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Abstract

The public health burden of Alzheimer’s disease (AD) is related not only to cognitive symptoms, 

but also to neuropsychiatric symptoms, including apathy. Apathy is defined as a quantitative 

reduction of goal-directed activity in comparison to a previous level of functioning and affects 

30%–70% of persons with AD. Previous attempts to treat apathy in AD—both 

nonpharmacologically and pharmacologically—have been wanting. Catecholaminergic treatment 

with methylphenidate has shown encouraging results in initial trials of apathy in AD. 

Understanding the neuronal circuits underlying motivated behavior and their reliance on 

catecholamine actions helps provide a rationale for methylphenidate actions in the treatment of 

apathy in patients with AD. Anatomical, physiological, and behavioral studies have identified 

parallel, cortical-basal ganglia circuits that govern action, cognition, and emotion and play key 

roles in motivated behavior. Understanding the distinct contributions to motivated behavior of 

subregions of the prefrontal cortex—dorsolateral, orbital-ventromedial, and dorsomedial—helps to 

explain why degeneration of these areas in AD results in apathetic behaviors. We propose that the 

degeneration of the prefrontal cortex in AD produces symptoms of apathy. We further propose that 

methylphenidate treatment may ameliorate those symptoms by boosting norepinephrine and 

dopamine actions in prefrontal-striatal-thalamocortical circuits.
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INTRODUCTION

The public health burden of Alzheimer’s disease (AD) is related not only to cognitive 

symptoms, but also to neuropsychiatric symptoms. Most patients with AD will develop at 

least one such symptom over the course of the disease.1 Common neuropsychiatric 

symptoms in AD include agitation, depression, and apathy.2 Apathy is defined as a 

quantitative reduction of goal-directed activity in comparison to a previous level of 

functioning3 and affects 30%-70% of persons with AD.2,4 Even in the prodromal condition 

of mild cognitive impairment, apathy has an estimated prevalence of 15%-18%4,5 and is 

associated with a significantly increased risk of incident dementia.6 Numerous studies have 

shown that apathy is among the neuropsychiatric symptoms most associated with caregiver 

time and distress.7-9 Thus, apathy adds to the public health burden of AD, particularly for 

caregivers, and is an important target for treatment.

Previous efforts to treat apathy in AD have left a large unmet need. Nonpharmacologic 

interventions would be preferred as first-line interventions if effective, because they are 

lower risk than pharmacologic interventions. Interventions to engage the patient in 

recreational and social activities have been studied in long-term care settings.10-12 However, 

the evidence base for effectiveness of these interventions is slim, and the interventions 
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themselves are neither well systematized nor widely used in clinical practice. A recent 

consensus paper on nonpharmacologic strategies for treating apathy in AD addresses the 

interaction of one-on-one interventions with Information and Communication Technologies.
13

Several pharmacologic options for the treatment of apathy in AD have also been explored. 

For cholinesterase inhibitors, several randomized clinical trials have demonstrated modest 

improvements in apathy.14-18 However, about half of the patients showed no significant 

relief of apathetic symptoms following treatment.16 Antidepressant medications have not 

been found to improve apathy in AD19 and may in fact worsen symptoms.20 Another 

pharmacologic treatment that has failed in the treatment of apathy in AD is modafinil,21 a 

drug of unclear mechanism. While modafinil may bind weakly to the dopamine and 

norepinephrine transporters, the histaminergic and orexinergic systems are also thought to be 

responsible for its pharmacologic effects.22 Clearly, better pharmacologic options are needed 

for apathy in AD.

Based on clinical anecdotal reports, methylphenidate is under consideration for the treatment 

of apathy in AD and has shown encouraging results in initial trials.23,24 Understanding the 

neuronal circuits underlying motivated behavior and their reliance on catecholamine actions 

helps provide a rationale for methylphenidate actions in the treatment of apathy in patients 

with mild to moderate AD.

NEUROBIOLOGY AND PHARMACOLOGY OF APATHY

Lesions to Prefrontal Cortical-Basal Ganglia Circuits Induce Apathy

Anatomical, physiological, and behavioral studies25,26 have identified parallel, cortical-basal 

ganglia circuits that govern action, cognition, and emotion and play key roles in motivated 

behavior (Fig. 1A). Basal ganglia circuits are especially important for mediating habits—

often unconscious, complex emotional, cognitive, and motor responses formed from 

repetitive experience.27,28

Traditional research in rodents has focused on the role of dopamine inputs to the nucleus 

accumbens in driving motivation. For example, rats normally choose to climb a tall barrier 

for a small reward, unless they have dopamine depletion from the nucleus accumbens.29 

However, similar motivational deficits occur with insults to the medial prefrontal cortex 

