receiver operating characteristic (TDROC) 
curve was generated, and the area under the curve (AUC) of the whole 
malignant glioma patients was approximately 0.9 (Figure 3J), while the 
AUC of LGG patients was approximately 0.9 (Figure 3N), and the AUC 
of GBM patients was approximately 0.74 (Figure 3R). The concordance 
index (C-index) of the whole malignant glioma patients was 0.836, 
with a standard error of 0.012, a lower value of 0.814, a higher value 
of 0.859, and a p-value of 3.89 × 10−186. The C-index of LGG patients 
was 0.859, with a standard error of 0.016, a lower value of 0.827, a 
higher value of 0.891, and a p-value of 2.46 × 10−106. The C-index of 
GBM patients was 0.643, with a standard error of 0.026, a lower value 
of 0.591, a higher value of 0.694, and a p-value of 4.45 × 10−8.

Subsequently, external patients from the CGGA database were 
used to validate the model, and the results were similar. The whole 
malignant glioma patients (Figure S1A), LGG patients (Figure S1B), and 
GBM patients (Figure S1C) from the CGGA database were grouped 
into two categories, a high-risk group and a low-risk group, according 
to the risk score, which is based on the expression of these 19 genes. 
The numbers of deceased patients among the whole malignant glioma 
patients (Figure S1D), LGG patients (Figure S1E), and GBM patients 
(Figure S1F) in the high-risk group were greater than that in the low-
risk group. Kaplan–Meier survival analysis showed that the number 
of deceased patients among the whole malignant glioma patients 
(Figure S1G), LGG patients (Figure S1H), and GBM patients (Figure S1I) 
in the high-risk group was greater than that in the low-risk group, and 
the survival time of the patients in the high-risk group was significantly 
shorter than that in the low-risk group (p < 10−20 in the whole malig-
nant glioma group and LGG group, p = 2.119 × 10−2 in GBM group). 
The TDROC curve was generated, and the AUC of the whole malig-
nant glioma patients was approximately 0.83 (Figure S1J), while the 
AUC of LGG patients was approximately 0.83 (Figure S1K), and the 
AUC of GBM patients was approximately 0.62 (Figure  S1L). The C-
index of the whole malignant glioma patients was 0.741, with a stan-
dard error of 0.009, a lower value of 0.722, a higher value of 0.759, 
and a p-value of 6.23 × 10−147. The C-index of LGG patients was 0.759 
with a standard error of 0.013, a lower value of 0.734, a higher value of 
0.785, and a p-value of 3.87 × 10−86. The C-index of GBM patients was 
0.565, with a standard error of 0.018, a lower value of 0.529, a higher 
value of 0.601, and a p-value of 4.23 × 10−4.

3.3  |  Biological significance of the model in 
malignant glioma

3.3.1  |  SNV analysis in malignant glioma

Before we could further determine and illustrate the molecular mech-
anisms among these genes, we must first examine the mutations in 

these 19 genes in glioma because if there were mutations in these 
19 genes, the sequences and structures of their transcripts and pro-
teins would change, thus hampering further analysis based on the 
transcripts and structures. The 510 malignant glioma samples were 
examined, and the top 20 mutated genes in malignant glioma were 
IDH1, TP53, ATRX, CIC, TTN, FUBP1, PIK3CA, NOTCH1, EGFR, 
MUC16, NF1, SMARCA4, FLG, PTEN, PIK3R1, IDH2, RYR2, OBSCN, 
ZBTB20 and ARID1A, where the most common type of mutation 
was missense (Figure 4A). The relations among these top 20 mutated 
genes were also examined (Figure 4B); for example, IDH1 mutations 
usually co-occurred with CIC, ARTX and TP53 mutations and exclu-
sively with IDH2, PTEN, NF1 and EGFR mutations. Transition (Ti) was 
the major mutation type (mainly cytosine transitions to thymine or 
thymine transitions to cytosine), which accounted for approximately 
75% of mutations, and transversion (Tv) accounted for approximately 
25% of mutations (Figure 4C). Fortunately, mutations in the 19 genes 
were not found, suggesting that the effectiveness of the model would 
not be affected by gene mutations in malignant glioma.

