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Abstract

Objective To quantify radiation exposure and mortality risk
from computed tomography (CT) and positron emission to-
mography (PET) imaging with '*F-fluorodeoxyglucose (**F-
FDQG) in patients with malignant lymphoma (Hodgkin’s dis-
ease [HD] or non-Hodgkin’s lymphoma [NHL]).

Methods First, organ doses were assessed for a typical di-
agnostic work-up in children with HD and adults with NHL.
Subsequently, life tables were constructed for assessment of
radiation risks, also taking into account the disease-related
mortality.

Results In children with HD, cumulative effective dose
from medical imaging ranged from 66 mSv (newborn) to
113 mSv (15 years old). In adults with NHL the cumulative
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effective dose from medical imaging was 97 mSv. Average

fractions of radiation-induced deaths for children with HD

[without correction for disease-related mortality in brackets)

were 0.4% [0.6%] for boys and 0.7% [1.1%] for girls, and

for adults with NHL 0.07% [0.28%] for men and 0.09%

[0.37%] for women.

Conclusion Taking into account the disease-related reduc-

tion in life expectancy of patients with malignant lymphoma

results in a higher overall mortality but substantial lower

incidence of radiation induced deaths. The modest radiation

risk that results from imaging with CT and '"*F-FDG PET

can be considered as justified, but imaging should be per-

formed with care, especially in children.

Key Points

 Survival of malignant lymphoma has improved dramatically
over the past decades.

» PET and CT currently play important roles for malignant
lymphoma patients.

* The potential hazard of ionising radiation has become an
increasingly important issue.

» When assessing radiation risks, disease-related reduction
in life expectancy should be considered.

« CT and "*F-FDG PET create a modest radiation-induced
mortality risk.

Keywords Radiation exposure - Medical imaging -
Malignant lymphoma - Computed tomography -
Positron emission tomography

Introduction
Imaging plays an important role in the management of

patients with malignant lymphoma (Hodgkin’s disease
[HD] and non-Hodgkin’s lymphoma [NHL]). Accurate
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imaging is important for determining the stage of disease,
which guides the treatment strategy and influences the prog-
nosis [1]. Imaging is also important for assessing response to
therapy and detecting tumour persistence or recurrence [2—4].
Computed tomography (CT) and, more recently, positron
emission tomography (PET) with '®F-fluorodeoxyglucose
("®F-FDG) have become indispensable tools in oncological
imaging [2, 5-9]. However, CT and '®F-FDG PET result in
exposure of the patient to ionising radiation, which is associ-
ated with a carcinogenic risk [10-17].

There is a worldwide growing concern about radiation
exposure in medical imaging [12, 18-21]. Estimates of the
National Council on Radiation Protection and Measurements
(NCRP) Scientific Committee in the United States in 2006
show an almost sixfold increase in the per capita dose from
medical exposure to about 3 mSv compared with 1982. CT
and nuclear medicine examinations are the largest contributors
[22].

Therapeutic advances have dramatically improved the
survival of patients with malignant lymphoma over the past
decades. HD can nowadays be cured in at least 80% of
patients [23-25]. Therefore, current treatment strategies
not only aim at maximising curative success but also at
minimising (late) toxicity, such as infertility, premature
menopause, cardiac disease, and most importantly, risk of
second neoplasms [24, 25]. In this context, the potential
hazard of ionising radiation that is associated with diagnos-
tic CT and PET in patients with malignant lymphoma is an
increasingly important issue. Therefore, performing dose
and risk assessment should be prioritised for circumstances
with high cumulative radiation exposure for individual
patients and better survival rates. This is particularly true
when patients are young, such as children with HD, and
when the cumulative radiation dose from imaging is
expected to fall within the range of 5-150 mSv, such as
during follow-up of patients treated for malignant lympho-
ma [10-13, 15]. This latter dose range is based on the
studies in the subgroup of atomic bomb survivors who
received low doses of radiation, ranging from 5 to
150 mSv (mean dose of 40 mSv), which suggested a signif-
icant increase in the overall risk of cancer in this subgroup
[14-16].

The aim of this study was to perform accurate radiation
risk assessment for imaging of patients with malignant lym-
phoma. To achieve our goal, the radiation exposure of CT
and 'SF-FDG PET was calculated for a typical work-up for
children with HD in different age categories, and for adults
with NHL. We expected that disease-related mortality would
have a significant effect on the assessment of radiation risk
in patients with malignant lymphoma, and that disease-
related mortality would be much higher compared with
radiation-induced mortality. This expectation is in accor-
dance with a very recent publication by Brenner et al.

