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Abstract 

Strategies for drug discovery and repositioning are an urgent need with respect to COVID-19. We developed 

"REDIAL-2020", a suite of machine learning models for estimating small molecule activity from molecular 

structure, for a range of SARS-CoV-2 related assays. Each classifier is based on three distinct types of 

descriptors (fingerprint, physicochemical, and pharmacophore) for parallel model development. These models 

were trained using high throughput screening data from the NCATS COVID19 portal 

(https://opendata.ncats.nih.gov/covid19/index.html), with multiple categorical machine learning algorithms. 

The “best models” are combined in an ensemble consensus predictor that outperforms single models where 

external validation is available. This suite of machine learning models is available through the DrugCentral web 

portal (http://drugcentral.org/Redial). Acceptable input formats are: drug name, PubChem CID, or SMILES; the 

output is an estimate of anti-SARS-CoV-2 activities. The web application reports estimated activity across three 

areas (viral entry, viral replication, and live virus infectivity) spanning six independent models, followed by a 

similarity search that displays the most similar molecules to the query among experimentally determined data.  

The ML models have 60% to 74% external predictivity, based on three separate datasets. Complementing the 

NCATS COVID19 portal, REDIAL-2020 can serve as a rapid online tool for identifying active molecules for 

COVID-19 treatment. The source code and specific models are available through Github 

(https://github.com/sirimullalab/redial-2020), or via Docker Hub (https://hub.docker.com/r/sirimullalab/redial-

2020) for users preferring a containerized version.  

 

  



 

 

Introduction 

Currently, there is an urgent need to find drugs and effective treatment options for coronavirus disease 2019 

(COVID-19). Here, we present a suite of machine learning (ML) models termed “REDIAL-2020” that forecast 

activities for live viral infectivity, viral entry, and viral replication, specifically for SARS-CoV-2 (severe acute 

respiratory syndrome coronavirus 2). This application can serve the scientific community when prioritizing 

compounds for in vitro screening and may ultimately accelerate the identification of novel drug candidates for 

the COVID-19 treatment. REDIAL-2020 currently consists of six independently trained ML models and 

includes a similarity/substructure search module that queries the underlying experimental dataset for similar 

compounds. These ML models were trained using experimental data generated by the following assays: the 

SARS-CoV-2 cytopathic effect (CPE) assay and its host cell cytotoxicity counterscreen; the Spike-ACE2 

protein-protein interaction (AlphaLISA) assay and its TruHit counterscreen, as well as an angiotensin-

converting enzyme 2 (ACE2) enzymatic activity assay; and 3C-like (3CL) proteinase enzymatic activity assay. 

The assays represent three distinct categories: i) viral entry (CPE1  and host cell cytotoxicity counterscreen2); 

ii) viral replication (3CL enzymatic activity); and iii) live virus infectivity (AlphaLISA, TruHit counterscreen, 

and ACE2 enzymatic activity),3 as described in the National Center for Advancing Translational Sciences 

(NCATS) COVID-19 portal.4 We retrieved these datasets from the NCATS COVID19 portal.5 The NCATS 

team is committed to performing a range of COVID19-related viral and host target assays, as well as analyzing 

the results.6 

These ML models are integrated into a user-friendly web portal that allows input using three different formats: 

i) drug name, both as International Nonproprietary Name, INNs (e.g., hydroxychloroquine) or as trade name 

(e.g., Plaquenil); ii) PubChem CID,7 i.e., PubChem Compound ID number (e.g., 3652 for hydroxychloroquine); 

or iii) using the chemical structure encoded in the SMILES (Simplified Molecular-Input Line-Entry System) 

format,8 respectively. The workflow and output, regardless of input format, is identical and described below. 

Drug repositioning requires computational support,9 and data-driven decision making offers a pragmatic 

approach to identifying optimal candidates while minimizing the risk of failure. Since molecular properties and 

bioactivities can be described as a function of chemical structure, cheminformatics-based predictive models are 

becoming increasingly useful in drug discovery and repositioning research. Specifically, anti-SARS-CoV-2 

models based on high throughput data could be used as a prioritization step when planning experiments, 

particularly for large molecular libraries, thus decreasing the number of experiments and reducing downstream 

costs. REDIAL-2020 could serve such a purpose and help the scientific community reduce the number of 



 

 

molecules before experimental tests for anti-SARS-CoV-2 activity. This suite of ML models can also be used 

via the command line for large scale virtual screening. As more reliable data sets become available in the public 

domain, we plan to tune the ML models further, add additional models based on SARS-CoV-2 assays, and make 

these models available in future releases of REDIAL-2020.  