Furthermore, the samples were grouped into two categories, 
a high-risk group and a low-risk group, based on the expression of 
the 19 genes to examine the incidence rate of mutations in various 
genes (Figure 4D,E). IDH1, TP53 and ATRX were the top 3 mutated 
genes in both the high-risk group and the low-risk group. The inci-
dence rate of IDH1 mutation in the low-risk group (89%) was much 
higher than that in the high-risk group (65%), and simultaneously, 
the incidence rate of ATRX mutation in the low-risk group (40%) 
was much higher than that in the high-risk group (35%), while the 
incidence rate of TP53  mutation in the low-risk group (49%) was 
not significantly different from that in the high-risk group (47%). 
These phenomena are coincident with the consensus that mutations 
in IDH1 and ATRX are the initiating events for the development 
of many gliomas, and their presence dictates favourable clinical 
behaviour.44–46 This result confirms that our model based on the 
19  genes would be reliable. Furthermore, as we know, IDH is the 
critical metabolic enzyme that catalyses the oxidative decarboxyl-
ation of isocitrate to α-ketoglutarate (αKG), NAD(P)H and CO2, while 
mutant enzymes produce (R)-2-hydroxyglutarate, which in turn in-
hibits αKG-dependent dioxygenase function, resulting in a global 
hypermethylation phenotype.47 DNA methylation is one of the most 
important processes in gene expression regulation and usually sup-
presses gene expression. Interestingly, among these 19  genes, 18 
were downregulated. Therefore, we conjecture that this hypermeth-
ylation may influence the expression of these 19 genes.

3.3.2  |  Circadian rhythm in malignant glioma

(This section includes only the declarative results. Should you read 
this manuscript for the first time, we strongly suggest you read 

F I G U R E  4  SNV analysis. (A) SNV signatures in a total of 510 malignant glioma patients. (B) Correlations between the top 20 mutated 
genes. (C) Types and proportions of mutations. Ti, transition; Tv, transversion; A, adenine; T, thymine; C, cytosine; G, guanine. (D) SNV 
signatures in patients in the high-risk group based on the model. (E) SNV signatures in patients in the low-risk group based on the model
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Section 4.1 at first.) Functional enrichment analyses via the GO and 
KEGG databases were performed to identify the biological functions 
of the 19 genes (Figure 3D,E). The results showed that the circadian 
rhythm and secretory granule organization would be the most im-
portant biological processes.

CRY2 and NPAS2 are the core components of the circadian 
clock.48,49 Moreover, NPAS2 interacts with BMAL1, and the com-
pound then binds to the E-box of the CRY2 and PER2 promoters to 
facilitate expression.50 Furthermore, CRY2  heterodimerizes with 
PER2 to bind to the transcription factors NR4A2, HNF4A, PPARA 
and NR1D1 to facilitate their activation.50 Therefore, can TBPL1, 
a transcription factor,51,52 bind to the NPAS2 promoter to facili-
tate its expression, thus promoting CRY2 expression and further 
activating NR4A2, HNF4A, PPARA and NR1D1? To test whether 
TBPL1 could bind to the NPAS2 promoter to facilitate its expres-
sion, transcription factor binding site predictions were performed, 
and the results showed that the NPAS2 promoter has four poten-
tial binding sites, with the possibility of more than 0.9 to which 
TBPL1 would bind (Table S2). To test whether NPAS2 could inter-
act with BMAL1 and the DNA promoter, molecular docking anal-
ysis was performed, and the results revealed that NPAS2 would 
interact with BMAL1 and bind to the E-box of the DNA promoter 
(Figure 5A), thus promoting PER2 and CRY2 expression. Moreover, 
CRY2 heterodimerizes with PER2 (Figure 5B) to bind to the tran-
scription factors NR4A2, HNF4A, PPARA and NR1D1 to facilitate 
their activation.

As 6 coding genes (TBPL1, C9ORF40, CRY2, ETNK1, NPAS2 
and VPS33B) were identified, we asked whether NR4A2, HNF4A, 
PPARA and NR1D1, as transcription factors, promote or suppress 
the expression of the other three genes (C9ORF40, ETNK1, or 
VPS33B). To examine whether NR4A2, HNF4A, PPARA and NR1D1 
could promote or suppress the expression of C9ORF40, ETNK1, or 
VPS33B, similar transcription factor binding site predictions were 
performed, and the results showed that only the transcription fac-
tor NR4A2 would bind to the promoters of C9ORF40, ETNK1 and 
VPS33B to promote or suppress their expression (Table S2).

3.3.3  |  Tumour immune microenvironment in 
malignant glioma

(This section includes only the declarative results. Should you read this 
manuscript for the first time, we strongly suggest you read Sections 4.1 
and 4.2 at first.) Accumulating evidence indicates that VPS33B plays a 
critical role in vesicle-mediated transport and organization.53–56 It has 
been reported that the ncRNAs CT62, DPY19L2P1 and KCNH1-IT1 
can be delivered by exosomes, while AC008738.2, AC102941.1 and 

