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Abstract: This paper demonstrates how a Neural Grammar Network learns to classify and score molecules for a
variety of tasks in chemistry and toxicology. In addition to a more detailed analysis on datasets previously studied,
we introduce three new datasets (BBB, FXa, and toxicology) to show the generality of the approach. A new
experimental methodology is developed and applied to both the new datasets as well as previously studied
datasets. This methodology is rigorous and statistically grounded, and ultimately culminates in a Wilcoxon
significance test that proves the effectiveness of the system. We further include a complete generalization of the
specific technique to arbitrary grammars and datasets using a mathematical abstraction that allows researchers in
different domains to apply the method to their own work.

Background: Our work can be viewed as an alternative to existing methods to solve the quantitative structure-
activity relationship (QSAR) problem. To this end, we review a number approaches both from a methodological
and also a performance perspective. In addition to these approaches, we also examined a number of chemical
properties that can be used by generic classifier systems, such as feed-forward artificial neural networks. In studying
these approaches, we identified a set of interesting benchmark problem sets to which many of the above
approaches had been applied. These included: ACE, AChE, AR, BBB, BZR, Cox2, DHFR, ER, FXa, GPB, Therm, and Thr.
Finally, we developed our own benchmark set by collecting data on toxicology.

Results: Our results show that our system performs better than, or comparatively to, the existing methods over a
broad range of problem types. Our method does not require the expert knowledge that is necessary to apply the
other methods to novel problems.

Conclusions: We conclude that our success is due to the ability of our system to: 1) encode molecules losslessly
before presentation to the learning system, and 2) leverage the design of molecular description languages to
facilitate the identification of relevant structural attributes of the molecules over different problem domains.

Background
In this section, we introduce the problem under consid-
eration—the mathematical characterization of some
observed biological characteristic over a set of mole-
cules. We describe previous approaches to solving this
problem—quantitative structure-activity relationship
(QSAR) methods. Finally, we introduce a novel

approach to solving the problem—using a formal gram-
mar to structure an artificial neural network made up of
re-usable components to process and learn the datasets.

The problem of classifying and scoring molecules
The problem of QSAR is interesting for both its biome-
dical implications as well as its computational richness.
The creation or discovery of a high fidelity generalizable
approach that is capable of coping with a broad range of
classification and regression problems promises to
reduce the cost of drug development and to reduce the
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number of environmental toxins to screen. The compu-
tational step reduces lab testing. Finally, the problem
leads to the development of innovative machine learning
and statistical strategies. We can broadly separate the
kinds of problems that we are interested in, into two
categories: classification and regression. For classification
problems the task revolves around identifying the mem-
bership of objects of interest, in classes of interest. By
contrast, for regression problems a numerical score is
given to the objects of interest. These two different
approaches can be readily applied to the same types of
problems depending on the desired result. For example,
it is possible to classify molecules as toxic versus non-
toxic (by some specific definition of toxicity), or alter-
nately, it is also possible to describe the same set of
molecules by a toxicity score. In this paper, we consider
both problem classes, relying on the generality of the
underlying artificial neural network model to be able to
process the data.
In general, for either problem class, we are specifically

interested in the problem of prediction; that is, to give
an estimate for molecules whose actual properties are
unknown. Thus, we are interested in our system’s ability
to generalize to unseen examples. Our model (like all
learning approaches), was built upon a training dataset
of representative examples. In addition, and in order to
evaluate the effectiveness of the system at generalization,
we require a second test dataset which was not available
to the system during the training process, but was used
to assess its accuracy on previously unseen data. Thus,
we typically divide our available data into training and
testing sets. The details of this division are important
with respect to the ability of the system to generalize
and will be discussed in greater detail below.
In the next section, we discuss previous strategies to

solve this problem.

The classic approach (QSAR)
In this work, the NGN tackles the quantitative struc-
ture-activity relationship (QSAR) problem. The QSAR
problem is defined as the development and use of
machine learning methods to accurately and precisely
classify and fit molecules based on some observed biolo-
gical characteristic. These characteristics can relate to
desired outcomes such as drug efficacy, drug bioavail-
ability and pro-drug metabolism, or to undesired out-
comes such as toxicity, mutagenicity and lethality. The
classification task can be thought of as an easier case of
the fitting (or regression) task, as the condition for clas-
sification is generally a binary threshold indicating a
positive selection or a negative selection.
In a QSAR driven study, molecules must be repre-

sented so that a machine learning system can operate
on them. Most machine learning systems operate on

inputs that are vectors. So, typically, the first stage in
any QSAR system is to encode the input data into real-
valued or binary vectors. In this approach, the feature
descriptor vector is selected such that each element in
the vector describes what a domain expert considers a
salient piece of information for a specific problem. In
this work, we describe and compare our methods and
results to those obtained in the literature. For classifica-
tion experiments, three methods we compare against
performed by Sutherland et al., (2003) [1] are Soft Inde-
pendent Modeling by Class Analogy (SIMCA), Recursive
Partitioning (RP), and Spline Fitting with a Genetic
Algorithm (SFGA). Six methods we compare against
reviewed by Li et al., (2005) [2] are Linear Regression
(LR), Linear Discriminate Analysis (LDA), decision Tree
(C4.5 DT), k-Nearest Neighbor (k-NN), Probabilistic
Neural Network (PNN), and Support Vector Machine
(SVM). Li et al. further uses Recursive Feature Elimina-
tion (RFE) to reduce the feature space and characterizes
how this affects performance. Two related methods are
compared against performed by Fountaine et al., (2005)
[3]; they are Molecular Interaction Field (MIF-MIF) and
Anchored-Molecular Interaction Field (A-MIF). Two
other related methods are performed by Mohr et al.,
(2008) [4] where in molecular kernels based on
anchored subgraphs are used; they are Molecular Ker-
nels 1 and 2 (MK1, MK2). A Decision Forest approach
is compared against, performed by Tong et al., (2004)
[5]. For regression experiments, four methods reviewed
by Sutherland et al., (2004) [6] are compared against,
they are Comparative Molecular Field Analysis
(CoMFA), Eigenvalue Analysis (EVA), HoloQSAR
(HQSAR), and traditional 2D topology and 3D conform-
ing descriptors (2.5D). Mohr’s molecular kernels are
also compared in regression.
For support vector machine (SVM) approaches ([4],

[7] and [8]), kernel operators are typically used in place
of explicit input vectors, but the principle remains the
same. The kernels reduce the input information to a
simple (dot-product-equivalent) distance measure.
Mohr’s work defined distance matrices based on the
overlapping geometry that two molecules share
anchored on triplets of bonded atoms. Cerioni and
Ralaivola defined distances based on the occurrence and
count of subgraphs between two molecules. It is impor-
tant to recognize that these representations are lossy, in
the sense that it is impossible to recover the original
molecule from the feature vectors or kernel matrices
generated. This method implies, that the feature vectors
and kernel operators must be judiciously selected by
domain experts in order to preserve the information
that is salient to the problem to be solved, while they
can (and ideally should) discard any irrelevant data or
properties of the molecule. Naturally, this requires
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significant domain expertise on the part of the designer
of the encoding mechanism. Not just chemical expertise
in general, but also very problem specific expertise. The
implications of this are three-fold. First, when tackling a
novel QSAR problem, a domain expert is required to
design an effective data encoding method. Second, any
design remains problem specific and cannot, in general,
be effectively applied to other problems (unless they are
closely related). Third, any errors in the design of the
encoding can result in the loss of useful information for
the decision or output to be generated, and therefore
can result in sub-optimal performance (even before con-
sidering the issues of learning, generalization, etc.). One
final drawback to the use of descriptor vectors is that
some of them are encoded in proprietary software
packages so that their academic and commercial feasibil-
ity is bounded by third party contracts.
Our approach to the QSAR problem is dramatically

different, in the sense that we do not encode the mole-
cule as a vector. Instead, our representation is the mole-
cular structure itself. By representing the structure
directly, we are able to represent each molecule without
loss of any information during the input process, thus
providing our learning system with a maximum of infor-
mation upon which to base its decision making or value
predicting process. In this sense, the experimental
approach that we use is most similar to other
approaches that avoid using feature descriptor vectors
entirely. A similar approach described by [9] uses a
dynamic recurrent neural network. In this network, a
traversal of the molecule is encoded such that atoms are
hidden layers and bonds are their connecting weight
layers. Many valid traversals may begin on each atom;
however, only a single traversal is selected for each
atom. To train weight matrices, the single traversals for
each atom are all connected to one output root layer
simultaneously. The accumulated activation value is the
output for a given molecule in a QSAR problem.