[26]. Advanced radiation risk assessment, based on the
demographic methodology of life tables, was developed to
take into account these effects.

Materials and methods
Clinical practice of imaging

Malignant lymphoma comprises a heterogeneous group of
diseases, differing with regard to histology, treatment and
outcome. It is beyond the scope of this study to encompass
all the different entities. Instead we focus on the most
common types of malignant lymphoma; i.e. HD in children
and diffuse large B-cell lymphoma (DLBCL) in adults
[27-30]. The most typical imaging strategy for children with
HD (age <18 years) and for adults with DLBCL was used in
this study. In children with HD, the imaging strategy was
based on the protocol according to the Children’s Oncology
Group [COG]; in adults with DLBCL, the imaging strategy
was based on the HOVON 84 international multicentre trial
currently running in The Netherlands [www.hovon.nl,
EudraCTnr. 2006-005174-42] (Table 1).

Imaging with ultrasound and chest radiography were not
considered in this study, as ultrasound is not associated with
radiation exposure, and the radiation exposure from chest
radiography is negligible compared with CT and '*F-FDG
PET.

Radiation exposure from CT

There was no information available that allowed for assess-
ment of organ doses in paediatric patients undergoing CT.
Therefore we created Medical Internal Radiation Dose
(MIRD) paediatric patient models in five general categories
according to age and weight: newborn (3.6 kg), 1 year old
(9.7 kg), 5 years old (19.8 kg), 10 years old (33.2 kg) and 15
years old (56.8 kg). The adult MIRD patient model repre-
sents an average-sized patient of 74 kg. All these hermaph-
rodite patient models (MIRD V) are described by spheres,
ellipsoids and cones, as illustrated in Fig. 1 [31]. For assess-
ment of radiation exposure from CT, we used these patient
models in combination with an algorithm for Monte Carlo
dose calculations (ImpactMC software, version 1.0, VAMP,
Erlangen, Germany) [31, 32]. The Monte Carlo dose calcu-
lations are based on a virtual model of the CT system with
respect to geometry, X-ray spectrum, filtration and CT
parameters. The simulation is performed on 3D voxelised
versions of the MIRD V phantoms. To each voxel in the
volume during the simulation, a density value and a mass
attenuation coefficient are assigned corresponding to five
different materials: air, lung, soft tissue, fat and bone.
During the simulation of a CT examination, the energy
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Table 1 The imaging strategy for children with Hodgkin’s disease (D) and adults with diffuse large B-cell lymphoma (DLBCL)

Children with HD

Adults with DLBCL

Most common group

Intermediate Risk Strategy: stage I-A bulky disease, I-AE, IB, II-A bulky Stage II-IV

disease, II-AE, II-B, III-A, III-AE, III-AS, III-AE+S, IV-A en IV-AE

1 CT of neck-chest-abdomen

1 whole-body '*F-FDG PET
1 chest X-ray

2 CTs of neck-chest-abdomen

Initial diagnostic

Therapeutic phase

1 whole-body '®F-FDG PET (directly after therapy)

2 chest X-rays

Follow-up 2 CTs of neck-chest-abdomen

7 CTs of neck and chest (for most common supradiaphragmatic

stage | and II disease)
4 chest X-rays

Timing of CT during follow-up At 3,6, 9, 12, 15, 18, 24, 36 and 60 months

1 CT of neck-chest-abdomen
1 chest X-ray

2 CT scans of neck-chest-abdomen
1 whole-body '®F-FDG PET scan

4 CT scans of neck-chest-abdomen
2 chest X-rays

At 6, 12, 18 and 24 months

deposited in each voxel (absorbed dose) is accumulated and
saved in an additional volume. The manufacturer of the
Aquilion CT system (Toshiba Medical Systems) disclosed
two measured X-ray spectra (100 kV and 120 kV) and
information about the design of the CT system. This infor-
mation was implemented in the Monte Carlo simulation. A
MatLab script (The MathWorks, Natick, MA, USA) was
used to extract organ doses from the calculated dose distri-
butions within the MIRD mathematical phantoms.

