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Neutrophils are the first leukocytes recruited to sites of inflammation, where they

execute anti-microbial functions to eliminate infectious agents. These functions include

phagocytosis, release of reactive oxygen species and the formation of neutrophil

extracellular traps via NETosis. Neutrophils are receiving increasing attention in the

context of cancer, where these same neutrophil-associated functions are also important

for modulating tumor growth and metastatic progression. Neutrophils are phenotypically

heterogeneous and, depending on the context, exert anti- or pro-tumorigenic functions.

Increasing evidence also suggests an important role of neutrophils and their involvement

in promoting multiple steps of the metastatic cascade. The steps include: (1) local

invasion and intravasation of cancer cells into circulation, (2) survival of cancer cells in

the bloodstream and extravasation at a distant site, (3) early cancer cell seeding/survival,

and (4) progressive growth of cancer cells to form macroscopic metastases. Although

neutrophil functions designed to eliminate infectious agents can also eliminate tumor

cells, their dysregulation can promote tumor growth and enable metastasis at multiple

steps along the metastatic cascade. In this review, we will provide an overview of the

current advances in neutrophil biology in the context of cancer. We also discuss the

emerging field of immunometabolism, in which the rewiring of alternative metabolic

pathways within neutrophils can impact their pro-tumorigenic/pro-metastatic functions.

Keywords: neutrophils, tumor growth, metastasis, NETosis, immunosuppression, immunometabolism, metabolic

plasticity/flexibility

INTRODUCTION

Neutrophils account for 50–70% of circulating leukocytes and are the first immune cells recruited
to an inflammatory site. They play an important role in the innate immune response to
pathogens, as patients with neutropenia are highly susceptible to bacterial and fungal infections (1).
Neutrophils perform numerous functions that target microbes, including phagocytosis, the release
of anti-microbial peptides/proteases and NETosis (2). Interestingly, neutrophils have garnered
considerable interest for their emerging and prominent roles in modulating cancer growth and
metastatic progression (3). The roles played by neutrophils in the cancer setting are diverse and
complex, leading to the concept of neutrophil heterogeneity/plasticity and the notion that distinct
neutrophil subsets might exist.

Granulopoiesis is a tightly regulated process that involves the differentiation
and mobilization of mature segmented neutrophils from the bone marrow into
circulation. This process begins with the commitment of granulocyte-monocyte myeloid
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progenitors (GMPs), which progress through a series of
neutrophil progenitors (myeloblast, pro-myelocyte, myelocyte,
meta-myelocyte, band cell) until they become a mature
neutrophil (4).

In cancer, dysregulated granulopoiesis has led to the
identification of different neutrophil subsets that play a role in
tumor progression. PreNeus comprise a neutrophil precursor
population that retain their proliferative capacity and expand
in the bone marrow and spleen of tumor bearing mice (5).
PreNeus differentiate into immature and mature neutrophils,
with the former found to accumulate in growing tumors (5). An
early stage committed unipotent neutrophil precursor (NeP) has
also been identified and their adoptive transfer into humanized
mice promoted solid tumor growth by inhibiting T cell
activation (6). Two neutrophil subsets, high-density neutrophils
(HDNs), and low-density neutrophils (LDNs) were identified in
various tumor models by differential density centrifugation (7).
HDNs represent mature, segmented neutrophils whereas LDNs
comprise a heterogeneous mixture of mature and immature
neutrophils (7). Increasing mobilization of LDNs into the
peripheral blood was associated with enhanced tumor growth
and metastasis (7–9).