Live Virus Infectivity Assays 

The SARS-CoV-2 cytopathic effect (CPE) assay measures the ability of a compound to reverse the cytopathic 

effect induced by the virus in Vero E6 host cells. As cell viability is reduced by viral infection, the CPE assay 

measures the compound’s ability to restore cell function (cytoprotection). While this assay does not provide any 

information concerning the mechanism of action, it can be used to screen for antiviral activity in a high-

throughput manner. However, there is the possibility that the compound itself may exhibit a certain degree of 

cytotoxicity, which could also reduce cell viability. Since this confounds the interpretation of CPE assay results, 

masking the cyto-protective activity, a counter-screen to measure host (Vero E6) cell cytotoxicity is used to 

detect such compounds. Thus, a net, positive result from the combined CPE assays consists of a compound 

showing a protective effect but no cytotoxicity. 

Viral Entry Assays 

The Spike-ACE2 protein-protein interaction (AlphaLISA) assay measures a compound's ability to disrupt the 

interaction between the viral Spike protein and its human receptor protein, ACE2 (angiotensin-converting 

enzyme type 2).10 The surface of the ACE2 protein is the primary host factor recognized and targeted by SARS-

CoV-2 virions.11 This binding event between the SARS-CoV-2 Spike protein and the host ACE2 protein initiates 

binding of the viral capsid and leads to viral entry into host cells. Thus, disrupting the Spike-ACE2 interaction 

is likely to reduce the ability of SARS-CoV-2 virions to infect host cells. This assay has two counterscreens, as 

follows. The TruHit counterscreen is used to determine false positives, i.e., compounds that interfere with the 

AlphaLISA readout in a non-specific manner, or with assay signal generation and/or detection. It uses the biotin-

streptavidin interaction (one of the strongest known non-covalent drug-protein interactions) because other 

compounds are unlikely to disturb it.  Consequently, any compound showing interference with this interaction 

is most likely a false positive. Common interfering agents are oxygen scavengers or molecules with spectral 

properties sensitive to the 600-700 nm wavelengths used in AlphaLISA.  The second counterscreen is an 

enzymatic assay that measures human ACE2 inhibition to identify compounds that could potentially disrupt 

endogenous enzyme function. ACE2 lowers blood pressure by catalyzing the hydrolysis of angiotensin II (a 

vasoconstrictor peptide) into the vasodilator angiotensin (1-7).12 While blocking the Spike-ACE2 interaction 



 

 

may stop viral entry, drugs effective in this manner could cause unwanted side-effects by blocking the 

endogenous vasodilating function of ACE2. Thus, the ACE2 assay serves to detect such eventualities and to de-

risk such off-target events. 

Viral Replication Assays 

Following entry into the host cell, the main SARS-CoV-2 replication enzyme is 3C-like proteinase (3CL), also 

called “main protease” or Mpro,13 which cleaves the two SARS-CoV-2 polyproteins into various proteins (e.g., 

RNA polymerases, helicases, and methyltransferases, etc.), which are essential to the viral life cycle. Since 

inhibiting the 3CL protein disrupts the viral replication process, this makes 3CL an attractive drug target.14 The 

SARS-CoV-2 3CL biochemical assay measures compounds' ability to inhibit recombinant 3CL cleavage of a 

fluorescently labeled peptide substrate. 

Note on assays and models terminology. Throughout this paper, we refer to assay and model names as follows: 

“CPE” for SARS-CoV-2 cytopathic effect, “cytotox” for host cell cytotoxicity counterscreen, “AlphaLISA” for 

Spike-ACE2 protein-protein interaction, “TruHit” for Spike-ACE2 protein-protein interaction counterscreen, 

“ACE2” for ACE2 enzymatic activity and “3CL” for 3CL enzymatic activity. 

  



 

 

Results and Discussion 

Preliminary Data Analysis 

Prior to developing ML models, unsupervised learning should be used to evaluate the data and seek patterns 

that might guide successive steps. Hence, upon definition of the experimental categories (see Methods for 

details), we inspected the data using principal component analysis (PCA)15 and applied it using VolSurf+16 

molecular descriptors. For both CPE and cytotox, clusters emerge along the first principal component (PC1; 

Figure 1). For CPE data, the majority of compounds showing high to moderate CPE activity are grouped in the 

right-hand of Figure 1A. At the same time, compounds with high to moderate cytotoxicity are grouped in the 

right-hand region of Figure 1B. By inspecting the loading score plot for VolSurf+ descriptors that are likely to 

contribute to these patterns, we identified membrane permeability (estimated using logP, the logarithm of the 

octanol/water partition coefficient) and water solubility (estimated using logS, the logarithm of the 

thermodynamic aqueous solubility) as major contributors to the first latent variable (see Supporting Information 

Figure SI1). Compounds with low logP/high logS, clustered in the left-hand region of the score plot, are less 

likely to be active in the CPE assay and more likely to be non-cytotoxic.  