AL136115.1 have not been identified.57,58 Therefore, VPS33B would 
promote exosomes carrying CT62, DPY19L2P1 and KCNH1-IT1 to 
other cells, thus regulating the tumor microenvironment. Considering 
that immune cells are an important component of the tumor environ-
ment, glioma-derived exosomes would deliver CT62, DPY19L2P1 and 
KCNH1-IT1 to immune cells, regulating the tumour immune microen-
vironment.59,60 To test whether CT62, DPY19L2P1 and KCNH1-IT1 
could regulate the tumour immune microenvironment, immune anal-
yses were performed. The results revealed that as the risk score in-
creased, the proportion of stromal cells and immune cells increased 
while tumour purity decreased (Figure 6A,B), indicating that immune 
cells play a critical role in malignant glioma tumorigenesis and progres-
sion. Moreover, M2 macrophages were the most abundant immune 
cells in the malignant glioma microenvironment (Figure 6C,D), suggest-
ing that M2 macrophages would play an important role in malignant 
glioma tumorigenesis and progression. The proportions of M2 mac-
rophages in the VPS33B (Figure 6E), DPY19L2P1 (Figure 6F), CT62 
(Figure 6G) and KCNH1-IT1 (Figure 6H) low expression groups were 
higher than those in the high expression groups, while the proportions 
of M0 macrophages and M1 macrophages were lower than those in 
the high expression groups. These results suggest that VPS33B, CT62, 
DPY19L2P1 and KCNH1-IT1 would suppress M0  macrophage and 
M1 macrophage differentiation into M2 macrophages. What's more, 
considering TBPL1 and hsa-mir-424 that locate upstream of the path-
ways, the effects of TBPL1 and hsa-mir-424 have also been validated. 
The results show that the proportion of M2 macrophages in the TBPL1 
(Figure 6I) low expression groups was higher than that in the high ex-
pression groups, while the proportion of M2 macrophages in the hsa-
mir-424 (Figure 6J) low expression groups was lower than that in the 
high expression groups. This, again, verifies that our model is reliable.

3.3.4  |  Cellular senescence in malignant glioma

(This section includes only the declarative results. Should you 
read this manuscript for the first time, we strongly suggest you 
read Sections  4.1–4.3 at first.) We have illustrated that Y_RNA, 
AC020907.1, TMEM72-AS1, KRT16P2, DLX6-AS1 and AP002414.1 
would competitively bind to hsa-miR-424 and that hsa-miR-424 
could bind to TBPL1 mRNA. To further verify these findings, mo-
lecular docking was performed. The results revealed that Y_RNA 
(Figure  5C), AC020907.1 (Figure  S2A), TMEM72-AS1 (Figure  S2B), 
KRT16P2 (Figure  S2C), DLX6-AS1 (Figure  S2D) and AP002414.1 
(Figure  S2E) could competitively bind to hsa-miR-424, while hsa-
miR-424 could bind to TBPL1 mRNA (Figure S2F).

Although C9ORF40  has no correlation with either the circa-
dian rhythm or secretory granule organization, it plays a critical 

F I G U R E  5  Molecular docking. (A) The interactions among NPAS2, BMAL1, and DNA promoters. (B) The interaction between CRY2 and 
PER2. (C) The interaction between hsa-miR-424 and Y_RNA. (D) The interaction between the PCNA trimer and AL136115.1. AL136115.1 
competitively passes through the cavity of PCNA, which hinders the DNA from going through the same site. (E) The interactions among 
PCNA, DNA, and Pol δ. The PCNA trimer forms a hexagon-like structure with a cavity where DNA passes through PCNA and binds to Pol δ 
to replicate the lagging strandy.66
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role in cellular senescence by activating the p21 pathway.6161 
C9ORF40 activates p21 and thus inhibits proliferation by the 
CDK or proliferating cell nuclear antigen (PCNA) signalling path-
way and simultaneously promotes apoptosis by the caspase-3 sig-
nalling pathway.62–65 To test whether the other three ncRNAs, 
AC008738.2, AC102941.1, and AL136115.1, could bind to p21, 
CDK, PCNA, or caspase-3, molecular docking analysis was per-
formed. The results revealed that only PCNA would interact with 
the ncRNAs AL136115.1 (Figure  5D), AC008738.2 (Figure  S2G), 
and AC102941.1 (Figure  S2H). In eukaryotes, the PCNA trimer 
forms a hexagon-like structure with a cavity where DNA passes 
through PCNA and binds to DNA polymerase δ (Pol δ) to replicate 
the lagging strand (Figure 5E) and cooperates with flap endonucle-
ase 1 (FEN1) to process the Okazaki fragments for ligation.66How-
ever, the DNA binding cavity for PCNA would be occupied by the 
ncRNAs AC008738.2, AC102941.1, and AL136115.1, hindering 
and impeding DNA replication and thus suppressing proliferation 
and other cell cycle processes in malignant glioma.