Our new concept
In contrast to [9], our method (outlined in the next sec-
tion) uses a single structural representation of the mole-
cules. This representation is based on a language for
describing molecules by strings. The two formal lan-
guages we selected are SMILES [10] and InChI [11],
although SMILES was used in the majority of experi-
ments. Each of these languages describes single mole-
cules with a single input string. The length and
complexity of these strings are variable depending on the
number of atoms in the molecule, as well as the amount
of data intended to be encoded. In addition, the structure
of the string is representative of the molecular structure.
The benefit of using this encoding is that domain

expertise for each specific QSAR problem is not needed.

The consistent generation of encoded strings represents
a molecule’s topology, connectivity and optically active
geometry losslessly. This benefit is in contrast to QSAR
descriptor feature vectors which require the expert
selection of specific features thought to be salient for
individual problems and are also lossy.
The next section details our approach and testing

methodologies.

Methods
In this section, we describe our model and the methods
that we used to compare it to existing QSAR
approaches.
Our method builds a model that computes an output

value for a text string representation of a molecule. A
specialized case of this model was previously introduced
in [12,13]. It is the topology of the resulting parsed
representation that allows the NGN to perform its com-
putational tasks. We perform QSAR with this method.
As mentioned earlier, this is similar to other graph tra-
versal approaches, but is unique as the traversal pro-
duced is guided with a formal grammar. The NGN
method operates on lossless string encodings that can
be used to reconstruct the correct and unique topology
of the molecule. By contrast, previous vector mapping
approaches, which use only real-value or bit- vectors,
are necessarily lossy. We are also capable of encoding
complex structural configurations such as the expression
of cis- and trans- bonds, chirality, and describe precisely
where in a traversal particular charges or polar charac-
teristics are found. Vector techniques are incapable of
describing such location-specific features; and other
graph traversal techniques do not document such com-
plex structural characteristics.
In this section, we begin by describing textual molecu-

lar descriptions. These molecular strings are essentially
one-line documents that describe a molecule as a visitor
is traversing it from one atom to the next until all
atoms and bonds have been visited.
Our computational model consists, at its core, of a

deterministic LALR-1 parser and a feed forward back
propagation neural network framework. The parser is
used to structure the processing layers of the network;
this is explained by an example and an abstract formal-
ism in the following sub-sections.
We also identify and refine a set of benchmark problems

for evaluating performance that others have used for
QSAR approaches. We select a set of comparative techni-
ques to which to compare our approach. And finally, we
provide all the details of the parameters that we used.
Throughout this section we will work with a running

example, namely the isopentanol molecule illustrated in
Figure 1. The consistent use of this example facilitates
the understanding of otherwise abstract topics.
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String representations of molecules
A number of string representations have been developed
to describe molecules. The simplest and best known of
these is the chemical formula. The chemical formula for
our isopentanol example is C5H11OH. While this repre-
sentation enumerates the atoms in the molecule it does
not provide much information about the arrangement of
the atoms in the molecule.
For our experiments, we leveraged two more informa-

tive representations, Simplified Molecular Input Line
Entry Specification (SMILES) [10][14] and IUPAC Inter-
national Chemical Identifier (InChI) [11]. These string
formats were originally designed to address the need to
uniquely key large databases of molecules. For each
SMILES and InChI, the precise length of a string is
determined by the number of atoms seen in a traversal
of its corresponding molecule. The more atoms there
are, the longer the string. A further combinatorics pro-
blem exists, as one could conceivably start on any atom
and continue a traversal in any order. This is solved by
using a consistent canonicalization algorithm for each
dataset. Canonicalization constrains each molecule to a
single unique string. Where available, the strings that
document optical activity are used. When only a 3D
conformer is known, the default canonicalization offered
by OpenBabel was used. Each dataset was always treated
to the same canonicalization. Three dimensional confor-
mation information is also available and encoded into
these strings for our experiments. Visually, SMILES
strings distribute information about a molecular traver-
sal uniformly across each string. InChI strings have par-
ticular substrings that contain different information;
these substrings are called layers.
Isopentanol is represented by the SMILES string “CC

(C)CCO”. Note that, in this representation, the par-
enthesized carbon atom indicates that this carbon is on
a separate branch from the following two carbons and

the oxygen. Hydrogen is not included in a SMILES
representation, but can be inferred from the available
valences. Thus, this representation provides more struc-
tural information than the simpler chemical formula.
A corresponding InChI string is “InChI=1S/C5H12O/

c1-5(2)3-4-6/h5-6H,3-4H2,1-2H3”. In this representa-
tion, the first substring indicates that this string con-
forms to the first version of the InChI specification.
Layers are delimited by slashes. The main layer is pre-
fixed by ‘/’ and subsequent layers are prefixed by ‘/x’,
where ‘x’ is a lowercase letter. Depending on the com-
plexity of the molecule and the amount of information
the user chooses to encode, the number of layers varies.

Parsing
In order to use a string representation of a molecule, we
must first parse the string. Parsing assigns a meaning to
the symbols in the string and identifies a structural rela-
tionship between them using a set of grammar rules.
The grammar rules for the SMILES language are defined
in [10]. We have adapted these rules to make them sui-
table for processing with a LARL(1) parser. For the pur-
pose of our explanation, we consider a small subset of
the complete SMILES grammar rules. This subset is
given in Table 1.
The rules provide a system for rewriting a string of

symbols. The start symbol for this rule set is “smiles”.
The first rule states that the “smiles” symbol can be
replace by the “chain” symbol. The second to fourth
rules give three different ways of rewriting the “chain”
symbol. This rewriting process is applied repeatedly
until only terminal symbols are left. In this simplified
language, all terminal symbols are a single character in
length. By selecting from the set of possible rewrite
rules for the full SMILES grammar, it is possible to con-
struct any valid SMILES string.
For our example, we consider the derivation in Table 2,

which shows how the string representing isopentanol is
created from the start symbol “smiles”.

Figure 1 Artist’s conception of isopentanol molecule

Table 1 Subset of SMILES grammar rules (derived from
[10])

smiles ¬ chain 1

chain ¬ atom 2

chain ¬ atom chain 3

chain ¬ atom Nbranch chain 4

atom ¬ C 5

atom ¬ O 6

Nbranch ¬ branch 7

branch ¬ ( chain_rparen 8

chain_rparen ¬ chain rparen 9

rparen ¬ ) 10

Ma et al. BMC Bioinformatics 2010, 11(Suppl 8):S4
http://www.biomedcentral.com/1471-2105/11/S8/S4

Page 4 of 21



An alternate representation of this derivation is shown
in Figure 2. In this figure, the parsing process is shown
as a tree. Note that the rounded boxes indicate the rules
applied at each step. This tree will form the basis of our
model as outlined in the next section. We have designed
our grammar to be unambiguous, which implies that for
any string, there exists exactly one structural interpreta-
tion and, hence, one parse tree.

Multi-layer neural network
Rather than using a fixed neural network that operates
on a constant number of features, like vector-based
neural network solutions to this problem, our method
dynamically constructs a custom neural network for
each molecule to be considered based on the aforemen-
tioned parse tree. A larger molecule is thus represented
losslessly by a larger parse tree and corresponding
neural network. The dynamic network is constructed
from a finite library of re-used, weight layers which per-
sist between epochs of training and recognition tasks.
These weight layers thus represent the accumulated
training for the NGN system for each QSAR problem.
The weight layers each correspond to a specific gram-
mar rule and are assembled based on the string repre-
sentation of the molecule and its parse. For our running
example, Figure 3 depicts the re-usable weight layers for
each rule given in Table 1. In this implementation, we
decided to use 8 processing elements to represent each
non-terminal symbol in the grammar (though in practise
other numbers of elements can be used and need not be
constant between non-terminal symbols). System para-
meters including the number of processing elements
chosen were determined experimentally. We used only a

single unit to represent each terminal symbol (an expla-
nation of this decision follows later). Although not
shown in the diagram, the weight layers also incorporate
a set of bias terms at their terminal ends.
Having created these weight layers corresponding to

the grammar rules, we can now construct a multi-layer
neural network by substituting the grammar rules
shown in Figure 2 by the appropriate weight matrices
from Figure 3, and by replacing the terminal symbols in
Figure 2 by individual output nodes. The result of this
substitution is shown in Figure 4.
Having constructed the network in this way, we can now