The distribution of actives was also visualized for AlphaLISA and TruHit compounds in Figures 1C and 1D, 

respectively (see also Table 1). For the AlphaLISA assay, although clustering is less pronounced respect to 

CPE (Figure 1A), the right-hand part of the plot does capture most of the high/moderate activity compounds. 

Such distribution of actives in the right-hand region was not observed for ACE2 actives (Figure 1E). Thus, 

permeability and solubility are not the major determinants of this ACE2 inhibition assay. 

The results of this preliminary analysis can be used to filter input data prior to machine learning. For example, 

the majority of the compounds placed on the left side of the Figure 1 PCA plot are inactive (exception for 

ACE2). Therefore, prior to developing the ML models, we applied cutoff filters based on compounds calculated 

logP and logS using ALOGPS17 to every dataset except for ACE2. These filters help narrow the focus of ML 

model development on features derived only from compounds for which simple property criteria (e.g., logP and 

logS) cannot be used to distinguish actives from inactives -- specifically, the right-hand regions in Figure 1. 

The initial number of compounds, after data wrangling, was 4,954. Upon use of the logS and logP filters, each 

dataset was reduced in size (Table 1). However, the fraction of active compounds excluded from the ACE2 

dataset was quite high (34%). Hence, logP and logS filters were not applied for ACE2 inhibition, and the 

complete dataset was used for model development. For 3CL enzymatic activity, data from NCATS was retrieved 

separately. The initial set contained 12,263 compounds. However, data wrangling identified ~1,850 duplicate 



 

 

and ~3,000 “inconclusive” entries, which were discarded. Additional entries were removed during the desalting 

and physicochemical feature generation  as VolSurf descriptors could not be computed for some of the 

compounds. The final 3CL dataset contains 6,961 entries, with 222 active and 6,739 inactive compounds. Given 

that the fraction of active 3CL compounds filtered would have been 30%, the logP/logS filters were not applied.   

There were no significant activity clusters detected in the 3CL dataset via PCA-VolSurf+ (see Supporting 

Information Figure SI2).  

With respect to actives vs. inactives, the six NCATS assays are highly unbalanced, with a disproportionate ratio 

of active (few) compounds compared to inactive (many) compounds. For example, there were ~9 times more 

inactives than actives and ~3 times more non-cytotoxic compounds than cytotoxic compounds for the CPE and 

cytotoxicity assays, respectively. Thus, in order to avoid over-training for the dominant category, each model 

was derived using random selection wherein compounds from the majority class were selected in equal 

proportion to those of the minority class. Our balanced dataset numbers were as follows: 736 for CPE, 1,662 

for cytotox, 1,260 for AlphaLISA, 1,668 for TruHit,  206 for ACE2 and 442 for 3CL. 

 



 

 
 



 

 

Figure 1: PCA scores plot of the molecules tested in NCATS SARS-CoV-2 experiments based on VolSurf+ 

descriptors. A) CPE compounds colored by CPE categories: high/moderate activity in yellow and low activity 

in black; B) cytotoxic compounds colored by cytotoxicity categories: high/moderate cytotoxic in orange and 

low (not) cytotoxic in black. C) AlphaLISA compounds colored by Spike-ACE2 interaction blockers categories: 

high/moderate (strong) blockers in red and low (weak) blockers in black. D) TruHit compounds, colored by 

AlphaLISA readout interfering categories: high/moderate interfering in cyan and low interfering in black. E) 

ACE2 compounds, colored by ACE2 inhibition categories: high/moderate (strong) inhibitors in magenta and 

low (weak) inhibitors in black. 

 

Table 1. Number of compounds excluded for each model upon filtering with the logP and logS criteria. 

Assay Excluded Actives 
(relative percentage) 

Excluded Inactives 
(relative percentage) 

CPE 21 (4%) 1417 (32%) 

citotox 83 (8%) 1331 (34%) 

AlphaLISA 117 (15%) 1104 (48%) 

TruHit 118 (15%) 1100 (48%) 

ACE2 62 (34%) 1159 (40%) 

3CL 65 (30%) 2467 (37%) 

 

 

Models Comparison and Selection 

To evaluate anti-SARS-CoV-2 activities of novel chemicals, we implemented six predictive models based on 

consensus methods. Of the two consensus methods (voting-based and probability score-based) evaluated, the voting-

based consensus model showed better performance (Figures SI13-SI16 in supporting information). Thus, the voting-

based method is implemented in the REDIAL-2020 app. Consensus models were generated based on the top three 

performing models trained on fingerprint, pharmacophore, and physicochemical descriptors (see Methods section 

for details). First, we selected a fingerprint model from an initial evaluation of 19 different fingerprint descriptor 

methods. This was combined with a Topological Pharmacophore Atom Triplets Fingerprints (TPATF) model. 