3.4  |  Clinical significance of the circadian rhythm, 
tumour immune microenvironment, and cellular 
senescence pathways in malignant glioma

The eleven genes within the circadian rhythm pathway (AC020907.1, 
Y_RNA, TMEM72-AS1, KRT16P2, DLX6-AS1, AP002414.1, hsa-
miR-424, TBPL1, NPAS2, CRY2, and ETNK1) were used to construct 
a model to evaluate the importance of these genes in malignant 
glioma. The patients were grouped into two groups based on the 
expression of these genes: a high-risk group and a low-risk group 
(Figure S3A). Kaplan–Meier survival analysis showed that the num-
ber of deceased patients in the high-risk group was greater than that 
in the low-risk group, and the survival time of the patients in the 
high-risk group was significantly shorter than that in the low-risk 
group (p < 10−20) (Figure S3B,C). The TDROC curve was generated, 
and the AUC was approximately 0.9, with a 1-year AUC of 0.866, a 
2-year AUC of 0.889, and a 3-year AUC of 0.887 (Figure S3D). The 
C-index was 0.841, with a standard error of 0.017, a lower value of 
0.806, a higher value of 0.876, and a p-value of 2.60 × 10−82. These 
results reveal that this model would also be accurate, highlighting 
that the circadian rhythm pathway and its related genes would be 
critical for malignant glioma and its evaluation.

Fourteen genes within the cellular senescence pathway 
(AC020907.1, Y_RNA, TMEM72-AS1, KRT16P2, DLX6-AS1, 

AP002414.1, hsa-miR-424, TBPL1, NPAS2, CRY2, C9ORF40, 
AL136115.1, AC102941.1, and AC008738.2) were used to con-
struct a model to evaluate the importance of these genes in ma-
lignant glioma. The patients were grouped into two groups based 
on the expression of these genes: a high-risk group and a low-risk 
group (Figure S3E). Kaplan–Meier survival analysis showed that the 
number of deceased patients in the high-risk group was greater 
than that in the low-risk group, and the survival time of the patients 
in the high-risk group was significantly shorter than that in the low-
risk group (p < 10−20) (Figure S3F,G). The TDROC curve was gen-
erated, with a 1-year AUC of 0.866, a 2-year AUC of 0.900, and a 
3-year AUC of 0.906 (Figure S3H). The C-index was 0.849, with a 
standard error of 0.016, a lower value of 0.817, a higher value of 
0.881, and a p-value of 4.18  ×  10−103. Overall, this model would 
also be accurate, highlighting that the cellular senescence pathway 
and its related genes would be critical for malignant glioma and its 
evaluation.

Fourteen genes within the tumour immune microenviron-
ment pathway (AC020907.1, Y_RNA, TMEM72-AS1, KRT16P2, 
DLX6-AS1, AP002414.1, hsa-miR-424, TBPL1, NPAS2, CRY2, 
VPS33B, CT62, DPY19L2P1, and KCNH1-IT1) were used to con-
struct a model to evaluate the importance of these genes in ma-
lignant glioma. The patients were grouped into two groups based 
on the expression of these genes: a high-risk group and a low-risk 
group Figure S3I). Kaplan–Meier survival analysis showed that the 
number of deceased patients in the high-risk group was greater 
than that in the low-risk group, and the survival time of the patients 
in the high-risk group was significantly shorter than that in the low-
risk group (p < 10−20) (Figure S3J,K). The TDROC curve was gen-
erated, with a 1-year AUC of 0.884, a 2-year AUC of 0.888, and a 
3-year AUC of 0.878 Figure  S3L). The C-index was 0.845, with a 
standard error of 0.019, a lower value of 0.808, a higher value of 
0.882, and a p-value of 1.62 × 10−73. Overall, this model would also 
be accurate, highlighting that the tumour immune microenviron-
ment pathway and its related genes would be critical for malignant 
glioma and its evaluation.

Since all three pathways act through AC020907.1, Y_RNA, 
TMEM72-AS1, KRT16P2, DLX6-AS1, AP002414.1, hsa-miR-424, 
TBPL1, NPAS2, and CRY2, these genes could serve as potential 
therapeutic targets for malignant glioma. Knockdown of hsa-
miR-424 or overexpression of AC020907.1, Y_RNA, TMEM72-AS1, 
KRT16P2, DLX6-AS1, AP002414.1, and TBPL1 could regulate 
these three pathways to suppress malignant glioma tumorigenesis 
and progression.