set the activation values of the input nodes (corresponding
to the grammar terminal symbols) to values of 1.0. This
may seem odd at first glance, since in most networks the
input units represent the pattern to be processed, so set-
ting them all to 1.0 would defeat that purpose. But in this
case, the weight layers from these input units to the first
hidden layers are actually specific to the input symbols
that they represent, so the signal reaching these hidden
layers encodes the presented symbols. (Another way to
think about this is that the input symbols are represented
in the signals sent to the first set of hidden values. In this
interpretation, these input signals are themselves train-
able.) From there, the structure of the network is itself an
input signal (since it represents the molecule of interest).
We can now feedforward the activation values through

all the processing elements of the network to the final out-
put layer. At this point we can apply a standard error
backpropagation algorithm to implement a gradient des-
cent in error space just like with any other neural network.
The weight adjustment phase must be adapted slightly

in order to accommodate the fact that the operating
network is constructed with multiple instantiations of
the same weight layers. In Figure 4, for example, the
weight layers labelled [2] (occurring 2 times), [3] (occur-
ring 3 times), and [5] (occurring 5 times) are the same
weight layers. Fortunately, a correct gradient can be rea-
lized simply by summing the weight changes for each
weight layer as computed by the normal gradient des-
cent method. That is, the total change ΔWij to one of
the weights (from j to i) that corresponds to (e.g.) gram-
mar rule [3] would be given by

Δ Δ Δ ΔW W W Wij ij ij ij= ′ + ′′ + ′′′ (1)

where Δ Δ′ ′′W Wij ij, and Δ ′′′Wij are the weight changes
computed for the first, second and third instantiations
of the [3] weight layer, respectively. These individual
weight updates can then be computed as:

Δ ′ = ′ ′W aij i j (2)

in the notation of [15]. (Of course, advanced training
methods like momentum, etc. can also be added.).

Table 2 Derivation of the SMILES string CC(C)CCO
(Isopentanol) from the root smiles “symbol”

smiles ¬ chain Rule 1

¬ atom chain Rule 3

¬ C chain Rule 5

¬ C atom Nbranch chain Rule 4

¬ C C Nbranch chain Rule 5

¬ C C branch chain Rule 7

¬ C C ( chain_rparen chain Rule 8

¬ C C ( chain rparen chain Rule 9

¬ C C ( atom rparen chain Rule 2

¬ C C ( C rparen chain Rule 5

¬ C C ( C ) chain Rule 10

¬ C C ( C ) atom chain Rule 3

¬ C C ( C ) C chain Rule 5

¬ C C ( C ) C atom chain Rule 3

¬ C C ( C ) C C chain Rule 5

¬ C C ( C ) C C atom Rule 2

¬ C C ( C ) C C O Rule 6
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Finally, it is important to note that the weights are
updated in the weight layer library and that subsequent
molecules will be constructed from these updated
weight layers and themselves cause the weight layers to
be further updated throughout the training process.

NGN math
While we first presented a specific version of this
approach in [12], our method is, in fact, much more
general than one specific representation language or
problem domain. In this paper, we abstract the example
from the specific case presented above, and describe
how an NGN would be used to process strings from an
arbitrary grammar, G. In our work we have studied both
SMILES and InChI, but other grammars are possible as
well. We extend our approach to an arbitrary grammar
and problem domain using a mathematical notation
described below. We specifically discuss elements of
graph theory, formal languages and recurrent neural
networks and how they compose the NGN. Formal

language strings must be parsed deterministically, and
without ambiguity or conflicts.
We utilize the below notation to indicate an input

string.

s t C s t
i

s t

i( ) ( )
( )

=
=0

Input strings, s(t), are a concatenation, C, of input
tokens, s(t)i. This concatenation operator, C, will be
seen again when we map internal symbols of the gram-
mar to hidden layers of the NGN.
The parse trees that arise (e.g. Figure 2) form the

graph on which the neural network layers (e.g. Figure
3.) of the NGN will fit (e.g. Figure 4.). We define the
characteristics required for a formal grammar to fit the
NGN structure.
G =<V,Σ,s,P>
A grammar (G) of a formal language is a four tuple of

internal symbols (V), terminal symbols (Σ), a start

C )( C C C OC

smiles

chain

chain

chain

chain

chain

chain

atom

atom

atom

atom

atom

atom

nbranch

branch

chain_rparen

rparen

[3]

[5] [4]

[7][5] [3]

]2[]9[ [5]

[2]

[5]

[6]

[3]

[5]

[1]

[8]

[10]

Figure 2 Parse tree for isopentanol
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symbol (s|s Î V) and production rules (P) that map a
left-hand internal symbol to a sequence of right-hand
symbols. Right-hand symbols can be solely terminal
symbols or a mixture of internal and terminal symbols.
For simplicity, we impose in this discussion that the
right-hand of a production rule must be either a conca-
tenation of internal symbols, or a single terminal symbol
(<V+, Σ >). We can now consider parsing to be the
activity of constructing a unique graph driven by an
input string and grammar of a formal language. We sti-
pulate that this graph is rooted, directed and acyclic
which is a more strict type of tree. An input string s(t)
has a corresponding parse tree (T(t)) at time t. The time
variable allows us to index each successive string and its
tree distinctly. In this work, each index corresponds to a
different molecule, but our model is far more general
and can be readily applied to different problem domains.

T(t) = N t t( ), ( )

The tree T(t) at time t is composed of a set of
nodes N(t) and sequences of edges ( )t where a
single edge is an ordered pair of nodes

E t N t N t E t ta b( ) ( ( ), ( ))| ( ) ( )= ∈{ } . We stipulate that
our tree is strictly composed of sequences of edges
rather than edges alone as it facilitates mapping
sequences of internal nodes to symbols of the grammar.

Directions are defined such that the root has only
inbound edges. For a pair of nodes (Na(t),Nb(t)) con-
nected by E(a,b)(t) from a to b, Nb(t) is the parent, and
Na(t) is the child. From the tree, we map a sequence of
edges  from a parent to its sequence of children onto
the production rules P of the grammar G defined earlier.
This is done such that the left-hand internal symbol
maps to the parent node and that the right-hand
sequence of symbols maps to the sequence of child
nodes. We keep the sequence consistent so that each
edge E uniquely connects the left-hand symbol to a spe-
cific right-hand symbol in sequence.

W t w t b t p Pp p p( ) { ( ), ( ) }= < > ∈


An artificial neural network is composed of alternating
activation layers and weight layers when considered ver-
tically. The NGN utilizes this same general architecture.
The node layers are each composed of a real-value acti-
vation vector. The weight layers (W) that we discuss are
each composed of a weight matrix (w) and bias vector
( )

b . We map a unique sequence of weight layers onto

each production rule of a given formal grammar G. A
weight layer corresponds to an edge E. This edge E
maps to the left-hand symbol of a p and a specific sym-
bol on the right-hand side. The weight layer selected is
thus the one that is indexed given the left-hand and
right-hand symbols of the specified production rule p. If
we discuss two node layers joined by a weight layer, the
parent layer is the output layer and the child layer is the
input layer. A weight layer, W, that occurs in an NGN
will occur as many times as the corresponding produc-
tion rule, p Î P. If data is processed more than once by
a weight layer, W, in a neural network topology, then
that topology is said to be recurrent. This is often
the case in the grammar defined for molecular traversals
in the current work. To clarify, each production rule
(p Î P) has its own corresponding weight layers Wp(t),
one for each right-hand symbol. This is indexed by time
step as the values in each w and each


b are tuned dur-

ing NGN training.
Node layers that are not input layers (graph leaf

nodes) or the final output layer (the single graph root
node) are hidden layers. Hidden layers contain the acti-
vation vectors (ai) which hold the intermediate calcula-
tion of the network. These hidden layers are placed into
the NGN topology corresponding to the left-hand side
of production rules i.e. each to a single internal gram-
mar symbol (V). The production rule defines precisely
which weight layer should be used to connect two sym-
bols in the grammar. When we consider a production
rule as a whole, it is necessary to connect a sequence of
edges  from the left-hand symbol to each right-hand
symbol. When we do this, the identified weight layers

chain     atom chain

[8]

chain     atom Nbranch chain

atom     C

atom     O

[7]

[1]

[9]

[4]

Nbranch     branch

branch     ( chain_rparen

rparen     )

[3]

[5]

