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Abstract: In this study, the cationic complex [PtMe(Me2SO)(dppf)]CF3SO3 (PtFc) (dppf = 1,1′-
bis(diphenylphosphino)ferrocene) was exploited as a precursor to functionalize the multi-
chromophoric system hexakis(pyridyl-porphyrinato)benzene (1). The final adduct [PtFc]18-1, con-
taining eighteen platinum(II) organometallic [PtMe(dppf)] fragments, was prepared and character-
ized through UV/Vis absorption, 31P{1H}-NMR spectroscopy, and fluorescence emission. UV/vis
and fluorescence titrations confirmed the coordination between the platinum(II) center and all the
pyridyl moieties of the peripheral substituent groups of the porphyrin. The drop casting of di-
luted dichloromethane solution of [PtFc]18-1 onto a glass surface afford micrometer-sized emissive
porphyrin rings.

Keywords: porphyrins; platinum(II) complexes; ferrocene; spectroscopic investigation; self-assembly

1. Introduction

Porphyrins and their metal complexes due to peculiar structural, electronic, and
catalytic features are excellent molecular building blocks for accessing supramolecular sys-
tems for application in many fields, from energy storage and conversion to supramolecular
catalysis, optics, and electronics [1–5]. Most of these properties can be properly tuned by a
careful choice of the peripheral substituent groups, by the coordinated metal ion, and by
their aggregation state. Metal-mediated self-assembly is an interesting approach for access-
ing well-defined porphyrin structures [6–13]. The shape and size of the supramolecular
architectures are strictly related to the geometry imposed by the metal ions coordinated
either in the macrocycle core or in its periphery and, in addition, by the number and
relative orientations of the porphyrin substituent groups. In this framework, porphyrins
bearing peripheral platinum(II) complexes have been reported and exhibit peculiar steric
and electronic properties [14]. Some of these species have shown the annihilation of tumor
cells combining the anticancer activity of the platinum complexes and the photo-physical
behavior of the porphyrins for photodynamic therapy (PDT) [15–19]. Other examples have
demonstrated the selective and controllable photoactivation of drugs within a tumor, reduc-
ing the adverse effects [20]. Clover-like shape porphyrin-bridged tetranuclear platinum(II)
complexes have been reported for their ability to stabilize various kinds of G-quadruplexes,
rather than the double-stranded DNA structure [16]. In the past, we have reported the use
of platinum(II) organometallic complexes of the type [PtMe(Me2SO)(N–N)]+, where N–N
is a series of diamines or diimines, as versatile building blocks for functionalizing the sym-
metric meso-tetrakis(4-pyridil)porphine (TpyP) [21–25]. Kinetic studies on these cationic
platinum(II) complexes revealed that the exchange rate of the coordinated dimethylsul-
foxide depends on the nature of the chelating ligand and is very labile when N-N is a
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diimine [26]. Complexes with different diimines bearing various substituent groups al-
lowed tetra-substituted porphyrins soluble in micellar phases [21] and able to self-organize
into mesoscopic structures to be obtained [22]. This methodology has been extended to
organometallic platinum(II) complexes containing ligands able to perform other functions,
and in particular, able to be redox active, such as in the complex ion [Pt(dppf)Me(Me2SO)]+

(dppf = 1,1′-bis(diphenylphosphino)ferrocene) [23]. Platinum(II) complexes containing
dppf are multipurpose compounds and have applications in many research fields [27–29].
The majority of the reported complexes are mononuclear, with a single or two chelating
dppf ligands, although trans coordination with a weak dative bond with iron has also been
reported [30–43]. This versatile ligand adopts various modes of coordination and due to its
large trans-labilizing ability with respect to a diimine [44], has been used as a corner joint
for accessing platinum complexes’ molecular boxes [45]. In order to increase the π–stacking
surface and obtain better-defined structures, a porphyrin hexamer was synthesized by
coupling six pyridyl substituted porphyrin moieties to a central benzene core via an ether
linkage (see compound 1 in Scheme 1) [46]. Further extension of the surface has been
achieved through the metal-directed self-assembly of platinum diimine complexes, and
the formation of mesoscopic assemblies on the surface has been reported [46]. In this case,
despite the presence of eighteen potential coordination sites, the final multi-chromophoric
superstructures only showed the coordination of six platinum complexes with the pyridine
groups in the periphery of the hexameric porphyrin [46]. Here, we report the functional-
ization of this porphyrin hexamer by appending organometallic platinum(II) complexes
containing the dppf ligand (see the [PtFc]18-1 complex in Scheme 1).
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Scheme 1. Synthetic route to the [PtFc]18-1 complex by a direct reaction of the porphyrin hexamer 1 and the platinum
precursor complex PtFc.