F I G U R E  6  Immune infiltration analysis. A) Linear correlations between the risk score and stromal score, immune score, ESTIMATE score, 
and tumour purity. ESTIMATE, Estimation of Stromal and Immune Cells in Malignant Tumour Tissues using Expression Data. B) Boxplot of 
the correlations among the risk score, stromal score, immune score, ESTIMATE score, and tumour purity. C) Landscape of infiltrating immune 
cells. D) Relative proportions of infiltrating immune cells. E) Relative proportions of infiltrating immune cells based on the expression of 
VPS33B (high or low). F) Relative proportions of infiltrating immune cells based on the expression of DPY19L2P1 (high or low). G) Relative 
proportions of infiltrating immune cells based on the expression of CT62 (high or low). H) Relative proportions of infiltrating immune cells 
based on the expression of KCNH1-IT1 (high or low). I) Relative proportions of infiltrating immune cells based on the expression of TBPL162 
(high or low). J) Relative proportions of infiltrating immune cells based on the expression of hsa-mir-424 (high or low). *, p < 0.05; **, p < 0.01; 
***, p < 0.005; ****, p < 0.001; ns, not significant
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3.5  |  Experiment validation

The PCR assays were performed to verify the 19-gene model pre-
liminarily (Figure 7A–C). Nearly all the genes were consistent with 
our conclusions except CT62. The ncRNAs (DLX6-AS1, KRT16P2, 
TMEM72-AS1, AC020907.1, Y_RNA, AP002414.1, AL136115.1, 
DPY19L2P1, KCNH1-IT1, AC008738.2, and AC102941.1) and cod-
ing RNAs (TBPL1, C9ORF40, NPAS2, VPS33B, ETNK1, and CRY2) 
were low expressed in both LGG and GBM, while microRNA (hsa-
miR-424) were high expressed in both LGG and GBM. In particular, 
DLX6-AS1, Y_RNA, KCNH1-IT1, hsa-miR-424, TBPL1, C9ORF40, 
NPAS2, and CRY2 have significance with p < 0.001, which indicates 
the priority of these genes in further experiments. Further, the IHC 
(Figure  7D,E) assays were performed to verify the expression of 
core protein TBPL1 which lies upstream of the three pathways. The 
results of IHC indicate that the expressions of TBPL1 in LGG and 
GBM were downregulated, and the expression of TBPL1 in GBM 
was much lower than LGG, which was consistent with our model.

4  |  DISCUSSION

4.1  |  Circadian rhythm pathway

After identifying DEGs, constructing ceRNA network, perform-
ing Cox/Lasso regression model, and evaluating the model, we 
obtained a novel 19-gene model (Figure  3C), including 12 ncR-
NAs (AC020907.1, Y_RNA, TMEM72-AS1, KRT16P2, DLX6-AS1, 
AP002414.1, AC008738.2, AC102941.1, AL136115.1, CT62, 
DPY19L2P1 and KCNH1-IT1), where Y_RNA is a miscRNA, 
KRT16P2 and DPY19L2P1 are transcribed unprocessed pseudo-
genes, AP002414.1 is a processed pseudogene, and the others 
are lncRNAs—1 miRNA (hsa-miR-424), and 6 coding genes (TBPL1, 
C9ORF40, CRY2, ETNK1, NPAS2, and VPS33B). But what's the bi-
ological function of these genes in malignant glioma? As mutations 
in the 19 genes were not found in malignant glioma (Figure 4), we 
could further determine the correlations between the 19  genes 
and malignant glioma. Functional enrichment analyses via the GO 

F I G U R E  7  Experiment validation of the 
19-gene model and core protein TBPL1. 
Relative expression level of (A) ncRNA, 
(B) coding RNA and (C) microRNA tested 
by PCR. (D,E), Relative expression level 
of TBPL1 protein detected by IHC. *, 
p < 0.05; **, p < 0.01; ***, p < 0.005; ****, 
p < 0.001; ns, not significant
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and KEGG databases were performed to identify the biological 
functions of the 19 genes (Figure 3D,E). The results showed that 
the circadian rhythm and secretory granule organization were the 
most important biological processes. First, we will discuss the cir-
cadian rhythm.