In CT it is common practice to adjust acquisition param-
eters to the size of the patient, and to the clinical application
[33]. The acquisition protocol we used was based on local
and optimised practices, and was checked against general
recommendations, particularly with regard to the optimisa-
tion of the paediatric acquisitions. We thus derived the
following clinical CT acquisition parameters. For small chil-
dren, a tube voltage of 100 kV was used (weight <30 kg),
and for larger children and adults a tube voltage of 120 kV
(= 30 kg), both in combination with a pitch factor of 0.83.
Radiation output of the CT system is expressed as the
volume computed tomography dose index (CTDIvol), but
also the tube charge (mAs) is provided for scans that are
performed with an Aquilion 64 CT system (Toshiba Medical
Systems, Japan) [34]. The clinically applied tube current,
rotation time and pitch factor are associated with CTDIvols
of 2.1 mGy (newborn, 3.6 kg, 27 mAs), 2.9 mGy (1 year
old, 9.7 kg, 38 mAs), 4.1 mGy (5 years old, 19.8 kg,
53 mAs), 4.6 mGy (10 years old, 33.2 kg. 37 mAs),
7.1 mGy (15 years old, 56.8 kg, 58 mAs), and 9.5 mGy
(adult, 74 kg, 77 mAs).

Dose calculations that were performed for the MIRD
phantoms with the Monte Carlo software yielded organ
doses, total body dose and effective dose according to
ICRP 103. Dose assessment was performed for 12 CT
acquisitions, i.e. both for whole-body CT (including neck,
chest and abdomen), and for CT of the neck and chest only,
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in all six age categories. These doses were incorporated into
the risk model, as described under “Risk assessment”. From
these results, appropriate organ doses and the effective dose
were derived for the year of diagnosis and treatment and for
the following years of surveillance. If necessary, linear
interpolation of dose values was performed to yield dose
estimations at ages not included in the table.

Radiation exposure from '*F-FDG PET

For assessment of organ dose and effective dose from '°F-
FDG PET, published tables were used that provide informa-
tion about organ dose and effective dose per MBq of ad-
ministered '®F-FDG activity. The ICRP provides
information for 1-, 5-, 10- and 15-year-old children, and
for adults [35]. Ruotsalainen et al. [36] published tables
for estimation of radiation dose to the newborn in '®F-
FDG PET studies. For PET a dose of 3 MBq of '*F-FDG
per kg body weight was assumed to be administered, based
on the current state-of art imaging with integrated PET/CT
systems (f.i. Biograph 40 TruePoint PET-CT, Siemens
Medical Systems, Knoxville, TN, USA) . The five different
age categories in the children being analysed in this study
correspond to '®F-FDG doses of 10 MBq (newborn),
30 MBq (1 year old), 60 MBq (5 years old), 100 MBq (10
years old) and 170 MBq (15 years old). In adults, adminis-
tration of 220 MBq '"*F-FDG was assumed.

Risk assessment

We performed risk assessment for five age categories of
male and female paediatric patients diagnosed with HD
(newborns, and children at the age of 1, 5, 10 and 15 years)
and in three age categories for adult male and female
patients diagnosed with DLBCL at the ages of 55, 65 and
75 years.
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Fig. 1 The mathematical hermaphrodite Medical Internal Radiation
Dose (MIRD) patient models; their body, skeleton and organs are
described by spheres, ellipsoids and cones. The paediatric patient
models are divided into five categories according to their age and
weight: newborn (3.6 kg, left first row); 1 year old (9.7 kg); 5 years
old (19.8 kg); 10 years old (33.2 kg); 15 years old (56.8 kg). The adult
model represents an average-sized patient of 74 kg (right second row)

The BEIR VII excess relative risk (ERR) model was used
for calculating radiation risk [37]. Chapter 12 of this BEIR
report provides the equations and parameters for estimating
organ-specific solid cancer mortality and leukaemia mortal-
ity. The ERR is expressed as a function of gender, absorbed
organ dose, age at exposure and the attained age, and
includes three organ-specific fit parameters. The organs are
stomach, colon, liver, lung, breast, prostate, uterus, ovary,
bladder, other organs and thyroid.

In the BEIR VII ERR model, the organ-specific excess
risk for solid cancer mortality is expressed, relative to the
gender- and age-dependent risk of the background cancer

mortality for specific organs. This background is the natu-
rally occurring mortality, not the mortality that is induced by
radiation exposure during medical imaging. Data on the risk
of naturally occurring cancer mortality depending on organ,
gender and attained age were derived from ICRP
Publication 103 (Euro-American cancer mortality rates by
age and site) [38]. Subsequently, according to the BEIR VII
model, an overall ERR function depending on organ dose,
gender, age at exposure and attained age was calculated for
male and female patients. Organ dose was incorporated into
the risk model as a function of attained age; this was re-
quired because patients have different weights (and ages)
and thus receive different associated radiation exposures
during diagnosis, treatment and surveillance of malignant
lymphoma. In addition to radiation risk, mortality rates that
are typical for the young patient group with HD and the
adult patient group with DLBCL could be taken into ac-
count, i.e. the overall 10-year survival for HD (94%) and 5-
year survival for DLBCL (58%) [27-30].