[10]

chain_rparen     chain rparen

[6]

output

smiles     chain

[2]chain     atom

Figure 3 Weight layers for each rule given in Table 1
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are placed into the NGN and appropriately connected to
the node layers mapped to each grammatical symbol of
the right-hand sequence of symbols.
When alternative deterministic parses are defined by

the grammar, node layers corresponding to right-hand
symbols that are connected propagate activated values
as expected. These symbols are connected because they
are part of the current parse. Those symbols that are
not connected are substituted by an activation vector
flushed with zero values (0.0) for each node of the layer.
Input layers are node layers that have no child layers

(nor corresponding bridging weight layers). The input
string s(t) is lexicographically broken apart, and mapped
to the terminal symbols (Σ) of the grammar (G). The
input layer receives input depending on what production
rule a weight layer is associated with and also the input
string s(t). As tokens from the input string, s(t)i, are
recognized, corresponding length-one vectors with an
activation value of (1.0) are instantiated and placed onto
the NGN topology as input layers. The production rule

(p Î P) responsible for recognizing the input token may
support more than one character to admit as input. In
this work, this can be a Wp which accepts chemical ele-
ment symbols or a Wp that accepts single digit integers
etc.. In the latter case, that production rule corresponds
to a weight layer W that has only as many nodes (pro-
cessing units) as there are tokens it is capable of accept-
ing. The activated length-one vector which indicates the
identified token to the NGN is then connected to a spe-
cific node of the weight layer as each node of the weight
layer is indexed exactly as the sequence given by the
production rule p. The remaining inactive nodes receive
a value (0.0) as input. In the graph topology, these input
layers correspond to the leaf nodes.
The NGN topology has been described using a specific

case of a tree, being rooted and directed with the root as
a universal directional sink. We described dynamic parts
of the NGN that change due to different conditions.
The storage associated with each weight layer is perma-
nent and is each associated with an edge connecting a

C )( C C C OC

[3]

[5] [4]

[7][5] [3]

]2[]9[ [5]

[2]

[5]

[6]

[3]

[5]

[1]

[8]

[10]

Figure 4 Neural grammar network for isopentanol
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pair of left- and right-hand symbols for each grammati-
cal production rule. The topology of the NGN changes
for each exemplar string, and is uniquely determined by
the parse tree constructed. The values of each weight
layer change during training, and the values of the acti-
vation vectors in each node layer change representing
transient calculations. As the grammar and its corre-
sponding weight layers persist throughout training, each
weight layer is reused whenever the same grammar rule
is called upon. Each weight layer is also reused if differ-
ent strings in the dataset are parsed with the same pro-
ductions. This reuse is where the NGN gains its
uniqueness and power as a syntax-dependent string
recognition device. A finite computational model is cap-
able or processing inputs of unbounded length. The col-
lection of weight layers represents the accumulated
training that the NGN system has seen.
How NGN topology is derived has been established.

We use this framework to now describe how calculation
is performed.
The number of processing units (nodes) of a node

layer can be arbitrarily defined by the end user (in all of
our examples, we used 8 nodes per layer).
The feed forward algorithm is defined here. Aside

from topology and the possibility of recurrence with
repeated use of the same weight layer, the NGN system
does not differ from the familiar feed forward algorithm
used for artificial neural networks. This is a
formalization.
The function activity is defined as follows, and pro-

duces the activation for a single hidden layer (internal
node) of the NGN tree.

  
a t C w a t bu

i

p
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⎤
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Given the parse tree, the NGN is traversed in breadth
first order so that the {1.0} and {0.0} values of the input
layers are computed first against the respective weights
of their production rule edges, and the root (output
layer) is computed last. In the above, we first concate-
nate all of the weight layers w involved with a single
production rule p Î P. For a production rule, these
weight layers are indexed by their left-hand parent inter-
nal grammar symbol (u) and child (vi) for a specific
right-hand grammar symbol. The activations


avi

are
those of each child layer, and the operator × is matrix
multiplication. The bias vector


bu (a part of the weight

layer) is then added to each value of the net vector. The
net vector is then transformed by the logistic function
to normalize the activation values to the range (0.0, 1.0).
The logistic transfer function L as we have defined it

for vectors is:

L x
e

i
x i

( )

( )
( )( ) =

+ −

1

1

With the normalization of the current activation, the
sibling or the parent of this hidden layer is processed
next. This traversal continues until all activations are
calculated given their respective weight layers and a
final output vector is retrieved from the root node of
the NGN tree.
To tune weights, gradient descent with back propaga-

tion of errors is used. Tuning weights requires three
steps. First, calculation of the error gradient is done;
second, the amount that each weight must be changed
is calculated; third, the weights are updated. The error
gradient calculation is performed on a breadth first tra-
versal starting at the root layer; the delta is performed
on a depth first traversal starting at the leaves. Finally,
weight update can be performed in either breadth or
depth first.
The function gradient is defined as follows for the

output layer; it calculates the error gradient from the
output vector to the desired target output.
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The function gradient is defined as follows for each
hidden layer; it calculates the error gradient for each
activation vector and finds the correct direction to tune
weight layers.
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 = dnet

dw
vectors are the gradients of the net

activation to a processing unit with respect to the
weight under consideration. A node layer (output layer
or hidden layer) is indexed as v and its parent is indexed
as u. The values of the vectors and matrices are indexed
using j, the index of a node in a layer and i, the index of
a node in its parent’s layer (there are j many nodes in
layer v (child) and i many nodes in layer u (parent)).
The output layer’s gradient,


v , is calculated from its

own activation,

av , and the target pattern


aT . A hidden

layer’s gradient

v is computed from its own activation

av , its parent’s activation

au and its parent’s gradient

au . Weight layers are only adjusted when they bridge
between two node layers. Notice that there is no weight
matrix in the former equation to bridge between the
output and target vectors. In the latter equation, the
summation indicates that the gradient of each node,
v

j( ) , in a layer, v, is to be calculated with respect to an
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index j of corresponding weight values in the weight
matrix, w u v

ij
( )
( )

← ; that is, all of the values corresponding
to the parent layer, u, indexed by i, contribute to a sin-
gle value,


v

j( ) , in the gradient vector,

v .

Now that gradients have been calculated in a depth
first traversal, we can calculate the changes to be made
for each weight layer’s weight matrix, Δw, and bias vec-
tor, Δ


b , in a breadth first traversal.

Δ Δ
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Notice that the above formulas correspond to time
steps (t). Each step in the breadth first traversal is con-
sidered a time step. For clarity, we liberally interchange
the words ‘change’ and ‘delta’ to mean the same thing.
The first formula describes the change in weight layer
(Δw) corresponding to a node’s parent and itself (u ¬
v). A user tunable parameter, the training constant (h)
defines how much change is to occur based on the error
( )

 at this time step; this is calculated against the acti-
vation vector ( )


a of the node layer v. The momentum

coefficient (a), also user tunable, defines how much
change to carry over from (Δw) of the previous time
step (t − 1). The indices j and i correspond to the neural
network processing nodes for a layer’s parent and itself
respectively. In the second formula, the change in bias
( )

b is calculated. In contrast to calculating the weight

matrix change, the change in bias is calculated with only
information that pertains to the node’s parent layer.
Finally, a weight update is performed. While the parti-

cular traversal is arbitrary, we chose to perform weight
update in a depth first pass. A weight update is given by
summing each of the weight layer changes with each of
their corresponding weight layers. This includes the
changes needed for each of the weight matrices and the
bias vectors. Recall that since weight layers may exist
more than once within a NGN topology, the input
string and grammar rules may define a parse structure
that is recursive. This means that a single weight layer
will be summed against more than one weight change
matrix. It is of course possible that particular symbols
do not exist at all in a given parse. When this happens,
a weight layer simply is not updated given the current
string. This three-phase back propagation training is
performed once for each exemplar in every epoch of
training.