We previously found some relationships among these 
19  genes—Y_RNA (Figure  5C), AC020907.1 (Figure  S2A), 
TMEM72-AS1 (Figure  S2B), KRT16P2 (Figure  S2C), DLX6-AS1 
(Figure S2D), and AP002414.1 (Figure S2E)—which could compet-
itively bind to hsa-miR-424, and hsa-miR-424, which could bind 
to TBPL1  mRNA (Figure  S2F). These correlations, however, are 
not enough to explain the biological functions of the 19 genes in 
malignant glioma tumorigenesis and progression. We observed 
that among the 6 coding genes (TBPL1, C9ORF40, CRY2, ETNK1, 
NPAS2, and VPS33B) (Figure 3C), CRY2 and NPAS2 were the core 
components of the circadian clock.48,49 Moreover, NPAS2 inter-
acts with BMAL1, and the compound then binds to the E-box 
of the CRY2 and PER2 promoters (Figure  5A) to facilitate their 
expression.50 Furthermore, CRY2  heterodimerizes with PER2 
(Figure  5B) to bind to the transcription factors NR4A2, HNF4A, 
PPARA, and NR1D1 to facilitate their activation.50 Therefore, we 
asked whether TBPL1, a transcription factor,51,52 can bind to the 
NPAS2 promoter to facilitate its expression, thus promoting CRY2 
expression and further activating NR4A2, HNF4A, PPARA, and 
NR1D1. Transcription factor binding site predictions showed that 
TBPL1 would bind to the NPAS2 promoter (Table S2), indicating 
that TBPL1 would promote activation of NR4A2, HNF4A, PPARA, 
and NR1D1 indirectly through NPAS2/CRY2. Further, can NR4A2, 
HNF4A, PPARA, and NR1D1, as transcription factors, promote or 
suppress the expression of C9ORF40, ETNK1, or VPS33B? Similar 
transcription factor binding site predictions showed that only 
the transcription factor NR4A2 would bind to the promoters of 
C9ORF40, ETNK1, and VPS33B to promote or suppress their ex-
pression (Table S2). Moreover, VPS33B expression is regulated by 
the circadian rhythm,67 which is consistent with our conclusion. 
Furthermore, ethanolamine kinase 1 (ETNK1) is a rate-controlling 
enzyme in phosphatidylethanolamine biosynthesis, and its low 
expression would promote the proliferation and invasion of gas-
tric cancer, larynx- or tongue-derived squamous cell carcinoma, 
among others,68–70 indicating that TBPL1 would promote glioma 
tumorigenesis via the NPAS2/CRY2/NR4A2/ETNK1 pathway. 
Moreover, accumulating evidence indicates that PER2 plays im-
portant and critical roles in tumour suppression and the DNA 
damage response through the NPAS2/BMAL1 complex, which 
regulates TP53 and C-MYC.71,72Overall, the noncoding RNAs 
AC020907.1, Y_RNA, TMEM72-AS1, KRT16P2, DLX-AS1, and 
AP002414.1 competitively bind to miR-424 to promote TBPL1 ex-
pression, thus promoting NPAS2 expression. Furthermore, CRY2 
and PER2 would suppress glioma tumorigenesis by suppressing 
ETNK1 expression through the transcription factor NR4A2 or 
by suppressing C-MYC or TP53 expression through the NPAS2-
BMAL1 complex (Figure 1B).

Interestingly, Ben Franklin's aphorism ‘early to bed, early to rise, 
makes a man healthy, wealthy, and wise’ also suggests the potential 
importance of the circadian rhythm in health. Regardless of bacteria or 
eukaryotes, circadian rhythms play an important role in controlling a 
variety of physiological processes, and disruptions to normal circadian 
biology can cause many diseases.73 Many physiological processes, in-
cluding hormone secretion, drug and xenobiotic metabolism, glucose 
homeostasis, cell cycle progression, and tumorigenesis, are regulated 
by the circadian rhythm,49,74,75. Accumulating evidence indicates that 
circadian rhythm disorders cause many diseases.76–81 Therefore, un-
derstanding the correlation between the circadian rhythm and disease 
is critical and important for understanding the underlying mechanisms 
and potential therapies. Our work reveals that glioma tumorigenesis 
is significantly correlated with the circadian rhythm. We strongly sug-
gest not staying up late if you can go to bed early.

4.2  |  Tumour immune microenvironment

During the process of illustrating the circadian rhythm pathway, 
among the 6 coding genes, we exhibited the biological functions 
of TBPL1, NPAS2, CRY2, and ETNK1; therefore, what are the roles 
of VPS33B and C9ORF40 in malignant glioma? As GO and KEGG 
functional enrichment analyses revealed that these genes are also 
related to secretory granule organization (Figure 3D,E), we are going 
to discuss secretory granule organization.