In addition to the identification of distinct neutrophil subsets,
neutrophils exhibit plasticity in response to tumor-derived
factors in a manner similar to macrophages. Neutrophils have
been classified into two categories, N1 and N2, to describe
their pro- and anti-tumorigenic functions, respectively,
(10, 11). In vivo evidence has shown that tumor-associated
neutrophils (TANs) can change their function from a pro-
tumor phenotype (N2) to an anti-tumor (N1) phenotype
with the addition of a TGFβ inhibitor, arguing that TGFβ
is an important factor driving the N2 phenotype (10). In
contrast, signals associated with an anti-tumor (N1) phenotype
include type I interferons and those propagated by the
MET receptor (12, 13). However, this categorization is likely
to represent an oversimplification of neutrophil diversity.
Neutrophil polarization, similar to macrophages, could also
represent a continuum of different neutrophil phenotypes
present in the tumor microenvironment (14). These advances
regarding the degree of neutrophil heterogeneity/plasticity
observed in the cancer setting have sparked an intense and
renewed interest in this cell population. While there are
ongoing discussions in the field regarding the relationship
between PMN-MDSCs and neutrophil subsets, we direct
the reader to excellent reviews that fully discuss these
relationships (3, 15). We will briefly discuss anti-tumor
neutrophil functions; however, this review will primarily
discuss the recent roles of neutrophils and neutrophil-
associated functions in promoting tumor growth and
metastatic progression.

ANTI-TUMOR NEUTROPHIL FUNCTIONS

Neutrophils can participate in a variety of anti-tumor
mechanisms that limit tumor growth or eliminate cancer
cells (16). A well-studied neutrophil-associated function is

their ability to generate reactive oxygen species (ROS) to
limit tumor progression. Upon tumor cell contact, mouse-
derived neutrophils can release hydrogen peroxide to eliminate
metastatic cancer cells in vitro (17). Subsequently, it was
demonstrated that expression of TRPM2 (transient receptor
potential cation channel, subfamily M2) on tumor cells increased
their sensitivity to neutrophil-mediated, H2O2-dependent,
cytotoxicity. This occurred through a mechanism that involved
a transient increase in Ca2+ mobilization within cancer cells
(18). TRPM2 upregulation in tumor cells occurred following
an epithelial-to-mesenchymal transition (EMT) and cancer
cells that have undergone an EMT were more susceptible to
neutrophil-mediated killing (19). More recently, an interaction
between the receptor for advanced glycation end products
(RAGE), which is expressed on tumor cells, and cathepsin G
present on murine neutrophils was shown to mediate in vitro
tumor cell cytotoxicity in a H2O2-dependent manner (20).
The release of neutrophil ROS is also dependent on the tumor
microenvironment. In hypoxic tumor microenvironments, the
ability of murine neutrophils to kill tumor cells in vivo through
the release of ROS is greatly diminished (21). Thus, neutrophils
have the capacity to mediate ROS-dependent direct tumor
cell killing.

The interplay of neutrophils with other immune cell
types can also indirectly limit tumor progression. Tumor
associated neutrophils suppress the pro-tumorigenic role of
IL-17 secreting γδ T cells by inhibiting their proliferation.
Low glutathione levels in γδ17 T cells rendered them sensitive
to neutrophil-derived ROS, causing enhanced oxidative
stress, and reduced proliferation (22). In early-stage human
lung cancer, a subset of immature neutrophils have been
identified as having antigen-presenting functions and act to
promote anti-tumor immunity by stimulating the secretion
of inflammatory cytokines from T lymphocytes (23). In
addition to neutrophil-T cell interactions, communication
between neutrophils and monocytes can also elicit anti-tumor
effects. Non-metastatic cancer cells can mobilize IFNγ-
producing monocytes to the lungs. IFNγ release activates
TMEM173/STING within neutrophils, which stimulates
neutrophil-mediated killing of disseminated cancer cells in the
lungs (24).