Dataset selection
In this work, we compared the performance of our tech-
nique against other QSAR approaches that are found in
the literature. To this end, we have evaluated a broad
range of feature vectors and a diverse set of QSAR

problems. The first set of experiments describe the
NGN used for the classification task. The second set of
experiments approach the regression task. Finally, the
third set of experiments are regression trials performed
on a dataset that we have designed.
In the first suite of experiments conducted we com-

pare our method against those published in literature
for the classification of molecules into bioactive or inac-
tive molecules. We first compared with a suite of
machine learning methods reviewed by Sutherland et al.,
(2003) [1]; soft independent modeling by class analogy
(SIMCA), recursive partitioning (RP) and spline fitting
with a genetic algorithm (SFGA). These techniques are
used in classification trials for separating bioactive and
inactive molecules for the datasets [1] dihydrofolate
reductase inhibitors (DHFR), benzodiazepine receptor
binders (BZR), cyclooxygenase-2 inhibitors (Cox2). We
then compared our results against the machine learning
methods reviewed by Li et al., (2005) [2] linear regres-
sion (LR), linear discriminate analysis (LDA), decision
tree (C4.5 DT), k-nearest neighbours (k-NN), probabilis-
tic neural networks (PNN) and support vector machines
(SVM). These methods were used for the classification
of molecules that can or cannot cross the blood brain
barrier (BBB) [2]. Two methods described by Fountaine
et al., (2005) [3], molecular interaction fields (MIF) and
molecular kernel (MK) are compared against in the fac-
tor Xa inhibitors (FXa) dataset [3] classification. The
final experiments conducted were the classification of
molecules into estrogen receptor binders (ER) [16][17]
and androgen receptor binders (AR) [18]; these two
datasets were retrieved from the Endocrine Disrupter
Knowledge Base (EDKB). We also report on the internal
cross validation experiment performed on the ER data-
set by Tong et al., (2004) [5].
The second suite of experiments conducted involved

comparing the regression performance of the NGN with
that of other published techniques. This was done for
the datasets reviewed by Sutherland et al., (2004) [6];
they are glycogen phosphorylase B inhibitors (GPB),
angiotensin converting enzyme inhibitors (ACE), acetyl-
cholinesterase inhibitors (AChE), cyclooxygenase inhibi-
tors (Cox2), thermolysin inhibitors (Therm),
benzodiazepine inhibitors (BZR), thrombin inhibitors
(Thr), dihydrofolate reductase inhibitors (DHFR). Our
approach was compared against methods [6] for descrip-
tor generation as follows comparative field analysis
(CoMFA), eigenvalue analysis (EVA), holographic QSAR
(HQSAR) and descriptor vectors describing a hybrid of
2D topology and 3D conformation information (2.5D);
and finally, the molecular kernel methods mentioned
previously (MK1 and MK2) [4].
By comparing our results to previously published work

on the same datasets, we can be assured that we are
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comparing against effective implementations and config-
urations of competing approaches, and that these meth-
ods were applied by experts in their use.
The final suite of experiments reviewed involves a new

dataset that we have introduced recently [19]. The
objective of using this dataset was to apply the same
techniques to a novel problem set which we had not
anticipated when designing the system. We did this to
evaluate the flexibility of our approach.
Unfortunately, because the dataset is new, we cannot

compare our results to those of other experts applying
their favoured techniques to the same data. As a com-
promise, we have compared our results to those
obtained using a number of popular molecular descrip-
tors and a vanilla neural network. While we do not
claim that the neural network represents a state of the
art technique, it gives a rough indication of the perfor-
mance that can be expected from alternative machine
learning methods that use lossy descriptors. Our dataset
consists of molecules to be classified based on their
toxicity and their target organ of interaction for the
mouse and rat species.

Results and discussion
NGN in QSAR classification experiments
In this section we discuss classification experiments, the
first suite of experiments performed with the NGN. We
first describe the datasets selected, then the experimen-
tal design and parameters, and finally the results for
these experiments.
Datasets we selected must meet these criteria: they

must be freely accessible in the literature, have a suffi-
cient number of exemplars for QSAR, their three
dimensional conformations must also be solved and
available, and results of previous attempts to apply
QSAR must be reported in the literature. A total of
seven datasets are used in classification experiments,
and ten for regression.
We conducted two kinds of classification and regres-

sion experiments. The first kind is an internal cross vali-
dation wherein a dataset is broken into approximately
even groups such that one group is used as the test set
while the remaining groups are used as the training set.
We refer to this as a Leave-20%-Out internal cross vali-
dation design for classification and as a Leave-5%-Out
internal cross validation design for regression. The
Leave-20%-Out partition size for classification is
adopted based on previous work conducted for the sake
of comparison while the Leave-5%-Out partition size is
chosen as the datasets for regression are of a smaller
size on average. For classification, each group is used as
a test set ten times for a total of fifty trials. These are
referred to as internal cross validation experiments as a
given dataset is broken apart into partitions without the

use of an external dataset; this is in contrast to the
designed test set strategy where a training set and test-
ing set are explicitly designed. The second kind of
experiment is based on designed test sets provided by
the studies where we obtained the datasets. Some of
these designed sets aim to maximize dissimilarity
between molecules of a test set thereby testing the
extrapolation power of the QSAR method analyzed. For
each designed test set, we ran ten trials total. Table 3
summarizes the parameters we used for the both kinds
of classification experiment, the Leave-5%-Out cross
validation design for regression and the designed test
sets for regression. The training constant h and momen-
tum coefficient a have been discussed in the methods
section. Convergence during training is determined by
the root mean squared error dropping below a certain
arbitrary threshold (RMSE). Weight matrices and bias
vectors have random initial values; notice that we use
larger values with magnitude in [1.0, 1.6] on either side
of zero. We found this enabled convergence in a more
reasonable number of epochs without sacrificing the
accuracy of system predictions. For classification, we
found a drop down to 5000 epochs to convergence; for
regression, 7500 on average. The maximum number of
epochs indicates when the system restarts having given
up. The number of hidden nodes used in the neural net-
work can be tuned for each grammatical symbol, but we
determined that a global value of 8 for each SMILES
and InChI was appropriate. The output scale is the
range we have normalized the target output to accom-
modate the logistic transfer function used in the neural
network computations. These values were derived
experimentally and balance the training time against any
loss in accuracy.
Table 4 summarizes the datasets used in the classifica-

tion experiments, we describe how the datasets are bro-
ken down into positive classifiers and negative classifiers
given their ranges of activity and a threshold. The
ranges for each dataset are expressed in a logarithmic
scale and are shown in the table. The scales are either
p for negative base-ten logarithm, or log for base-ten
logarithm. The values correspond to IC50 indicating the
required concentration such that half of the target pro-
tein or receptor is bound or inhibited or they corre-
spond to Ki, a ratio of concentrations, or they
correspond to relative binding affinity against (RBA). Of
exception are the blood brain barrier (BBB) and factor
Xa (FXa) datasets. The BBB dataset is broken up such
that molecules that exist at 10% concentration on the
brain side of the barrier are considered penetrators
(positive). The FXa dataset has a wide threshold such
that molecules that have an affinity of Ki > 1µM are
negative binders, and those that have Ki ≤ 10nM are
positive binders.
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In order to evaluate performance, we used several
values gleaned from the literature. Concordance Q indi-
cates the overall ratio of correct classifications per-
formed by a system for a given dataset. Sensitivity SE is
a ratio of correct positive guesses over all exemplars
known to be positive. Specificity SP is a ratio of correct
negative guesses over all exemplars known to be nega-
tive. Finally Matthew’s Correlation Coefficient MCC is
used as a value that attempts to reward a system that
behaves well for each SE and SP in concert so that a
system that exceeds in one value but is lacking in the
other scores poorly overall. Each of these values has a
range [0.0, 1.0] such that 1.0 represents perfect perfor-
mance.

Q = +
+ + +

+

+
⋅ − ⋅

+

TP TN
TP TN FP FN

SE =
TP

TP FN

SP =
TN

TN FP

MCC =
TP TN FN FP

(TP FNN)(TP FP)(TN FN)(TN FP)+ + +

The NGN performs variably when operating with the
first three datasets (BZR, Cox2, DHFR) as seen in Table
5, Table 6, Table 7 given by Sutherland et al., (2003).