Accumulating evidence indicates that VPS33B plays a critical 
role in vesicle-mediated transport and organization.53-56 Therefore, 
given that exosomes, a kind of vesicle that mediates communi-
cation between cells by transferring ncRNAs, promote tumori-
genesis,82-84 can VPS33B promote exosomes carrying ncRNAs to 
other cells in addition to malignant glioma and thus regulate the 
tumor microenvironment? First, the following 6 ncRNAs have not 
been discussed until now: AC008738.2, AC102941.1, AL136115.1, 
CT62, DPY19L2P1, and KCNH1-IT1. Therefore, do exosomes carry 
these 6 ncRNAs? Next, do these 6 ncRNAs regulate the tumour 
microenvironment? It has been reported that the ncRNAs CT62, 
DPY19L2P1, and KCNH1-IT1 can be delivered by exosomes, while 
AC008738.2, AC102941.1, and AL136115.1  have not been identi-
fied.57,58 Therefore, VPS33B would promote exosomes carrying 
CT62, DPY19L2P1, and KCNH1-IT1 to other cells, thus regulating 
the tumour microenvironment. Considering that immune cells are an 
important component of the tumour environment, glioma-derived 
exosomes would deliver CT62, DPY19L2P1, and KCNH1-IT1 to im-
mune cells, regulating the tumour immune microenvironment.59,60 
Immune analyses revealed that as the risk score increased, the pro-
portions of stromal cells and immune cells increased, while tumour 
purity decreased (Figure 6A,B), indicating that immune cells play a 
critical role in malignant glioma tumorigenesis and progression. We 
noticed that M2 macrophages were the most abundant cell type in 
the malignant glioma microenvironment (Figure  6C,D), suggesting 
that M2  macrophages would play an important role in malignant 
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glioma tumorigenesis and progression. Moreover, the proportions of 
M2 macrophages in the VPS33B (Figure 6E), DPY19L2P1 (Figure 6F), 
CT62 (Figure 6G), and KCNH1-IT1 (Figure 6H) low expression groups 
were higher than those in the high expression groups, while the 
proportions of M0  macrophages and M1  macrophages in the low 
expression groups were lower than those in the high expression 
groups. These results suggest that VPS33B, CT62, DPY19L2P1, and 
KCNH1-IT1 would suppress M0  macrophage and M1  macrophage 
progression into M2 macrophages. Given that VPS33B plays a critical 
role in vesicle-mediated transport and organization53-56 and that the 
ncRNAs CT62, DPY19L2P1, and KCNH1-IT1 can be delivered by exo-
somes,57,58 VPS33B would promote the organization and release of 
exosomes that carry CT62, DPY19L2P1 and KCNH1-IT1 to immune 
cells, suppressing M0 macrophage and M1 macrophage progression 
into M2  macrophages. What's more, considering TBPL1 and hsa-
mir-424 that locate upstream of the pathways, the effects of TBPL1 
and hsa-mir-424 have also been validated. The results show that the 
proportion of M2 macrophages in the TBPL1 (Figure 6I) low expres-
sion groups was higher than that in the high expression groups, while 
the proportion of M2 macrophages in the hsa-mir-424 (Figure 6J) low 
expression groups was lower than that in the high expression groups. 
This, again, verifies our model is reliable. In M2 macrophages, argi-
nine metabolism converts arginine into ornithine and polyamines, 
promoting proliferation and repair through polyamine and collagen 
synthesis, fibrosis and other tissue remodelling functions, thus pro-
moting tumorigenesis.85-88Therefore, the low expression of CT62, 
DPY19L2P1, KCNH1-IT1 and VPS33B in malignant glioma would 
promote the formation of M2 macrophages and thus promote malig-
nant glioma tumorigenesis and progression (Figure 1B).

Interestingly, for a long time, the immune system was con-
sidered to play a protective role in tumour development.89. 
Accumulating evidence, however, indicates that various types 
of immune and inflammatory cells are frequently present within 
tumours and are strongly correlated with tumours.90Exosomes, 
vesicles of endocytic origin released by cells, mediate communi-
cation between cells by transferring mRNAs, ncRNAs, liquids and 
proteins, thus promoting cell processes such as antigen presenta-
tion, tumorigenesis, neurodegeneration, immune responses, and 
intracellular trafficking.82–84,91,92Overall, accumulating evidence 
highlights the important relationship between tumour cells and 
other cells mediated by exosomes. In our work, we reveal that the 
immune system plays an undeniably important role in the develop-
ment of malignant glioma through exosomes. Thus, understanding 
the relationship among malignant glioma, the immune microen-
vironment, and exosomes is vital for illustrating the underlying 
mechanisms and improving malignant glioma therapy.

4.3  |  Cellular senescence

After illustrating the circadian rhythm pathway and tumour immune 
microenvironment pathway, only one coding gene, C9ORF40, and 
three ncRNAs, AC008738.2, AC102941.1 and AL136115.1, remain 

to be illustrated. Although C9ORF40 has no relationship with either 
the circadian rhythm or secretory granule organization, it plays a crit-
ical role in cellular senescence by activating the p21 pathway.61p21, 
which is encoded by CDKN1A, is a key protein in cellular senescence 
and causes G1 phase arrest by interacting with CDK1 or CDK2 to 
disrupt the interaction between substrates and CDKs, thus inhibiting 
cell cycle progression.62–64p21 can directly bind to PCNA and inhibit 
its activation, which inhibits DNA polymerase activity, transcription, 
and excision repair functions[65]. Moreover, p21 induces apoptosis 
by activating the caspase-3-mediated signalling pathway.62,63Overall, 
C9ORF40 activates p21 and thus inhibits proliferation by the CDK or 
PCNA signalling pathway and simultaneously promotes apoptosis by 
the caspase-3 signalling pathway.