Neutrophils have been shown to infiltrate deposits of prostate
cancer cells within bone metastases. Importantly, neutrophils
impaired bone metastasis progression by inhibiting STAT5
(signal transducer and activator of transcription 5) function
within prostate cancer cells, resulting in their apoptotic cell death
(25). Recently, neutrophils have been reported to be involved
in antibody-mediated trogocytosis, a process that mechanically
disrupts the plasma membrane of antibody-opsinized cancer
cells, leading to a lytic/necrotic-type cell death. IgA antibodies
against receptors expressed by cancer cells (Her2, EGFR) could
enhance neutrophil-mediated trogocytosis of cancer cells if the
CD47-SIRPα innate immune cell checkpoint was simultaneously
blocked (26, 27). Taken together, these results demonstrate that
neutrophils can impair tumor growth and metastasis using a
combination of direct and indirect cancer cell killingmechanisms
(Supplementary Table 1).
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FIGURE 1 | Neutrophil functions that promote tumor growth and metastasis. To support primary tumor growth, neutrophils can mediate T cell suppression and alter

macrophage differentiation. Neutrophil release of TIMP-1 enhances tumor cell invasion by inducing epithelial-to-mesenchymal transition. Once in circulation, circulating

tumor cells interact with neutrophils, which enables tumor cell proliferation. Secretion of various pro-inflammatory markers such as IL-8, IL-1β, or MMPs can mediate

increased tumor cell extravasation. In addition, neutrophils can inhibit intraluminal NK-mediated killing of circulating cancer cells, leading to increased extravasation. At

the metastatic site, various systemic, and microenvironmental factors can promote neutrophil infiltration. Neutrophils can awaken dormant cancer cells by promoting

ECM remodeling and angiogenesis. Lastly, continued growth of the metastatic lesion is facilitated by key neutrophil-dependent mechanisms, which include

angiogenesis, proliferation, immune suppression, and immune exclusion. CSF-1, colony stimulating factor 1; TIMP1, tissue inhibitor of matrix metalloprotease; PD-L1,

programmed death ligand 1; TGFβ, transforming growth factor β; ROS, reactive oxygen species; MMP, matrix metalloproteinases; GM-CSF, granulocyte macrophage

colony stimulating factor; ANGPTL2, angiopoetin like-2; FGF2, fibroblast growth factor 2; LTB4, leukotriene B4; iNOS, inducible nitric oxide synthase; NET, neutrophil

extracellular trap; CAF, cancer-associated fibroblast.

NEUTROPHIL FUNCTIONS THAT
PROMOTE PRIMARY TUMOR GROWTH

Neutrophils promote primary tumor growth by various
mechanisms (Figure 1). NETosis is a process that involves
the extrusion of neutrophil-derived chromatin structures that
are decorated with neutrophil granule constituents, which
form extracellular structures called neutrophil extracellular
traps (NETs) (28). Normally, NETosis and NET production
have been described in the context of a neutrophil’s ability to
capture and kill bacteria extracellularly (29). However, NETs
have been shown to play an important role in the growth of a
primary tumor. Tumor microenvironmental changes, including

tumor-associated coagulation and enhanced thrombosis,
have been linked to enhanced tumor growth. Several recent
studies suggest that NETosis may play an important role in
these processes. LPS stimulation was shown to increase C3aR
expression within neutrophils, enhance NETosis and increase
coagulation. These events were correlated with N2 neutrophil
polarization and increased tumor growth (30). Interestingly, it
has recently been shown that immature neutrophils preferentially
respond to cancer cell derived C3a to promote their migration
(31). Subsequently, it was shown that breast cancer cells that
expressed high levels of G-CSF and IL-1β exhibited high
neutrophil counts and tumor-associated thrombosis, which was
dependent on NET formation (32). Pharmacological blockade
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of IL-1 receptor signaling reduced NET formation, attenuated
tumor-associated thrombosis and impaired tumor growth
(32). NETs can also directly influence cancer cell proliferation.
Neutrophil elastase (NE) present within NETs activates tumor
cells to increase mitochondria biogenesis and ATP production;
thereby, further enhancing the growth of cancer cells (33).