The NGN performs the best given the DHFR dataset for
both internal cross validation as well as overall.
Blood brain barrier results are shown in Table 8. In it,

the performance of the InChI-NGN (which denotes an
NGN system using the InChI grammar and language) is
shown against that of competitors’. Competing machine
learning methods were described by Li et al.. They are,
Linear Regression (LR), Linear Discriminate Analysis
(LDA), Decision Tree (C4.5 DT), k-Nearest Neighbor
(k-NN), Probabilistic Neural Network (PNN), and Sup-
port Vector Machine (SVM). A method to improve per-
formance was conducted too. Trials were conducted
that have Recursive Feature Elimination (RFE) which
pruned away redundant or irrelevant elements of the
feature vectors. The NGN does not use feature vectors
so it cannot benefit from that design.
Table 9 describes results for the FXa classification

dataset. The NGN performs comparably against the
results reported for Molecular Interaction Fields (MIF),
Fountain et al., 2005 ; and Molecular Kernels (MK),
Mohr et al., 2008.
Finally, Tables 10 and 11 show the results for each the

ER and AR datasets.
We now summarize and discuss the results of the

classification experiments. The internal cross validation
design demonstrates that the NGN is capable of classify-
ing molecules of different problems with varying diffi-
culty. The best accuracy is achieved with the FXa

Table 3 A summary of the final experimental parameters used in both classification experimental designs, in
regression Leave-5%-Out internal cross validation, and in designed regression test sets

Parameter Classification Regression 5%-CV Regression Designed

Training Constant (h) 0.60 0.30 0.33

Momentum Coefficient (a) 0.90 0.10 0.66

Convergence Threshold (RMSE) 0.05 0.03 0.04

Initial Random Weight Values [−1.6, −1.0] [−1.6, −1.0] [−1.2, −0.4]

∪ [1.0, 1.6] ∪ [1.0, 1.6] ∪ [0.4, 1.2]

Maximum Number of Epochs 5000 7500 7500

SMILES-NGN Hidden Nodes 8 8 8

InChI-NGN Hidden Nodes 8 8 8

Output Scale (0.2, 0.8) [0.2, 0.8] [0.2, 0.8]

Table 4 A summary of the datasets used in classification experiments. † The range and threshold information was not
provided in [2] and [3] for the BBB and FXa datasets, respectively

Dataset Dataset Full Name Size N+ N− Range θ Units Reference

AR Androgen Receptor 202 146 56 [<−3.56, 2.27] −3.56 logRBA [24][18]

BBB Blood Brain Barrier 415 276 139 † † pKi [2]

BZR Benzodiazepine Receptor 405 230 175 [<4.2, 9.5] 7.0 pIC50 [1]

Cox2 Cyclooxygenase 2 467 273 194 [<4.0, 9.0] 6.5 pIC50 [1][25]

DHFR Dihydrofolate Reductase 756 302 454 [<3.0, 10.5] 6.0 pIC50 [1]

ER Estrogen Receptor 232 131 101 [<−4.50, 2.60] −4.50 logRBA [24][17][16]

FXa Factor Xa 435 279 156 † † pKi [3]
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dataset at 86.4% concordance. The FXa dataset is well
classified by all of the methods shown. This may be
owed to the benzamidine moiety shared by each mole-
cule that Fountaine et al. [3] utilized to initially classify
the dataset. The NGN classifies 11% more accurately
than methods described by Sutherland et al. [1], for the
DHFR dataset for internal cross validation and within
2% of the leading method for the designed test sets.
NGN classification of the BZR and Cox2 datasets are
within 2% and 6% concordance of the leading method
respectively. The BZR, Cox2 and DHFR designed test
sets represent particularly challenging problems for
machine learning systems as the test sets were selected
for maximum dissimilarity [1]. Finally, the NGN classi-
fied the BBB dataset within 12% of the leading method.
The particular difficulty experienced for the BBB dataset
may be owed to the greater diversity of the compounds
described. The NGN does not directly assess solubility
or molecular weight which is particularly useful for this
problem.

NGN in QSAR regression experiments
In this section, we discuss the second suite of experi-
ments run. Regression tasks were run using the NGN.
The datasets seen in Table 12 were utilized by Suther-
land et al., (2004) or retrieved from the Endocrine Dis-
ruptor Knowledge Base (EDKB). These datasets have a
range in either the pIC50 or pKi which describes the
negative base ten logarithm of the proportion of
bounded protein-inhibitor pairs to unbound proteins
and inhibitors. The datasets used came from the various
sources cited. The sample size is shown as well as a cita-
tion for the study of origin of each. Each dataset varies
in its representation of low affinity to high affinity
binders.

Table 5 A summary of the performance on the BZR
dataset with results as reported by [1] compared to the
InChI-NGN in this work. Missing MCC values in the table
reflect missing information in the primary literature

Design Method Q(%) SE(%) SP(%) MCC

40% Test Set SIMCA 72 68 76 -

RP 69 64 74 -

SFGA 75.5 70 81 -

InChI-
NGN

63.2 62.1 64.6 0.265

Leave-20%-
Out

SIMCA 71.5
±11.0

73±10 70±12 -

RP 65.5±12 68±12 65±12 -

SFGA 68.5±12 69±11 68±13 -

InChI-
NGN

69.9
±1.98

73.4
±1.87

65.3
±2.29

0.387
±0.041

Table 6 A summary of the performance on the Cox2
dataset with results as reported by [1] compared to the
InChI-NGN in this work. Missing MCC values in the table
reflect missing information in the primary literature

Design Method Q(%) SE(%) SP(%) MCC

40% Test Set SIMCA 71 75 67 -

RP 71 79 63 -

SFGA 73.5 75 72 -

InChI-
NGN

65.1 62.5 68.4 0.307

Leave-20%-
Out

SIMCA 78±9 79±9 77±9

RP 69.5±12 72±12 67±12 -

SFGA 74±9.5 76±9 72±10 -

InChI-
NGN

72.2
±1.36

74.4
±1.01

68.7
±2.45

0.421
±0.275

Table 7 A summary of the performance on the DHFR
dataset with results as reported by [1] compared to the
InChI-NGN in this work. Missing MCC values in the table
reflect missing information in the primary literature

Design Method Q(%) SE(%) SP(%) MCC

40% Test Set SIMCA 75.5 74 71 -

RP 65 57 73 -

SFGA 68.5 71 66 -

InChI-
NGN

73.2 73.1 100.0 0.029

Leave-20%-
Out

SIMCA 63.5±9.5 57±10 70±9 -

RP 61±12 57±12 65±12 -

SFGA 64.5
±10.5

65±11.0 64±10.0 -

InChI-
NGN

74.8
±1.63

70.3
±2.44

77.5
±1.72

0.471
±0.035

Table 8 A summary of predictive scores for the BBB
dataset as presented in the work by [2] followed by the
performance of the InChI-NGN. Missing ranges for all
values other than the SVM work and our own are due to
missing information in the primary literature

Method Q(%) SE(%) SP(%) MCC

LR 57.1 63.6 42.8 0.063

LDA 46.8 40.0 58.4 −0.067

C4.5 DT 73.8 83.7 54.9 0.398

k-NN 70.8 77.0 58.0 0.348

PNN 70.3 76.2 57.8 0.357

SVM 71.0±4.53 89.9±3.16 64.3±13.07 0.524±0.117

LR RFE 71.0 83.9 46.4 0.321

LDA RFE 71.2 78.2 58.3 0.360

C4.5 DT RFE 74.3 80.3 62.8 0.433

k-NN RFE 77.1 85.5 61.4 0.477

PNN RFE 76.1 84.3 62.1 0.481

SVM RFE 83.7±3.90 88.6±7.01 75.0±12.83 0.645±0.080

InChI-NGN 72.0±2.33 77.6±1.72 59.0±3.91 0.355±0.052
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In order to evaluate the performance of the NGN in
regression tasks, the following quantities are calculated in
order to characterize how much deviation there is from
the actual output to the target output. The two quanti-
ties, predictive residual sum of squares (PRESS) and stan-
dard deviation (SD), are intermediate values used to
calculate a value commonly used in the literature, rpred

2

to characterize this deviation. One can consider the rpred
2

score to be PRESS normalized against SD. Note that SD
is calculated with respect to the test set only.
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Table 13 details the results for the internal cross vali-
dation, Leave-5%-Out. In it, we provide the rpred

2 score
followed by a standard deviation after the plus minus
symbol (±). Twenty trials total were run on each dataset,
once each for each Leave-5%-Out test group.
Table 14 shows how our method compared against

other published methods. We report standard deviations
after the plus minus sign (±). Where a value is not
reported in previous work, it is left blank. The regres-
sion results indicate that the NGN performed better in

rpred
2 with both a higher average score and narrower

standard deviation for the designed test sets than com-
pared with the Leave-5%-Out Cross Validation. A nar-
rower spread indicates greater model stability. This is a
desirable trait as it provides a quantitative basis for relia-
bility. The better performance achieved in the designed
test set is surprising as eight of the ten designed datasets
were selected given a maximum dissimilarity algorithm
[6]. The NGN method performed better than all other
methods for the GPB, ACE, AChE, Cox2, Thr and
DHFR datasets. The least desirable performance was
obtained on the BZR dataset where a negative score is
indicated implying that the system only captured noise.
The BZR dataset also corresponds to near bottom per-
formance for the remaining methods as well indicating
that it is particularly difficult. The InChI-NGN method
achieved its best results with the ACE dataset which is
also the second best performance of the SMILES-NGN.
It is possible that the salient physical properties for this
dataset are particularly well exposed in the SMILES and
InChI strings.