What are the roles of the ncRNAs AC008738.2, AC102941.1 
and AL136115.1 in the cellular senescence pathway? One possi-
ble explanation is that the ncRNAs AC008738.2, AC102941.1 
and AL136115.1 would interact with the p21, CDK, PCNA and 
caspase-3 proteins to regulate cellular senescence. Therefore, 
the question is whether p21, CDK, PCNA and caspase-3 are RNA-
binding proteins. PCNA was identified as an RNA-binding pro-
tein[93], while the others were not. To test whether the ncRNAs 
AC008738.2, AC102941.1 and AL136115.1 could bind to p21, 
CDK, PCNA and/or caspase-3, molecular docking analysis was per-
formed. The results revealed that only PCNA would interact with 
the ncRNAs AL136115.1 (Figure  5D), AC008738.2 (Figure  S2G), 
and AC102941.1 (Figure  S2H). In eukaryotes, the PCNA trimer 
forms a hexagon-like structure with a cavity where DNA passes 
through PCNA and binds to DNA polymerase δ (Pol δ) to replicate 
the lagging strand (Figure  5E) and cooperates with flap endonu-
clease 1 (FEN1) to process the Okazaki fragments for ligation[66]. 
However, the DNA binding cavity for PCNA would be occupied by 
the ncRNAs AC008738.2, AC102941.1 and AL136115.1, hindering 
and impeding DNA replication and thus suppressing proliferation 
and other cell cycle processes in malignant glioma.

In particular, the process of cellular senescence is considered a 
state of irreversible growth arrest. Cancer cells, however, do not enter 
this state and begin to proliferate infinitely.94Cellular senescence 
was found to be mediated by the two main tumour suppressor path-
ways of the cell: the ARF/p53 and INK4a/RB pathways.94–96Overall, 
overwhelming evidence indicates that cellular senescence is a crit-
ical feature of mammalian cells to suppress tumorigenesis. In our 
work, we also revealed that cellular senescence is significantly cor-
related with glioma tumorigenesis (Figure 1B).

5  |  CONCLUSIONS

•	 Nineteen genes (12 ncRNAs: AC020907.1, Y_RNA, TMEM72-AS1, 
KRT16P2, DLX6-AS1, AC008738.2, AC102941.1, AL136115.1, 
CT62, DPY19L2P1 and KCNH1-IT1; 1  miRNA: hsa-miR-424; 
and 6 coding genes: TBPL1, C9ORF40, CRY2, ETNK1, NPAS2 
and VPS33B) were used to construct a model to evaluate malig-
nant glioma patients (AUC of approximately 0.91 and C-index of 
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approximately 0.84). These 19 genes could be used as diagnostic/
prognostic biomarkers for malignant glioma.

•	 The model is very suitable for LGG and is also suitable for GBM 
(AUC of approximately 0.90 and C-index of approximately 0.86 
in LGG and AUC of approximately 0.75 and C-index of approxi-
mately 0.69 in GBM), which highlights the partial similarities and 
differences between LGG and GBM.

•	 The ncRNAs AC020907.1, Y_RNA, TMEM72-AS1, KRT16P2, 
DLX6-AS1 and AP002414.1 would competitively interact with 
hsa-miR-424, which would bind to TBPL1 mRNA, indirectly pro-
moting TBPL1 expression.

•	 TBPL1 would bind to the NPAS2 promoter to promote its expres-
sion, and NPAS2 would interact with BMAL1 to promote CRY2 and 
PER2 expression and suppress C-MYC expression. CRY2, which 
complexes with PER2 would bind to the promoters of C9ORF40, 
ETNK1, and VPS33B to promote their expression. Low ETNK1 ex-
pression would directly promote malignant glioma proliferation.

•	 VPS33B would promote the organization and release of exo-
somes that deliver CT62, DPY19L2P1, and KCNH1-IT1 to immune 
cells, suppressing the differentiation of M1  macrophages into 
M2 macrophages.

•	 C9ORF40 would promote cellular senescence and thus inhibit tu-
morigenesis through p21/PCNA, p21/CDK, and p21/caspase-3.

•	 The ncRNAs AC008738.2, AC102941.1, and AL136115.1 would 
bind to PCNA and thus inhibit cell proliferation and promote cel-
lular senescence.
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