Finally, the rdkit or VolSurf+ descriptor-based model provided a third model, based on physicochemical properties. 

All these models were trained with 22 different classifiers available in scikit-learn.18 Figure 2 (a-d) summarizes the 

comparison between various features and ML algorithms. Figures 2a and 2b compare the performance of each 



 

 

feature across 22 ML algorithms (classifiers) and 6 assays. Figures 2c and 2d compare the performance of each 

classifier across 22 features and 6 assays.  For example, the violin plot for the avalon feature (Figure 2a) summarizes 

F1-scores from all 6 assays (and  22 classifiers). Among descriptors, VolSurf+ and lfcfp6 outperformed others, 

whereas the gradient boost classifier and the MLP (multilayer perceptron) classifier performed better among ML 

algorithms. See Supporting Information Figures SI9-SI20 for more detailed comparisons across different features 

and ML algorithms with respect to individual models. 

 

Figure 2: Comparison between the following, across the 6 assays: a) features for the validation set; b) features for the 

test set; c) ML algorithms for validation;  and d) ML algorithms for the test set, respectively. 

Two options for the consensus model were considered, based on the potential overlap between VolSurf+ and rdkit 

descriptors: fingerprint+TPATF+rdkit, and fingerprint+TPATF+VolSurf, respectively. VolSurf+ descriptors 

outperformed rdkit in CPE and TruHit, whilst rdkit outperformed VolSurf+ in cytotox, AlphaLISA, ACE2, and 3CL 

based on the tested evaluation metrics such as Accuracy, F1-score, and AUC (see Supporting Information Figures 

SI13-SI18). However, the situation changed when considering consensus models. Inclusion of VolSurf+ yielded 

better models for the AlphaLISA, TruHit, and ACE2 voting-based consensus models, whereas including rdkit 

yielded better consensus models for the CPE, cytotox, and 3CL consensus assays. Supporting Information Figures 



 

 

SI3-SI8 show a comparison of the best models from each feature category. Concerning the web portal, we 

implemented consensus model predictions based on the rdkit descriptors, since RDKit is open-source software that 

can be ported and dockerized without restrictions. Out of the six ML models, four (CPE, cytotox, TruHit, and 3CL) 

were implemented as consensus models with the rdkit descriptors, with the remaining two (AlphaLISA and ACE2) 

implemented as rdkit descriptor-based only. Tables 1 and 2 summarize the evaluation scores and the confusion 

matrices, respectively, for all models implemented in REDIAL-2020. 

Table 2. Summary of the results of the best models. 

Model Validation set results Test set results 
ACC F1 SEN PREC AUC ACC F1 SEN PREC AUC 

CPE  0.794 0.794 0.794 0.795 0.794 0.725 0.725 0.726 0.727 0.725 

cytotox 0.771 0.771 0.771 0.772 0.771 0.7 0.7 0.7 0.7 0.7 

AlphaLISA 0.788 0.788 0.788 0.79 0.789 0.762 0.762 0.762 0.762 0.762 

TruHit 0.762 0.762 0.762 0.762 0.762 0.727 0.727 0.727 0.727 0.727 

ACE2 0.806 0.805 0.804 0.812 0.804 0.452 0.452 0.453 0.453 0.452 

3CL 0.803 0.802 0.803 0.81 0.803 0.672 0.671 0.671 0.672 0.671 
 
ACC, Accuracy; F1, F1 score; SEN, sensitivity; PREC, precision; AUC, area under the receiver operating 
characteristic curve. 
 
 

Table 3. Confusion matrix values for each “best” model 

 

Model Validation set results Test set results 
TP TN FP FN TP TN FP FN 

CPE  39 42 9 12 35 39 12 16 

cytotox 95 97 27 30 85 90 35 40 

AlphaLISA 78 71 24 16 71 73 21 24 

TruHit 93 96 28 31 92 89 35 33 

ACE2 11 14 2 4 7 7 8 9 

3CL 29 24 9 4 24 21 12 10 

 
TP, true positives; TN, true negatives; FP, false positives; FN, false negatives 
 
  



 

 

Submission Webpage 

By accessing REDIAL-2020 (http://drugcentral.org/Redial) from any web browser, including mobile devices, 

the submission page is displayed (Figure 4). The web server accepts SMILES, drug names, or PubChem CIDs 

as input. The User Interface (UI) at the top of the page allows users to navigate various options (Figure 4). The 

UI provides summary information about the six models, such as model type, which descriptor categories were 

used for training, and the evaluation scores. The UI further depicts the processes of cleaning the chemical 

structures (encoded as SMILES) prior to training the ML models. Input queries such as drug name and PubChem 

CID are converted to SMILES prior to processing. Each SMILES string input is subject to four different steps, 

namely, converting the SMILES into canonical SMILES,19 removing salts (if included), neutralizing formal 

charges (except permanent ones), and standardizing tautomers. REDIAL-2020 predicts the CPE, cytotox, 

AlphaLISA, TruHit, ACE2, and 3CL of the given compounds. The workflow of operations performed on the 

submitted query SMILES through the redial webapp are summarized in Figure 3.  