Risk calculations were performed using life tables, and
they were done with and without taking into account the
disease-related mortality. Life tables (also called mortality
tables) are used in demography for measuring and model-
ling population processes. A life table shows, for each age,
what the probability is that a person of that age will die
before his or her next birthday. They allow for the calcula-
tion of the fraction of radiation-induced deaths, the reduc-
tion of life expectancy and the survival rate. An essential
component of the life table is age- and gender-dependent
mortality; in this study three different sources of mortality
were integrated in the life tables: the background, the radi-
ation induced, and the disease-related mortality. The back-
ground mortality that is typical for the asymptomatic
population (gender- and age-specific probability of dying)
was derived for the European population at large based on
the Eurostat database [39]. The radiation-induced, age-,
gender- and dose-dependent overall mortality that was cal-
culated with the BEIR VII model as described in the previ-
ous section, was also incorporated into the life tables.
Finally, disease-related mortality, as mentioned in the previ-
ous section, can also be integrated in the life tables.
Calculations were carried out with the life tables with and
without taking into account the mortality risks that are
typical for patients with malignant lymphoma (HD- and
DLBCL-related mortality rates).

Results
Radiation exposure from CT and '®*F-FDG PET

The radiation exposure from whole-body CT, from CT of
the neck and thorax, and from whole-body '"*F-FDG PET

@ Springer
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Table 4 Risk assessment for three categories of adults with non-
Hodgkin’s lymphoma (NHL), subtype DLBCL, based on a demo-
graphic methodology and life tables with and without correction for

disease-related mortality. Quantification of cumulative patient radiation
dose and associated mortality risk for patients with different ages at
time of diagnosis

55 years old

65 years old 75 years old

Male Female Male Female Male Female Male Female Male Female Male Female
Corrected for disease-related mortality no no yes  yes no no yes  yes no no yes  yes
Fraction of radiation-induced deaths 0.004 0.005 0.001 0.001 0.003 0.004 0.001 0.001 0.002 0.002 0.001 0.001
Life expectancy at year of diagnosis (year) 25 29 9 9 17 20 7 8 10 12 6 6
Radiation-induced reduction of life expectancy 14 23 2 2 9 13 2 2 4 5 1 1
(days)
Disease-related reduction of life expectancy na. na 5931 7228 na. na. 3486 4354 na. na 1715 2057
(days)
Total reduction of life expectancy (days) 14 23 5933 7230 9 13 3488 4356 4 5 1716 2058
S-year survival after diagnosis (percentage) 96 98 58 59 90 95 55 58 76 86 46 52

n.a. not applicable

reduction of life expectancy in paediatric patients with HD
is 21 days for boys and 45 days for girls. In adults with
DLBCL, the average radiation-induced reduction of life
expectancy is 1.5 days in men and 2.0 days in women.

Discussion

This study shows that the effect of disease-related mortality
on radiation risk assessment in patients with malignant
lymphoma is substantial. By taking into account disease-
related mortality, the proportion of radiation-induced deaths
decreased between 30% and 40% in paediatric patients with
HD, and between 50% and 80% in adults with DLBCL.
Radiation-induced reduction of life expectancy decreased
by similar percentages. Our methodology, which integrates
a model for organ dose assessment and risk assessment in
one demographic model, showed that the potential
radiation-induced reduction of life expectancy is only a
small fraction compared with the disease-related reduction
of life expectancy, namely a fraction between 0.003 and
0.011 for HD (children); and between 0.0003 and 0.0006
for DLBCL (adults). This reflects the fact that the radiation-
related risk is a late risk with its expression up to decades
after the actual exposure and has therefore less effect on the
reduction of life expectancy. Our methodology for radiation
risk assessment is an improvement compared with the usual
standard of practice, where disease-related mortality is not
considered. Although the observed cumulative effective
doses are relatively high for imaging patients with malignant
lymphoma, the associated estimated radiation risks are still
very modest.