SMILES-NGN toxicity prediction
Experimental method
To develop a list of toxins, the Carcinogenic Potency
Database (CPDB) was examined [20]. This list was then
used to look up the structures of the identified toxins by

Table 9 A comparison of the work done by [3] and [4]
against the InChI-NGN for the FXa dataset. Missing values
are due to lacking information in the primary literature

Design Method Q(%) SE(%) SP(%) MCC

⅔ Train, ⅓
Test

A-MIF 88 - - -

MIF-MIF 84 - - -

MK1 94.5 98.7 89.5 -

MK2 95.2 98.9 87.7 -

InChI-
NGN

83.8 84.3 82.9 0.657

Leave-20%-Out InChI-
NGN

86.4
±2.50

88.5
±0.87

82.7
±0.05

0.705
±0.052

Table 10 Summary of the Decision Forest performance
[5] against the NGN performance on ER

Design Method Q(%) SE(%) SP(%) MCC

Leave-10%-
Out

Decision
Forest

81.9 - - -

Leave-20%-
Out

SMILES-NGN 69.3
±2.28

71.7
±2.39

66.0
±2.74

0.373
±0.047

InChI-NGN 66.1
±1.70

69.5
±2.65

61.6
±1.33

0.309
±0.040

Table 11 Summary of the NGN performance on AR

Design Method Q(%) SE(%) SP(%) MCC

Leave-20%-
Out

SMILES-
NGN

70.3
±0.91

71.8
±0.46

37.5
±11.4

0.052
±0.033

InChI-NGN 76.3
±3.20

80.7
±2.86

60.6
±7.02

0.380
±0.098

Table 12 A summary of the real-valued ranges of activity
for datasets used in regression experiments

Dataset Dataset Full Name Size Range Units Reference

ACE Angiotensin Converting
Enzyme

114 [2.1, 9.9] pIC50 [6][26]

AChE Acetylcholinesterase 111 [4.3, 9.5] pIC50 [6]

AR Androgen Receptor 146 [−3.56,
2.27]

logRBA [18]

BZR Benzodiazepine
Receptor

163 [5.5, 8.9] pIC50 [6]

Cox2 Cyclooxygenase-2 282 [4.0, 9.0] pIC50 [6]

DHFR Dihydrofolate Reductase 397 [3.3, 9.8] pIC50 [6]

ER Estrogen Receptor 131 [−4.50,
2.60]

logRBA [16][17]

GPB Glycogen
Phosphorylase B

66 [1.3, 6.8] pKi [6][27]

Therm Thermolysin 76 [0.5,
10.2]

pKi [6][26]

Thr Thrombin 88 [4.4, 8.5] pKi [6][28]
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acquiring Structure Data Files (SDF) and Information
Systems (MDL) Molfiles [21] from various sources. Next,
the lethal dose for 50 percent of the population (LD50)
was found for each molecule. The LD50 is representative
of a substance’s toxicity for a given population because it
avoids the obscurity of lower or higher doses in the
population. The toxin names, molecular structures, target
organs, organisms of study, and LD50 values were incor-
porated into a new database, which we provide for the
community for an earlier publication with some preli-
minary results showing a proof-of-concept model [19]
(Refer to Additional file 2 for toxicity dataset descrip-
tion). In this publication, we extend this study with a sta-
tistical analysis using the Wilcoxin test. We remark that
this experiment does not claim to link carcinogenicity
and lethality; rather, we used a list of toxins that hap-
pened to be carcinogenic as the basis of our dataset. All
predictions made, relate to toxicity (i.e. LD50 death rate)
from all causes, not simply cancer alone.
In the database, there were 173 unique toxicants with

some of these compounds affecting multiple organs

(thereby increasing the amount to 248 data points). Oral
LD50 values in this experiment ranged from 0.48 to
20,000 mg/kg. All compounds are considered toxic at a
significantly large dosages. Therefore, no inactive or
non-toxic molecules were used within the range of this
experiment. The database was then separated into sub-
sets according to species and organ.
The Chemistry Development Kit (CDK) [22] was used

to produce QSAR or traditional molecular descriptors.
OpenBabel [23] was used to generate the SMILES repre-
sentation, given SDF and MDL files for the NGN. A
normalization of the LD50 data was performed to scale
the data into the range of outputs produced by ANN
and NGN. By using the following formula, the known
LD50s for each data set were normalized into the range
of 0.2 to 0.8 before insertion into either ANN or NGN.

Normalized Value, . ( )* .VN
val= + −

−0 2 0 6min
max min

Here, ‘val’ is the current value, ‘min’ is the minimum
value of the data set, and ‘max’ is the maximum value of
the data set. Three datasets were created; one of which
is an accumulation of all of the data, one a subset of
animals (mouse and rat), and the final one being a sub-
set of animal organ combinations (for example, rat kid-
ney or mouse liver) . Each dataset was used to test for
the convergence competence of both neural networks. A
preliminary convergence test was designed to evaluate
the system’s ability to learn the complete dataset. This
preliminary convergence test was required to ensure
that the datasets contain few enough contradictions and
ambiguities that the neural network is capable of produ-
cing worthwhile predictions. Convergence is defined as
the root mean squared error (RMSE) being less than a
threshold. The system parameters that we have derived
experimentally based on these convergence tests for the
comparison of the ANN and NGN are shown in Table
15. Neither the dataset, being an accumulation of all of
the data, nor the animal subset passed the convergence
test for either ANN or NGN. The animal organ combi-
nation dataset produced more desirable results, though

Table 13 The rpred
2 scores for converging Leave-5%-Out

Cross Validation regression experiments

Grammar Dataset Dataset Full Name rpred
2

SMILES ACE Angiotensin Converting Enzyme 0.386±29.20

AR Androgen Receptor 0.382±18.29

ER Estrogen Receptor 0.349±21.82

GPB Glycogen Phosphorylase B 0.253±43.18

AChE Acetylcholinesterase 0.193±35.26

Therm Thermolysin −0.288±210.30

InChI ER Estrogen Receptor 0.476±11.16

ACE Angiotensin Converting Enzyme 0.383±15.09

Cox2 Cyclooxygenase-2 0.279±8.97

Therm Thermolysin 0.247±25.96

AR Androgen Receptor 0.119±79.50

Thr Thrombin 0.088±99.79

AChE Acetylcholinesterase 0.061±39.70

GPB Glycogen Phosphorylase B −0.180±104.87

Table 14 A summary of rpred
2 scores for the NGN compared to other methods on datasets described for regression in

this work

Dataset SMILES-NGN InChI-NGN CoMFA EVA HQSAR 2.5D MK1 MK2

GPB 0.79±0.23 0.48±2.90 0.42 0.49 0.58 0.04 — —

ACE 0.74±0.46 0.78±0.31 0.49 0.36 0.30 0.51 0.58 0.55

AChE 0.68±0.80 0.60±0.78 0.47 0.28 0.37 0.16 0.50 0.48

Cox2 0.56±1.33 0.37±4.28 0.29 0.17 0.27 0.27 — —

Therm 0.47±2.72 0.52±1.59 0.54 0.36 0.53 0.07 — —

BZR −0.29±17.30 0.11±8.74 0.00 0.16 0.17 0.20 0.34 0.36

Thr — 0.70±0.72 0.63 0.11 −0.25 0.28 — —

DHFR — 0.66±0.94 0.59 0.57 0.63 0.49 0.64 0.65
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three datasets were found to be problematic; (i) the rat-
liver (which could not be learned by the ANN), (ii) the
mouse-liver (which could not be learned by either the
ANN or the NGN), (iii) the mouse-kidney (which could
not be learned with the grouped dataset by either the
ANN or the NGN—see below). All successful datasets,
those of which passed the convergence test, were
applied to the appropriate methods. Training and pre-
diction occurred given two means of breaking apart the
data: grouped and random. Both methods were based
on a five-fold cross-validation. The grouped method
separated the data apart into five equally-sized clusters
which were evenly distributed across the range of out-
puts, such that four clusters were used in training and
one cluster was used in prediction. These groups were
then used repeatedly for 100 tests in the case of the
ANN and 50 tests in the case of the NGN due to the
processing time required for this method. The random
method randomly selected out one fifth to be used for
prediction for each separate test. Thus, the random test
produces more variability. The difference in grouping
method allowed for a comparison of variability between
the molecules introduced by the system, where random
training introduced more variability than group.
To provide validity to the system estimates, a statisti-

cal analysis was performed. The difference between the
target normalized LD50 score and the actual output
given by the neural net was taken and summed for each
molecule processed in a given trial. This number is
defined as Epsilon. The standard deviation of the differ-
ence for each prediction and actual output pair were
also taken. As Epsilon approaches zero this is an indica-
tion that there are smaller residuals against the target
data, portraying a more accurate model (ie. good on
average). For a model to be precise (i.e. stable), the stan-
dard deviation of the Epsilon value must approach zero
as well. This statistical analysis was performed for both
NGN and ANN estimates. A Wilcoxon signed-rank test,
on Epsilon and standard deviation for each trial, was
used to determine which method performed better. This
test is a significant improvement over the analyses done
in some of the preliminary publications. Correlation
coefficients (CC) were calculated for the NGN and