 

Figure 3: REDIAL-2020 prediction workflow. 

 

Figure 5 shows an output panel example, which is loaded on the same web page. REDIAL-2020 links directly 

to DrugCentral20,21 for approved drugs, and to PubChem for chemicals (where available), enabling easy access 

to additional information about the query molecule. Using REDIAL-2020 estimates, promising anti-SARS-

CoV-2 compounds would be as follows: a) active in the CPE assay and b) inactive in the cytotox assay; or c) 

active in the AlphaLISA assay but d) inactive in the TruHit assay while e) not blocking ACE2; or f) active in 

the 3CL assay; or any combination of the above three. A schematic representation of the “best profile” that can 

be defined for a molecule, after running all the prediction models, is depicted in Figure 6. 



 

 

 

Figure 4: REDIAL-2020 submission page. 

 

Similarity Search 

For each query molecule, a fingerprint-based Tanomoto22 similarity search is conducted against molecules 

included in the model input datasets. For reference, we have used datasets from the NCATS COVID19 portal5 

for the similarity search. The top 10 similar molecules to that of the query molecule, based on Tanimoto 

coefficient23 scores, are displayed (see Figure 5). 

 



 

 

 

Figure 5: Screenshot of the webpage displaying ML estimates and similarity results for a query molecule. 



 

 

 

Figure 6: Schematic representation of the most desirable profile for anti-SARS-CoV-2 activities that can be 

observed via REDIAL-2020 predictions, based on the six assays of interest. 

 

External Predictivity 

To confirm the utility of our models, we collected three additional datasets from the literature and submitted these 

molecules (external to our training/test sets) as input for prediction. First, we used a recently developed database for 

COVID-19 experiments24 to explore and download published in vitro COVID-19 bioactivity data for approved drugs 

which was reported in various recent papers.13,25–32 After removing drugs already included in the NCATS experiments, 

we identified 39 external drugs active in anti-SARS-CoV-2 CPE assays (Supporting Information Table SI1). Out of 

39 drugs, 24 were predicted as active by at least two models and by the consensus model (Figure 7), and 15 drugs 

were predicted as inactive.  Among those predicted to be inactive, independent experiments suggest they are weakly 

active.  Specifically, bortezomib (S. Bradfute, personal communication), methotrexate, omeprazole, ouabain, and 

phenazopyridine (C. Jonsson, personal communication) show below 30% cell survival when tested at 10 µM.  An 

additional set of six drugs from this list are undergoing testing in the Jonsson lab.  

The second external CPE set was collected from a recently published screen that included 21 compounds from the 

ReFRAME library,33 validated in dose response across multiple cell lines.32 Out of 21 most potent compounds, 19 



 

 

were identified as an external set to our CPE model (Supporting Information Table SI2). Among these 19 compounds, 

14 (~74%) were correctly predicted by consensus models (17 by at least one model) as active.  The third dataset of 

3CL (Mpro) inhibitors, identified13 6 inhibitors: ebselen(0.67 µM), disulfiram(9.35 µM), tideglusib(1.55 µM), 

carmofur(1.82 µM), shikonin(15.75 µM) and PX-12(21.39µM), respectively. Among these 6 inhibitors, our consensus 

3CL model predicted 4 of them as actives, and all 6 of them as actives by at least one of the three 3CL ML models. 

The consensus model predicts all potent (activity less than 2µM) compounds correctly inhibitors, namely ebselen, 

tideglusib, and carmofur, respectively.  

Thus, the REDIAL-2020 suite of models correctly predicts ~60% of the external compounds for the CPE assay, 74% 

of the external compounds for the ReFRAME library,33 and 66.67% of the external compounds for 3CL inhibitors13, 

respectively. Although these values appear to underestimate previous model performance in the validation and 

external sets (see Table 3), it has been noted that CPE experiments are affected by significant intra- and inter-

experiment variability.24 Hence, we cannot exclude the possibility that some of the experiments performed by other 

laboratories are not directly comparable with results from the NCATS COVID19 portal.5 

 

Figure 7: Venn diagrams showing the distribution of external set predictions according to the ML models for a) 

CPE, 24 actives; b) CPE, 14 actives; c) 3CL, 6 actives. See the text for details. 