Within the paediatric patient group, it is estimated that,
on average, 0.4% of male and 0.7% of female patients
eventually die because of the radiation exposure associated
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with medical imaging. For adult patients diagnosed with
DLBCL, it is estimated that 0.07% of male and 0.09% of
female patients die because of radiation exposure. The
higher values for women result mainly from the relatively
high sensitivity of the female breast to radiation exposure
[40].

Calculation in which the disease-related mortality was
taken into account resulted in an average 10-year survival
of 94% (range, 93-94%) for the young patient group with
HD, which matches excellently with the published overall
10-year survival of 94% [27, 28]. Similarly, for the adult
patient group with DLBCL, the calculated average 5-year
survival was 55% (range, 46—59 %), which matched well
with the published value of 58% [29, 30]. The good agree-
ment between our calculated reduction in survival after
diagnosis and published values is a clear indication that risk
assessment should be performed taking disease-related mor-
tality into account.

This study has some limitations. Malignant lymphoma
comprises a heterogeneous group of entities, with more than
40 subtypes [41]. In addition, with regard to radiation ex-
posure, age is an important factor. Therefore we chose to
analyse the risk of radiation exposure in only two types of
lymphoma, HD in paediatric patients and DLBCL in adult
patients (the most common malignant lymphoma subtypes
in these age groups). Another limitation is that the assumed
10- and 5-year survival rates (for HD and DLBCL, respec-
tively) may be an underestimation of the current situation,
because treatment strategies have continued to evolve
[27-30]. In this study, we focused on the mortality risk
caused by the radiation exposure of the patient. The mor-
bidity risk induced by the radiation exposure was not con-
sidered. It can be assumed that not all patients with a
radiation-induced malignancy die from this malignancy,
and more patients suffer from radiation-induced diseases
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than the number of patients expressed in the mortality risk.
Our calculations are based on a methodology that is accord-
ing to broadly accepted dosimetric techniques and risk mod-
els. However, radiation dose assessment and risk assessment
at the low dose levels that are common in diagnostic radi-
ology are always associated with considerable uncertainties,
implying that the absolute risk figures that we calculated
should be interpreted with care.

Furthermore, with the implementation of integrated PET-
CT systems, low-dose CT is performed in addition to PET,
as it is used for attenuation correction in PET imaging. The
use of CT for attenuation correction reduces the examination
time, which implies a lower dose of FDG (5 MBg/kg vs
3 MBg/kg). The low-dose CT was not included in this study.
Two or one additional low-dose CT(s) would have been
performed in children with HD and in adults with
DLBCL, respectively, with each low-dose CT causing extra
radiation exposure of only approximately 3 mSv for adults
[42]. Finally, it should be recognised that there are consid-
erable uncertainties in the radiation risk model of BEIR,
especially regarding the risk at low-dose levels such as those
encountered in CT [17].

In order to establish the most efficient imaging strategy
and limit the radiation exposure in patients with malignant
lymphoma, there are different options. It may be sufficient
to use only the low-dose whole-body CT (combined with
FDG-PET) during and after therapy instead of a diagnostic
(i.e. full-dose) whole body CT. This implies a reduction in
radiation exposure of 6 times 8 mSv for adults. In patients
with a FDG-avid type of malignant lymphoma and a
baseline '*F-FDG PET-CT combined with a diagnostic
CT, the most accurate and appropriate method of imaging
during follow-up may therefore prove to be the low dose
PET-CT, without the diagnostic CT. Another recent
development is the introduction of whole-body magnetic
resonance imaging (MRI) for the evaluation of malignant
lymphoma. Initial results on this application of whole-
body MRI are promising, but more research is still needed
before it can be recommended as an alternative to CT
and/or '®F-FDG PET [43-46].

In conclusion, the disease-related reduction in life expec-
tancy of patients diagnosed with malignant lymphoma must
be taken into account to achieve more realistic estimates of
radiation risk. It results in higher overall mortality and
substantial lower incidence of radiation-induced deaths.
Although the cumulative effective dose from medical imag-
ing is high, the actual calculated radiation risks are very
modest. The radiation exposure that results from imaging
with CT and '"®F-FDG PET is considered as justified in
patients with malignant lymphoma, but should still be per-
formed with care, especially in children. Ongoing studies
have to establish the most efficient imaging strategies for
(the different subtypes of) malignant lymphoma.

Open Access This article is distributed under the terms of the
Creative Commons Attribution License which permits any use, distri-
bution, and reproduction in any medium, provided the original author
(s) and the source are credited.
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