ANN trials to provide a quality of least squares fitting
between the known LD50 values and the neural net esti-
mates. The CC’s were calculated using:

sumof squares xy
(sumof squares x)(sumof squares y)

Here, ‘x’ represented the known LD50 values and ‘y’
represented the neural net estimates.
The results achieved from this experiment show that

the SMILES-NGN provides better overall estimates of
toxicity when compared against ANNs processing tradi-
tional descriptors in QSAR problems. The SMILES-
NGN produced results closer to the correct response
on average (Epsilon is closer to zero), and also pro-
duced more stable results (standard deviation is lower).
On average, the SMILES-NGN outperformed the
QSAR-ANN with lower Epsilon and standard deviation.
The SMILES-NGN was able to converge on the rat liver
data set while the ANN could not. From the results of
the Wilcoxon signed-ranked test, which were applied
only to the datasets where the ANN approach could
generate a result, we deduced that random training pro-
vided a better estimate of LD50’s compared to grouped
training method design. It is within 95% confidence that
the SMILES-NGN performed better than ANNs with
descriptors. This conclusion cannot be drawn for the
group training data. Even though it may be true that
the SMILES-NGN results are below those of the ANN
for group training, it is not within 95% confidence (only
results of best descriptors are shown). It is significant
that the best descriptor is not consistent across datasets,
while the exact same NGN was used for all
experiments.
From this experiment, it has been identified that the

SMILES-NGN was the better candidate when compared
with ANNs using traditional descriptors. This conclu-
sion is based on two criteria:
(i) No domain-specific knowledge is required other

than the structural interpretation embedded in the
SMILES grammar by its designers. Even with the toxi-
cant dataset developed here, the QSAR descriptors must
be designed by experts and are highly specific.

Table 15 Description of the neural networks’ parameters used for the experiment

RMSE Threshold

Neural
Net

Number of
Layers Node

Number of Input
Nodes

Number of
Hidden Nodes

Number of
Output

h a Weight Values
Range

Epoch Convergence Training

ANN 3 Same as feature
vector

2 1 0.9 0.3 (−0.3,0.3) 50,000 0.02 0.05

NGN Dynamic Dependant on
input token

12 1 0.3 0.3 (−1.6,−1.0) or
(1.0,1.6)

10,000 0.03 0.05

*activation value of 1.0

*hidden nodes were tested for best performance, leading to 12 hidden nodes to be used with the NGN for the toxicity dataset
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(ii) With SMILES the entire molecule is submitted to
the neural network, not just a relational representation
(QSAR).
As a point of comparison, we implemented ANN and

compared NGN results. We believe that to do a proper
comparison and justice to other techniques, such as
support vector machines or KNN, it would be better for
users more experienced in those techniques to apply
them to the dataset. Therefore, we are making the data-
set available and welcome others to try to produce bet-
ter results with their preferred methods.
Experimental results
We observed the successful descriptors for each dataset
under certain training conditions (grouped or random)
and training statistic (epsilon or standard deviation). We
examined the average performance of each individual
feature vector or as well as our approach using SMILES.
The same assumptions for epsilon and standard devia-
tion can be made, where the closer the statistic is to
zero the better it has performed. We show the average
epsilon values acquired for the SMILES-NGN and ANN
methods in Figure 5. In this graph, each of the descrip-
tors tried with the ANN are shown as their own data-
point above each animal and organ combination. In
Figure 6, we describe the same suite of experiments as
before but the average standard deviation is shown
instead. The above two figures mentioned summarize
the results for the grouped treatment of data. We sum-
marize the results for the random treatment of data in
Figures 7 and 8 for each epsilon and standard deviation
respectively. Most often our method with SMILES
scored lowest, demonstrating that it outperformed ANN
descriptors. Finally, When NGN and ANN feature vec-
tors for animal organ datasets were compared: (i) In the
case of random training conditions, NGN outperformed
ANN for epsilon and standard deviation 5 out of 7 data-
sets (ii) In the case of grouped training condition, NGN
outperformed ANN for epsilon 3 out of 6 datasets and
for standard devation 4 out of 6 datasets These results
show that more than half of all results were better esti-
mates with NGN then ANN feature vectors. It is signifi-
cant that the range for NGN estimates are a quarter or
a half that of ANN’s depending on animal organ dataset.
This result is significant because the lower the range for
a statistic, the better the model stability, leading to more
reliable results. Refer to Additional file 1 for graphs,
complete data and statistical analysis of the results.

Conclusions
We conclude that our method is superior to those
which have been previously examined based on three
points. First, our method does not require the expert
knowledge that is necessary to design the feature vectors
or kernel matrices used by other methods. We found

our approach, of using the SMILES and InChI gram-
mars as the sole source of chemistry-specific prior
knowledge, worked exceptionally well when compared
to more problem-specific approaches as evidenced by
the performance of our system across a very broad
range of problem domains. We are hopeful that this
trend will continue across other descriptor languages.
We believe that one reason for this success is the sec-
ond advantage of our system.
This advantage being that it creates a lossless repre-

sentation of molecules for presentation to the learning
system. Approaches that reduce complex molecular
structures to a small number of numerical quantities
or kernel matrices remove data from the problem
before the learning phase. In an ideal case the lost data
would be irrelevant to the problem under considera-
tion, but in practice this may not be the case. Thus,
experts are required to judiciously design representa-
tions that do not lose any problem-relevant informa-
tion. By contrast, our approach is not lossy, so the
learning component in the system can adapt to use all
structural information.
The third advantage of our system is that it is able to

leverage the work done to formulate chemical structure
description languages, like SMILES and InChI. These
languages have been designed to represent three dimen-
sional structural information in a most useful way. The
success of our system is a testament to the effectiveness
of these representative systems.
The NGN has two unique challenges not faced by

competitor methods. These challenges contribute to
weaker performances observed. First, there is the well-
known problem of signal decay down a recurrent neural
network stack. This problem corresponds to weaker
confidence when working on larger molecules as the
error propagation needed for training has a larger num-
ber of transfer steps to travel between the output node
of the NGN and the deepest leaves that map the right
most tokens of the SMILES or InChI string. Second, the
NGN architecture is highly specialized at learning the
topology of an input sequence, but not the sequence
itself. That is, the NGN cannot interpret the distance
between two tokens, nor the length of a particular
repeating stretch of symbols. It is instead designed to
recognize the occurrence of a token in the local context
of nearby tokens and internal activation layers.
Future work will look at: 1) Expanding our studies to

even more problems from the domain of cheminfor-
matics. 2) Comparing to even more alternative
approaches. 3) Investigation of other grammatical repre-
sentations beyond SMILES and InChI. 4) Moving
beyond chemistry to apply NGNs to other problem
domains where formal grammars have been developed
to represent objects of interest.
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Figure 5 Comparison of group method determined epsilon values.
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Additional file 1: We have included the following items in an additional
PDF file named additional_file_1.pdf. First, the performance of
the NGN in classification tasks is visualized with a suite of graphs. For each
dataset on which the NGN achieved convergence, a graph is rendered
showing the NGN’s classification concordance given a domain of
classification threshold values. Second, additional experimental performance
data from the toxicology task are rendered in tables describing (1) the
epsilon value, standard deviation and correlation coefficient for each the
ANN and NGN; (2) the difference in performance between the ANN and
NGN using the Wilcoxon statistical test; and (3) a summary of the best
performing system for each pair of matched ANN and NGN trials.

Additional file 2: We have included the following item in an additional
PDF file named additional_file_2.pdf. We have provided a
description of the SMILES-NGN dataset which includes all molecules and
LD50’s with their respective sources.
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