 

  



 

 

Conclusion 

Here, we described "REDIAL-2020", an open-source, open-access, open-science application for estimating anti-

SARS-CoV-2 activities from molecular structure. By leveraging the recently available data from NCATS, we 

developed six categorical ML models: CPE, cytotox, AlphaLISA, TruHit, ACE2, and 3CL. Input data from NCATS 

were used to train and validate multiple ML models using a variety of algorithms and features. The best performing 

models, in terms of F1 scores and test set predictions, were exposed on the REDIAL-2020 portal. Furthermore, a 

similarity search against the input data is conducted for every submitted molecule.  The top 10 most similar molecules 

to the query molecule from the existing COVID-19 databases, together with associated experimental data, are 

displayed. This allows users to evaluate the confidence of the ML predictions.  

REDIAL-2020 provides a fast and reliable way to screen novel compounds for anti-SARS-CoV-2 activities. These 

would be compounds that block live virus infectivity (CPE active but not cytotoxic); or compounds that block viral 

entry (blocking the Spike/ACE2 interaction while not interfering with the assay and lacking ACE2 inhibition 

properties); or compounds that block viral replication, by inhibiting 3CL (Mpro) protease; or a combination of the 

above, respectively.  REDIAL-2020 is available on Github and Dockerhub as well, and the command-line version 

supports large scale virtual screening purposes. Future developments of REDIAL-2020 could include additional ML 

models based on, e.g., newly released TMPRSS2 inhibition assay34 data from the NCATS COVID19 portal, and 

perhaps other assay data as they become available in the public domain. We will continue to update and enhance the 

ML models, and make these models available in future releases of REDIAL-2020.



 

 

 

Methods 

Data 

Data for the SARS-CoV-2 cytopathic effect (CPE), the Vero E6 (host cell) cytotoxicity counterscreen, the Spike-

ACE2 protein-protein interaction (AlphaLISA), TruHit (AlphaLISA counterscreen), ACE2 enzymatic inhibition 

conterscreen, and 3CL enzymatic inhibition were obtained from the NCATS COVID19 portal.4,5 Assay data were 

mapped to DrugCentral2020 to retrieve DrugCentral IDs, SMILES strings, and drug names. The experimental results 

from NCATS were mined to define activity and significance classes. The procedure for data extraction, wrangling, 

and post-processing are detailed as follows. 

 

Mining NCATS COVID19 Data 

All operations described below were performed using the Knime35 platform. NCATS data associated with the 

aforementioned assays was downloaded from the COVID19 portal.4,5 The files contained over 23,000 compounds 

generated by high-throughput screening (HTS) experiments. When possible, each compound was cross-linked to 

drugs annotated in DrugCentral, to separate approved drugs from the rest of the tested compounds. Matching NCATS 

compounds to DrugCentral was conducted in three sequential steps: by InChI (International Chemical Identifier),36 

by synonym (name), and by matching CAS (Chemical Abstracts Service) Registry Numbers. First, NCATS 

molecules were matched by InChI. Molecules that did not match were then queried by drug name and associated 

synonyms, as annotated in DrugCentral. Finally, if not matched by either InChI or name, molecules were matched 

by CAS number. If none of the above steps resulted in a match, then the molecule in question was not classified as 

an approved drug. At the end of this process, 4,954 unique molecules (2,273 approved drugs and 2,681 chemicals) 

were stored. Whenever possible, for approved drugs and other chemicals, SMILES were retrieved from DrugCentral 

and from PubChem, respectively. Otherwise, the original SMILES strings were retained. Bioactivity data was mined 

according to the “curve class” and “maximum response” parameters.37 The “curve class” evaluates the quality of the 

dose-response curve and, consequently, the quality of the measurement. The “maximum response” is the maximum 

response value detected during the experiment. The “ACTIVITY CLASS” and a “SIGNIFICANCE CLASS” were 

defined using criteria described in Table 4 and Table 5, respectively. As a final data wrangling step, all compounds 

were categorized, and assay data grouped to have a unique record per molecule for each assay. When more than one 

assay was measured for the same molecule, only the datapoint with the best curve class was retained. 



 

 

 

Table 4: Criteria applied to each experimental dataset that define the various activity categories. Depending on the 

assay type, MAX RESPONSE could have either negative or positive values. In any case, since a greater (absolute) 

value always represents high activity, the absolute value of MAX RESPONSE is used in the definition of activity 

classes. 

Cutoff ACTIVITY CLASS 

MAX RESPONSE > 66 HIGH 

33 ≥ MAX RESPONSE ≤ 66 MODERATE 

MAX RESPONSE < 33 LOW 

 

Table 5: The significance classes represent the quality of the measurement and are defined in accordance with the 

different shape of the dose-response curve (CURVE CLASS2).37 (a) A type 4 curve is a flat curve, which indicates 

that the compound does not show any activity. 