In addition to the impact of NETs, neutrophils can
also interact with other immune cells through additional
mechanisms to promote tumor growth. Neutrophil-derived ROS
can inhibit T cell proliferation, creating an immunosuppressive
environment that is supportive of tumor growth (34). Phenotypic
characterization and single-cell RNA sequencing identified a
neutrophil subset that is CD84hi, which exhibited potent T cell
suppressive activity and increased ROS production (35). In a
model of gastric cancer, neutrophils were activated by tumor-
derived GM-CSF that resulted in elevated programmed death
ligand 1 (PD-L1) expression. These PD-L1+ neutrophils were
able to suppress T cell function and promote tumor growth
(36). Secretion of MMP9 (matrix metalloproteinase 9) from
infiltrating neutrophils activates latent TGF-β and induces T
cell suppression and tumor growth in a colorectal cancer model
(37). SiglecFhigh neutrophils in lung adenocarcinoma created
an immunosuppressive environment by promoting macrophage
differentiation, causing the release of high levels of ROS
and enabling tumor progression (38). Together, these findings
indicate that neutrophils that infiltrate diverse primary tumors
can modify the local environment in different ways to favor
tumor growth.

NEUTROPHIL FUNCTIONS THAT
PROMOTE METASTASIS

The ability of cancer cells to leave the primary tumor and
disseminate to distant organs represents the deadliest aspect
of cancer progression. Indeed, the emergence of metastatic
cancer accounts for ∼90% of cancer related deaths (39). The
metastatic cascade represents a series of barriers to cancer
cells and neutrophils have been found to assist cancer cells in
successfully navigating several of these distinct steps (Figure 1;
Supplementary Table 1).

Local Invasion/Intravasation
Infiltrating neutrophils within primary tumors are associated
with an increase in EMT, enhanced metastasis and poor
outcomes. Mechanistically, tissue inhibitor of matrix
metalloprotease (TIMP-1) secreted by neutrophils induced an
EMT and consequently increased the migration and invasion of
tumor cells. Cancer cells that had undergone an EMT expressed
CD90, which enhanced TIMP-1 secretion by neutrophils in a
contact-dependent manner (40).

Survival in Circulation/Extravasation
The ability of circulating tumor cells (CTCs) to survive
is critical for metastasis formation (41). The formation of
heterotypic cancer cell—neutrophil clusters was found to greatly
increase metastatic fitness. Using a 4T1 breast cancer model,
it was demonstrated that CTC-neutrophil interactions relied

on VCAM-1 dependent adhesion, which enhanced cancer
cell proliferation and increased metastasis (42). Indirectly,
neutrophils can also inhibit NK cell-mediated tumor clearance
in circulation; thereby increasing the intraluminal survival of
disseminated tumor cells. In this study, 4T1 breast cancer cells
were injected subcutaneously to mobilize murine neutrophils
(Ly6G+), following which D2A1 breast cancer cells were
injected intravenously. Mice bearing 4T1 cells exhibited reduced
clearance of D2A1 cells from the lungs when compared to mice
that were not injected with 4T1 cells (43). Depletion of NK cells
resulted in enhanced D2A1 cancer cell accumulation in the lungs
while neutrophil depletion had the opposite effect (43).

Cancer cells that have survived in circulation must exit
the bloodstream and extravasate into tissue parenchyma (41).
Neutrophils have been shown to regulate the extravasation
process through several mechanisms. Neutrophil-derived
factors can diminish the integrity of the endothelial barrier,
permitting cancer cells to extravasate more easily. IL-8,
IL-1β, and matrix metalloproteases (MMP8 and MMP9)
released from neutrophils activated endothelial cells, reduced
endothelial barrier function, increased transendothelial
migration and accelerated the rate of cancer cell extravasation
(43, 44).

NETosis, and NET constituents, can support cancer cell
extravasation through enhanced trapping of CTCs within
metastatic sites (45–48). Importantly, blocking NETosis
decreases cancer cell adhesion and inhibits metastatic spread to
the lung and liver (49, 50). Furthermore, changes within specific
metastatic microenvironments, such as exposure to ozone
or redox imbalance, triggered NETosis and led to increased
entrapment of cancer cells in the lung and enhanced metastasis
(51, 52). Collectively, these studies show that neutrophils play an
important role in enhancing tumor cell survival and increased
extravasation, which promote cancer metastasis.