The introduction of ferrocenyl fragments on porphyrin rings is a topic of relevant
interest, particularly in terms of their donor–acceptor complementary and electrochemical
activities [47]. Several strategies have been reported in the literature for achieving function-
alized porphyrin with ferrocene fragments, in order to investigate several processes, such
as photoinduced electron transfer [48,49] and multi-electron redox catalysis [50], and to de-
velop molecular-based electronic devices [51–54] or molecular electrogenic sensors [55]. We
anticipate that the coordination of eighteen platinum(II) moieties with the pyridine groups
can be achieved through a very simple synthetic route. The spectroscopic characterization
of the final compound by means of NMR, absorption, and fluorescence emission spec-
troscopy is described in this paper. Moreover, as for similar systems previously reported,
well-defined emissive nanostructured rings are easily achieved by the simple evaporation
of CH2Cl2 solutions on a glass surface.
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2. Materials and Methods

Chemicals. Porphyrin hexamer (1) and [PtMe(Me2SO)(dppf)]CF3SO3 (PtFc) were
synthesized as previously reported in the literature [23,46]. The identity and purity of the
samples were established by NMR spectroscopy. All solvents were of a reagent grade,
and were available from commercial suppliers (Analytical Reagent Grade, Lab-Scan Ltd.,
Dublin, Ireland).

Synthesis. A total of 2 mg of hexamer 1 (0.000506 mmol) was added to a solution ob-
tained by dissolving 9 mg of [PtMe(Me2SO)(dppf)]CF3SO3 (0.00911 mmol; [PtFc]/[1] = 18)
in 30 mL of dichloromethane. The reaction mixture was exposed to stirring at room tem-
perature for ca. 12–15 h in the dark. The solution was then completely evaporated under
reduced pressure, washed several times with methanol to remove the excess dimethylsul-
foxide, dissolved in the minimum volume of dichloromethane, and added to n-hexane
until complete precipitation of the dark-red solid. The mixture was kept in a freezer at
−35 ◦C for 3 h and the solvent was then removed to obtain the final compound [PtFc]18-1
with an 85% yield.

Nuclear Magnetic Resonance (NMR)
31P{1H} NMR (CD2Cl2): δ 29.5 (m,br, 1JPtPA = 1968 Hz, PA trans to CH3), 14.6 (m, br,

1JPtPB = 3970 Hz, PB trans to py).
Spectroscopy UV/Vis
UV/Vis (CH2Cl2) [λabs/nm 430 (B-band), 522, 560, 600, 650 nm (Q-bands)]: Fluores-

cence emission (CH2Cl2) [λabs/nm 660, 722].

Instrumentation

NMR spectra were measured on a Bruker AMX R-300 spectrometer (Milan, Italy)
equipped with a broad-band probe operating at 300.13 and 121.5 MHz for 1H and 31P
nuclei, respectively. NMR chemical shifts are reported in parts per million (δ/ppm), and
coupling constants are given in Hertz (J/Hz). All spectra were recorded in CD2Cl2 at
298 K. 1H NMR peaks were reported relative to tetramethylsilane (TMS), and referenced
using the residual solvent resonances. 31P{1H} NMR chemical shifts are reported relative
to external H3PO4.

UV/Vis absorption spectra were acquired on a Agilent mod. HP 8453 diode array
spectrophotometer (Milan, Italy) using 1 cm path-length quartz cells. Fluorescence emission
spectra were recorded on a Jasco mod. FP-750 spectrofluorimeter (Lecco, Italy).

Glass microscope slides were used as substrates for depositing samples. They were
cleaned prior to use by immersion in a 1:1 mixture of concentrated NH3 solution and 30%
H2O2 (Caution! This mixture is highly corrosive and should be handled with care under
a ventilated fume-hood, avoiding skin contact), and then rinsed with Millipore-Q water
and dried under an N2 stream. In total, 25 µL of sample solutions was cast onto the slides
and evaporated at room temperature under a gentle N2 stream. Images were obtained
by using a Zeiss Axiovert S100 optical microscope (Milan, Italy), working in fluorescence
and transmission acquisition modes, with a CARV confocal module. The microscope
was equipped with Plan Neofluar 10×/n.a.0.3 and 50×/n.a.0.5 (long working distance)
objectives (Milan, Italy). A 100 W Hg lamp was used for fluorescence imaging.