CURVE CLASS2 SIGNIFICANCE CLASS 

1.1 1.2 2.1 2.2 HIGH 

1.3 1.4 2.3 3.4 MODERATE 

3 LOW 

4 INACTIVEa 

5 INCONCLUSIVE 

   

Data Filtering 

For each assay, the data was labeled as positive and negative. The compounds with “LOW” activity class were treated 

as negative, whereas “HIGH” and “MODERATE” were treated as positive compounds. Molecular structures were 

standardized using five different filters using RDKit38 features: (i) SMILES strings were converted into canonical 

SMILES strings. Some of the SMILES were not converted SMILES, were discarded. (ii) RDKit Salt Stripper was 

implemented to obtain the salt stripped molecules. The “donotRemoveEverything” feature helps by leaving the last 

salt when the entire canonical SMILES string contains only the salts, (iii) The RDKit “Uncharger” feature neutralizes 

the molecules by adding or removing hydrogen atoms, (iv) The canonical tautomer was used obtained from RDKit, 



 

 

and (v) logP and logS filters were defined as follows: (logP < 1 and logP > 9) and (logS > -3 and logS < -7.5). Such 

thresholds were arbitrarily defined to maximize the number of negative data excluded while minimizing the positive 

data excluded. However, for the 3CL dataset, logP and logS filters were not implemented. The final task was the 

removal of duplicate compounds resulting from desalting, neutralizing, and standardizing tautomers. 

 

Molecular Descriptors 

A total of 22 features of three distinct types (fingerprints-based, pharmacophore-based, and physicochemical 

descriptors based) were implemented. Fingerprints were converted into a bit vector of either 1,024 or 16,384 lengths. 

Pharmacophore type was also a bit vector of size 2,692, whereas RDKit and VolSurf+ descriptors were of length 200 

and 128, respectively. 

Fingerprints-based: This includes the circular, path-based, and substructure keys.39,40 Circular fingerprints include 

the extended-connectivity fingerprints (ECFPx) and feature-connectivity fingerprints (FCFPx), where x is 0, 2, 4, 

and 6 are the bond length or diameter for each circular atom environment. ECFP consists of the element, number of 

heavy atoms, isotope, number of hydrogen atoms, and ring information, whereas FCFP consists of pharmacophore 

features. 

Substructure keys Avalon and the public Molecular ACCess System (MACCS) are two distinct types of fingerprints 

that are substructure keys. The Avalon fingerprint, used here, is a bit vector of size 1,024. It includes feature classes 

such as atom count, atom symbol path, augmented atom, and augmented symbol path, etc. MACCS structural keys 

are 166-bit structural key descriptors. Each bit here is associated with a SMARTS pattern and belongs to the 

dictionary-based fingerprint class. Path-based fingerprints include RDKx (where x is 5, 6, 7), topological torsion 

(TT), HashTT, atom pair (AP), and HashAP. The size of each fingerprint is 1024 for all of them. 

A longer version of the fingerprint, of 16384 bits, was also used for comparison. This longer version is represented 

by the prefix” L”: LAvalon, LECFP6, LECFP4, LFCFP6 and LFCFP4. 

Pharmacophore-based: Topological pharmacophore atomic triplets fingerprints (TPATF) were obtained using 

maychemtools.41 TPATF describes the ligand sites that are necessary for molecular recognition of a macromolecule 

or a ligand, and passes that information to the ML model to be trained. Ligand SMILES strings were passed through 

a Perl script to generate TPATF. The basis sets of atomic triplets were generated using two different constraints (i) 

triangle rule, i.e., the length of each side of a triangle cannot exceed the sum of the lengths of the other two sides; 

and (ii) elimination of redundant pharmacophores related by symmetry. The default pharmacophore atomic types 



 

 

Hydrogen Bond Donor (HBD), hydrogen bond acceptor (HBA), positively ionizable (PI), negatively ionizable (NI), 

H (hydrophobic), and Ar (aromatic) were used during generation of TPATF.42 

Physicochemical descriptors: This includes the RDKit molecular descriptors and VolSurf+ descriptors. For RDKit 

descriptors, a set of 200 descriptors were used, which were obtained from RDKit.38 They are either experimental 

properties or theoretical descriptors, which are e.g. molar refractivity, logP, heavy atom counts, bond counts, 

molecular weight, topological polar surface area.  