Early Seeding/Survival
Systemic and tumor-derived factors have been implicated
in neutrophil recruitment in the pre-metastatic niche.
Tumor-derived IL-1β induces γδ T cells to produce IL-17A
and granulocyte-colony stimulating factor (G-CSF), which
results in the recruitment of immunosuppressive neutrophils
to the lung (8). GM-CSF and IL-5 have been shown to
promote the expansion and recruitment of pro-metastatic
neutrophils in the lungs of obese mice, which promotes lung
metastasis (53). Angiopoetin-like-2 (ANGPTL2), secreted by
osteosarcoma cells implanted in the tibia, stimulates lung
epithelial cells, which led to the accumulation of neutrophils
in the lung, and enhanced lung metastatic burden (54).
In the lung, neutrophils secrete LTB4 that increases the
proliferation of LTB4R-positive metastasis initiating cells
(55). Activation of NOTCH1 in colorectal cancer cells
drives TGFβ2-dependent recruitment of immunosuppressive
neutrophils within the liver, which enabled the formation of liver
metastases (56).

NETs also support early cancer cell seeding and colonization
of metastases. Induction of NETs by ovarian tumor-derived
factors has been shown to be important in promoting metastasis
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to the omentum (57). In the liver, NETs have also been
shown to promote metastasis by activating cancer-associated
fibroblasts (58).

Growth in the Metastatic Site
Neutrophils have been shown to promote the growth of
metastases after seeding. Minor subclones of breast cancer cells
that secrete IL-11 and FIGF (C-fos-induced growth factor) can
support the formation of polyclonal metastases composed of
driver and passenger sub-populations. These IL-11 producing
sub-clones activated IL-11 responsivemesenchymal stromal cells,
which induced chemokine secretion and subsequent recruitment
of pro-metastatic neutrophils (59). Tumor cell-derived GM-CSF
was shown to stimulate neutrophils to synthesize and secrete
transferrin, an iron transport protein, which has mitogenic
activity that promotes lung metastatic growth when taken up by
cancer cells (60).

A recurring function of pro-metastatic neutrophils is their
ability to create an immunosuppressive microenvironment
that support metastasis. Within lung metastases, inducible
nitric oxide synthase (iNOS) producing neutrophils have
been shown to limit CD8+ T cell dependent anti-tumor
responses by promoting immune suppression (8). Recently, p53-
deficient cancer cells were found to increase the expression
of Wnt ligands, which in turn upregulated IL-1β production
from tumor-associated macrophages (61) High IL-1β levels
engaged γδ17 T cells, which subsequently enhanced neutrophil
recruitment that promoted the formation of lung metastases
(61). Furthermore, loss of Elf5 (E74-like transcription factor)
expression in triple-negative breast cancer led to increased IFN-
γ signaling resulting in the expansion of immunosuppressive
neutrophils (62). In addition to tumor-derived factors, a lack
of systemic testosterone levels can lead to an impairment
of anti-tumor neutrophil functions. A shift toward immature
neutrophils was observed in castrated male mice, leading to
increased neutrophil-derived ROS and suppression of NK cell
activation that promoted increased lung metastatic burden in
two melanoma models (63). Recently, a role for NET formation
has been described for the continued growth of established
metastases (64). NETs released during cancer progression
was shown to limit the ability of NK and cytotoxic T
cells to eliminate cancer cells. Specifically, NET formation
impaired direct contact between the cancer cells and cytotoxic
immune cells (NK and T cells). Inhibition of NETosis with a
protein arginine deiminase 4 (PAD4) inhibitor synergized with
immune checkpoint inhibitors to control tumor growth and
metastasis (64).

Pro-angiogenic functions have long been ascribed for
neutrophils, which revealed that neutrophil-derived proteases
(such as MMP9) could release stored angiogenic factors (VEGF,
FGFs) that were stored in the local environment to enable blood
vessel formation (65, 66). Recently, a different mechanism by
which neutrophils enhance angiogenesis has been described.
The synthesis and secretion of fibroblast growth factor 2
(FGF2) by neutrophils in the liver microenvironment drives
angiogenesis and growth of nascent colorectal cancer-derived
hepatic metastases (67).