3. Results and Discussion

The strategy previously used to obtain a tetranuclear platinum(II) complex containing
tetrakis(4-pyridyl)porphyrin as the central core [21–24,46] was exploited to functional-
ize the hexakis(pyridyl-porphyrinato)benzene (1) according to Scheme 1. The precursor
platinum(II) complex [PtMe(Me2SO)(dppf)]CF3SO3 was prepared in an almost quanti-
tative yield by reacting trans-[PtMeCl(Me2SO)2] and the diphosphane ligand dppf in
dichloromethane at 298 K and extracting the chloride by silver triflate according to a liter-
ature method [23]. The multi-porphyrin system 1, synthesized according to a procedure
already reported in the literature [46], is characterized by the presence of eighteen potential
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coordination sites for the Pt(II), i.e., three pyridyl groups present in the meso position of
each porphyrin unit linked to the central core.

The gradual coordination of platinum(II) fragments with the pyridyl groups of 1 can
be easily monitored in situ by UV/Vis and fluorescence emission spectroscopy, by titrating
a solution of 1 with known aliquots of a solution of the PtFc complex. Upon the addition
of this latter component, the electronic spectra of the multi-porphyrin systems show the
progressive decrease of the initial B-band centered at 418 nm and a matching increase of a
new band bathochromically shifted to 430 nm (Figure 1). The absence of a clear isosbestic
point suggests the presence of intermediate species due to partial coordination of the
available sites. A UV/Vis titration, measuring the absorbance at 418 nm, is displayed
in the inset of Figure 1. A clear break point corresponding to eighteen Pt equivalents is
evident. The coordination of the metal complexes at all of the available sites is a rather
interesting result. Indeed, a previous investigation reported that Pt(II) complexes bearing
diimine ligands with long alkyl chains are only able to bind six sites in the periphery
of the hexameric structure [46]. The actual results can be explained as an interplay of
(i) the steric hindrance of the bulky ferrocenyl groups of the dppf ligand and (ii) the higher
lability of Me2SO as a consequence of the stronger trans influence and trans effect of a
phosphane with respect to nitrogen ligands, which confer a higher reactivity to the metal
complex PtFc with respect to analogous diimine containing platinum(II) complexes [46]. In
the case of these latter metal precursors, coordination of the metal fragments exclusively
occurs on pyridyl groups in a trans position with respect to the ether linkage. Even if
introducing a certain degree of steric hindrance in the periphery of each porphyrin unit,
the involvement of only six outer pyridyl moieties does not prevent stacking interactions
between adjacent porphyrin rings. Indeed, the occurrence of three stacked pairs was
confirmed by molecular modeling and NMR studies, even in the porphyrin hexamer 1
that was not complexed [46,56]. In the case of [PtFc]18-1, the invariance of the shape of
the UV/Vis profile after the coordination of the platinum fragments suggests the absence
of perturbation in the aromatic systems and charge transfer between the ferrocene and
the porphyrin subunits [57]. The binding of [PtMe(dppf)] moieties to all of the available
pyridyl sites completely removes any possibility for stacking interactions among porphyrin
units in the supramolecular structure.
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The fluorescence emission spectra exhibit a gradual and partial quenching in their
intensity, together with a bathochromic shift (∆λ = + 12 nm) of the bands typical of 1,
upon the addition of PtFc complexes (Figure 2). The titration curve reported in the inset of
Figure 2 shows a gradual decrease in the intensity, which stabilizes after the addition of six
PtFc equivalents. These data suggest that the coordination of only one Pt(II) fragment on
each porphyrin is enough to induce a substantial quenching of the fluorescence emission.
This apparent discrepancy between the two techniques is probably due to the heavy atom
effect induced by coordination of the metal ions with the chromophores. This effect affords
a spin-orbit coupling perturbation, influencing the spin-selection rules for radiative and
radiationless transitions. In a simple molecular system, quenching of the lowest excited
singlet state (S1) in the presence of a heavy atom is expected, as a consequence of enhanced
intersystem crossing (S1/T1) [58]. It has been reported in the literature that for porphyrins
bearing pyridine groups, the coordination with platinum(II) decreases the intersystem
crossing quantum yield. The internal conversion process is also influenced when changing
the position of the metal fragment on the pyridine substituent. Moreover, the magnitude
and shape of the singlet and triplet excited state absorption cross section are affected by
the charge redistribution due to the presence of platinum(II) [14].
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Figure 2. Fluorescence emission spectral changes upon the addition of PtFc to a 3 µM solution of
hexamer 1 in dichloromethane. Each spectrum corresponds to the addition of one equivalent of the
metal complex. The inset shows the fluorescence emission titration (λem = 650 nm; λex = 424 nm).