A total of 128 descriptors were obtained using VolSurf+ software. VolSurf+ is a computational approach aimed at 

describing the structural, physicochemical and pharmacokinetic features of a molecule starting from a 3D map of the 

interaction energies between the molecule and chemical probes (GRID-based molecular interaction fields, or 

MIFs).43 VolSurf+ compresses the information present in MIFs into numerical descriptors, which are simple to use 

and interpret.16 

 

Model Development 

For each classifier, several machine learning models were developed, employing three categories of features 

and 22 distinct machine learning algorithms from the scikit-learn package.18 Figure 8 briefly shows the 

workflow of the model generation. The three different categories of features employed were 1) chemical 

fingerprints, 2) physicochemical descriptors, and 3) topological pharmacophore descriptors. For fingerprint-

based descriptors, 19 different RDKit fingerprints were tested. For physicochemical descriptors, Volsurf+ and 

RDKit descriptors were employed. For Topological pharmacophore descriptors, TPATF fingerprints from 

Mayachemtools were employed. For each model, input data was split into a 70% training set, 15% validation 

set, and 15% test set using a stratified sampling. Table 6 depicts the number of compounds used in training, 

validation, and test sets for each model. Compounds discussed in the External Predictivity section (Figure 7) 

were not part of this workflow and are not included in Table 6. 



 

 

    

Figure 8. ML model development workflow. 

 

All of the models were trained leveraging 22 different classifiers available in scikit-learn. Initially, 968 different 

models were trained using 22 classifiers (Complement Naive Bayes, Extreme Gradient Boosting, KNeighbors, 

Gradient Boosting, Perceptron, One Vs Rest , Extra-Tree, Ridge, One Vs One, Bagging, Random Forest, Output 

Code, Passive Aggressive, Linear SVC, Stochastic Gradient Descent, Logistic Regression, Extra Trees, 

Multinomial Naive Bayes, Ada Boost, Decision Tree, Nearest Centroid, Multi-layer perceptron) and 22 distinct 

features (ECFP0, ECFP2, ECFP4, LECFP4, ECFP6, LECFP6, FCFP2, FCFP4, LFCFP4, FCFP6, LFCFP6, 

RDK5, RDK6, RDK7, Avalon, LAvalon, MACCS, HashTT, HashAP, VolSurf+, TPATF, and RDKit 

descriptors) based on the default configurations of the classifiers. Finally, the best suited combination of 

classifiers and features were selected for hyperparameter tuning. 

 

  



 

 

Table 6: Summary of datasets used for each model. 

Type Count Total 
Actives 

Training 
count 

Validation 
count 

Test 
count 

Training  
Actives 

Validation  
Actives 

Test  
Actives 

CPE 736 368 532 102 102 266 51 51 

cytotox 1662 877 1163 249 250 581 125 125 

AlphaLisa 1260 630 882 189 189 441 94 95 

TruHit 1658 829 1161 248 249 580 124 125 

ACE2 206 103 144 31 31 72 15 16 

3CL 442 221 309 66 67 154 33 34 

 

Similarity Search 

We used an ECFP4 bit vector fingerprint with 1024 bits, and TC calculations, for the fingerprints present in the 

database along with that of a query molecule, are computed on the fly. The Tanimoto coefficient represents the 

overlap of features between molecules as the ratio of the number of common features to the total number of 

features in each fingerprint. The coefficient ranges from 0 to 1, with 1 corresponding to identical fingerprints.  

Hyperparameter Optimization 

The best performing default models based on validation sets were selected for hyperparameter optimization. These 

models were optimized using a grid search method. Scikit-learn provides the package for grid search hyperparameter 

optimization using cross validation. However, it is slow and does not offer a grid search with a separate validation set. 

Thus, we used a freely available software “hypopt” for the hyperparameter tuning of each model.44 The models were 

optimized and selected based on the validation F1 score. The outperforming models were saved and used for the 

evaluation of external datasets. 

Evaluation Metrics 

The model performances were evaluated by five distinct evaluation metrics available in scikit-learn: accuracy, recall, 

precision, F1 score, and area under the receiver operating characteristic (ROC) curve (AUC). In general, the accuracy 

measures the total number of correct predictions among the total numbers of instances evaluated. The recall was used 

to measure the fraction of total positives that are correctly classified, whereas precision estimates the fraction of total 

positives that are correctly predicted from the total predicted positives. F1 score is the harmonic mean of recall and 

precision. The score ranges from 0 to 1 for each of the metrics, where 1 is a perfect score. Moreover, AUC was 



 

 

computed for each of the classifiers. A perfect classifier yields an AUC of 1, whereas a random model has an expected 

AUC of 0.5. 

Implementation and Accessibility 

Web Portal 
REDIAL-2020  is  available  online  at  http://drugcentral.org/Redial.  

Code Availability 
All of the codes and the trained models are available at https://github.com/sirimullalab/redial-2020. 
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