DORMANT/RESIDUAL DISEASE AND
THERAPY RESISTANCE

Neutrophils have also been implicated in awakening dormant
cancer cells. LPS-induced tissue inflammation led to metastatic
outgrowth of dormant tumor cells in a neutrophil-dependent
manner (68). MMP-9 produced by neutrophils can trigger the
growth of dormant cancer cells by remodeling extracellular
matrix and releasing potent angiogenic factors (69). NE and
MMP-9, which are enzymes associated with NETs, can cleave
the extracellular matrix (ECM) leading to integrin-mediated
signaling, which awakens dormant cancer cells and promotes
cancer cell growth (70).

Several studies have shown that neutrophils promote
resistance to therapy. Doxorubicin and paclitaxel resistant breast
cancer cells express more IL-17 and CXCR2 ligands, which
increases neutrophil recruitment (71). A neutrophil-enriched
subtype characterized in triple negative breast cancer (TNBC)
determined that neutrophils were largely immunosuppressive,
rendering these tumors resistant to immune checkpoint blockade
therapy (72). In a genetically engineered mouse model of
sarcoma, neutrophils promote resistance to radiation therapy
by activating mitogen-activated protein kinase (MAPK) pathway
(73). In addition, CD177+ neutrophil infiltrates in colorectal
cancer patients are associated with adverse outcome in patients
receiving bevacizumab [anti-vascular endothelial growth factor
A (VEGF- A)] (74). Furthermore, Lysyl oxidase-like 4 (LOXL4)
expressing neutrophils that infiltrated colorectal cancer liver
metastases were found to identify patients that were resistant to
anti-angiogenic therapy (75).

METABOLIC PROGRAMMING IN
NEUTROPHILS

There has been recent interest in the concept of
immunometabolism and the realization that altered cellular
metabolism in infiltrating immune cells can have a significant
impact on tumor growth and metastasis (76). Neutrophils
are typically viewed as a cell type that is heavily reliant on
glycolysis to perform their effector functions (77). Consistent
with this notion, neutrophils have very few mitochondria and
inhibitors of oxidative phosphorylation (OXPHOS) do not
alter their rates of oxygen consumption (77, 78). However,
during tumor progression, neutrophils have been shown to
undergo a metabolic switch, which involves the upregulation
of genes associated with OXPHOS, fatty acid metabolism, and
glycolysis (Figure 2) (38). Neutrophils isolated from Lewis lung
carcinoma exhibit increased flux through OXPHOS, glycolysis,
and increased ATP production compared to naïve neutrophils,
suggesting that multiple metabolic strategies are engaged in
tumor infiltrating neutrophils (79). Recently, upregulation of
FATP2 (fatty acid transport protein 2) in neutrophils was shown
to increase lipid accumulation in these cells. FATP2 regulated the
uptake of arachidonic acid, which was subsequently converted
to prostaglandin E2. Neutrophil-derived prostaglandin E2 was
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FIGURE 2 | Metabolic changes in cancer-associated neutrophils. Neutrophils, which possess few mitochondria, are reliant on glycolysis to generate ATP to fuel

effector functions such as phagocytosis, generation of reactive oxygen species, and NETosis. In cancer, neutrophils upregulate oxidative phosphorylation (OXPHOS)

and fatty acid transporters to mediate many neutrophil functions; including migration and T cell suppression. Under nutrient limiting conditions, such as low glucose,

neutrophils can reprogram their metabolism to break down fatty acids or utilize certain amino acids (glutamate, proline) to fuel pro-tumorigenic/pro-metastatic

functions. PPP, pentose phosphate pathway; GLUT, glucose transporter; MCT, Monocarboxylate transporter 1; TCA, tricarboxylic acid cycle; FATP2, fatty acid

transport protein 2; AA, arachidonic acid; PGE2, prostaglandin E2.

found to be important or neutrophil-mediated CD8+ T cell
suppression and tumor growth (80).