In order to isolate the pure compound, we carried out the reaction between the
hexamer 1 and the precursor PtFc at a 1:18 stoichiometric ratio in dichloromethane solution.
After the reaction, the excess dimethylsulfoxide was removed by washing the sample
with methanol and precipitation in a low polar solvent, thus producing a pure compound
in about an 85% yield. The complete coordination of all Pt (II) complexes on all of the
available pyridine groups was confirmed by the 31P{1H} NMR spectroscopy. The 31P{1H}
NMR spectra reported in Figure 3 show a comparison of the starting building block PtFc
and the final adduct [PtFc]18-1. An upfield shift of the peak relative to phosphorous in a
trans position with respect to the methyl group from δ 36.2 to 29.5 ppm is evident. The
value of 1JPt-P = 1968 Hz is in line with the high trans influence of the methyl group. On the
contrary, the peak relative to phosphorous in a trans position with respect to the pyridyl
group undergoes a slight downfield shift (∆δ = +0.7 ppm), while a consistent change can
be observed in the value of the 1JPt-P from 4919 (PtFc complex) to 3970 Hz ([PtFc]18-1).
This reduction is in agreement with the higher trans-influence of the dmso ligand with
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respect to pyridine [59]. Analogous to other multi-porphyrin systems [56], the 1H NMR
signals are rather broad and uninform, probably due to fast exchange occurring between
different conformers at room temperature; the slow tumbling motion of the final platinated
[PtFc]18-1 large molecule also affects the proton resonance line widths by causing long
relaxation times and undesired broadening phenomena.
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Figure 3. 31P{1H} NMR spectra of the PtFc precursor (upper) and fully platinated [PtFc]18-1 in
CD2Cl2, where T = 298 K.

Deposition of the final compound on glass cover slides was achieved by direct drop
casting of a micromolar dichloromethane solution. Optical microscopy images of the
samples show the formation of rings comparable to those already reported for similar
systems [46,56], whose diameters span from 0.5 to 10 µm and thicknesses range from about
100 to 500 nm. The rings are still emissive in the solid state, as revealed by fluorescence
confocal optical microscopy (Figure 4). The emission spectra, analogous to the solution
phase, show the two-band profile, with maxima at 660 and 720 nm for Q (0,0) and Q (0,1)
transitions, respectively. The invariance of the spectroscopic behavior in the solution and
in a solid state suggests the absence, in the latter, of π–interactions between the porphyrin
planes, probably due to the presence of multiple charges of the platinum complexes.
Nevertheless, the interesting formation of well-defined structures can be explained in terms
of a balance between physical dewetting processes and porphyrin aggregation behavior
driven by directional supramolecular interactions. The growth of well-defined patterns
of porphyrins on different solid substrates has been well-reported [23,46,56,60], but to the
best of our knowledge, this is the first example of a porphyrin supramolecular structure
coordinated with such a high number of platinum complexes bearing ferrocene ligands.
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4. Conclusions

Functionalization of a large chromophoric system can usually be achieved through
complicated synthetic steps. Here, we describe a facile route for obtaining a highly sub-
stituted porphyrin hexamer bearing metal fragments with redox active groups. Even
if the fluorescence emission of the multi-porphyrin system is partially quenched by the
presence of heavy atoms in the peripheral substituent groups, this property is retained,
even for a solid phase. Dewetting phenomena, similar to porphyrin systems, lead to the
formation of well-defined rings. These micrometer-sized structures, together with inter-
esting photophysical properties and the presence of redox active centers, whose behavior
should be studied in future investigations, offer a way of exploring potential applications
in nanocatalysis or optoelectronics.
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