Metabolic flexibility refers to the ability of a cell to shift
between one metabolic program to another in response to
changing metabolic demands or nutrient supply. High metabolic
flexibility increases the cell’s ability to survive various and
everchanging metabolic microenvironments (81). Neutrophil
sub-populations can also exhibit metabolic flexibility (Figure 2).
In breast cancer, splenic neutrophils can engage mitochondrial-
dependent fatty acid oxidation as a predominate fuel source
to support ROS production and maintain T cell suppression
(82). Under glucose-limiting conditions, similar to certain tumor
microenvironments, immature LDNs have been shown to utilize
OXPHOS to generate ATP that is required to support their
pro-tumorigenic functions. Indeed, immature LDNs can support
NETosis under nutrient limiting conditions via mitochondrial-
dependent amino acid catabolism, which is important for

efficient breast cancer liver metastasis (9). In addition, the
longevity of neutrophils could also be altered due to the enhanced
metabolic flexibility. The ex vivo half-life of mouse circulating
HDNs and LDNs was 4 and 12 h, respectively (7, 9). Such
observations raise the intriguing possibility that, under certain
conditions, distinct neutrophil subsets may not be as short-
lived as previously thought. These studies argue that increased
metabolic flexibility in distinct neutrophil populations may be
important for cellular functions that can influence tumor growth
and metastatic progression.

CLINICAL IMPORTANCE: FUTURE
PERSPECTIVES ON TREATMENT

In keeping with their pro-tumorigenic/metastatic functions, the
presence of neutrophils across 25 different cancers was shown
to be strongly associated with adverse patient outcomes (83).
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Among certain subtypes of breast cancer (ER-), the presence of
a neutrophil infiltrate in the primary tumor is also indicative
of worse patient outcomes (84). Furthermore, in patients with
advanced cancers, serum IL-8 levels, and neutrophil infiltration
are associated with worse overall survival and diminished
response to immune checkpoint inhibitors (85).

The mobilization of neutrophils into circulation also has
prognostic significance. The neutrophil-to-lymphocyte ratio
(NLR) is an important risk stratification and treatment selection
diagnostic tool for cancer patients. A high NLR is associated with
poor prognosis in many solid human cancers (86–96). A high
NLR is also associated with decreased overall survival in patients
with TNBC or metastatic breast cancer (97, 98).

An important and unanswered question with respect to the
NLR is the type of neutrophil that is being detected in these
patients, are they high- or low-density neutrophils? Interestingly,
LDNs have been identified in patients with breast cancer, lung
cancer, head and neck cancers, urologic cancers, and lymphoma
(7, 99–101). In patients with advanced lung cancer, it was
reported that higher proportion of LDNs (>10%) predicted
poorer survival (102). These observations are in keeping with
the pro-tumorigenic and pro-metastatic functions associated
with LDN/N2 neutrophils. While most studies reveal a negative
prognostic impact of neutrophils in cancer, there was one study
that associated the presence of a CD16high CD62dim neutrophil
subset with increased survival of head and neck squamous cell
carcinoma patients (103). These observations highlight the need
for better markers that are capable of discriminating between
neutrophils that exert anti-tumor vs. those that mediate pro-
tumor/metastatic effects.

Mechanistic insights have greatly advanced our knowledge
of tumor-derived factors that impact tumor growth and
metastasis in a neutrophil-dependent manner. Additional studies

focused on characterizing the phenotypic and functional role of
neutrophils in cancer, it may be possible to develop strategies that
specifically target those neutrophil subsets that actively promote
tumor growth and metastasis, while sparing those neutrophils
that possess anti-tumor and anti-microbial functions. Finally,
the emerging concept of metabolic flexibility that is exhibited by
certain neutrophil subsets may afford new ways of targeting these
pro-tumorigenic/metastatic neutrophils.
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