(PFC).30 The PFC expands exponentially in primate brains31 and is essential for the 

complex and elaborated aspects of motivated behavior in humans. As described below, the 

degeneration of PFC, as occurs in AD, produces symptoms of apathy. Thus, understanding 

the distinct contributions of PFC subregions to motivated behavior, for example, as reviewed 

by Levy or Knight,32-34 helps to explain why degeneration of these areas results in apathetic 

behaviors (Fig. 1B). The relationship of PFC subregions to dimensions of the apathy 

syndrome is briefly summarized here:

Dorsolateral PFC: The dorsolateral PFC is able to generate top-down goals for future 

actions by creating internally generated representations that are independent of sensory 

stimulation.35,36 Thus, lesions to the dorsolateral PFC in humans are typified by the loss of a 
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cognitive plan or goal for actions. This is described sometimes as a “pseudodepressive” 

syndrome that is characterized by reduced initiative and motivation, flattened affect, reduced 

verbalizations, and behavioral slowness arising from an inability to plan and maintain 

sequences of goals and actions.34

Orbital-ventromedial PFC: Lesions to these ventral aspects of the PFC cause a loss of 

emotional evaluation and an inability to link emotional-affective signals to behaviors, 

consistent with their connections with limbic regions such as the amygdala. A key feature of 

orbital-ventromedial PFC dysfunction is emotional blunting.37,38 Emotion and affect may 

reveal the motivational value of a given behavior and orient decision-making.32 In the setting 

of orbital or ventromedial PFC lesions, a diminished reactivity to emotion and reward may 

produce a decision-making deficit—that is, an inability to evaluate the emotional 

consequences of one’s own choices—and a decrease in goal-directed behavior.32,39

Dorsomedial PFC: Lesions to the dorsal and medial aspects of PFC often include damage 

to the anterior cingulate and premotor/supplementary motor areas that are important for the 

organization and initiation of self-generated behaviors. Thus, these lesions can produce a 

profound loss of self-initiated action and spontaneous behaviors, which can be temporarily 

reversed by external stimulation. At its most extreme, lesions to the region of the anterior 

cingulate can produce akinetic mutism, where patients lose the will to move or talk, even 

though they are capable of both.34

All of these PFC subregions interconnect,40 and coalesce in “hubs” such as the rostral 

anterior cingulate.41 They also contribute to cortical-cortical networks involved in additional 

aspects of motivated behavior. For example, altered PFC connectivity with areas such as the 

insular cortex has been implicated in symptoms of apathy.42 As the present review is focused 

on methylphenidate as a treatment for apathy in AD, we will concentrate on PFC subregions 

where catecholamine and methylphenidate actions have been extensively studied.

Degeneration of Prefrontal Cortical Circuits in Alzheimer’s Disease and Its Relationship to 
Symptoms of Apathy

The PFC circuits needed for motivated, appropriate behavior are disrupted by AD tau and 

amyloid pathology beginning in Braak Stage III. Cortical tau pathology and subsequent 

neuronal loss lead to widespread degeneration of the PFC (Fig. 1B), and tau pathology 

correlates with cognitive impairment.43 In PFC, tau pathology concentrates in layer III and 

V glutamatergic pyramidal cells, as tangles build inside of neurons and kill them. However, 

these neurons likely lose function long before they fully degenerate, for example, due to loss 

of synapses.44 The PFC is also a focus of amyloid pathology.45 In later Braak stages, the 

entire PFC expresses significant buildup of both tau and amyloid AD degeneration.46

Neuroimaging studies have confirmed that the symptoms of apathy in AD correlate in vivo 

with pathology in the PFC. These studies have compared AD patients with extensive 

symptoms of apathy to those at similar stages of disease with minimal apathy. They have 

found that apathy is correlated with alterations in the PFC, especially in the anterior 

cingulate, dorsomedial PFC, and orbital PFC regions. Early SPECT imaging studies 

demonstrated an association between apathy and reduced regional cerebral blood flow in the 
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orbitofrontal cortex44 and anterior cingulate.47,48 Similarly, a structural imaging study 

showed a correlation between apathy and gray matter loss in medial PFC (including anterior 

cingulate).49

The advent of PET radioligands for amyloid and tau has enabled the study of apathy in 

association with AD-specific neuropathology. PET amyloid imaging with [11C]PiB has 

shown a correlation between apathy and the accumulation of fibrillar amyloid in the PFC, 

including the orbital, ventromedial, and polar PFC subregions, as well as the anterior 

cingulate.50 Most recently, tau PET imaging has been used to link apathy with tau pathology 

in the orbital PFC using [11C]PBB351 or the right anterior cingulate and dorsolateral PFC 

using [18F]flortaucipir.52 Thus, the neuroimaging findings in AD are consonant with earlier 

data from lesion studies, and corroborate a major role for PFC insults in apathy.

Strategy for Treatment: Boosting Actions of Norepinephrine and Dopamine in Prefrontal-
Striatal Circuits With Methylphenidate

Researchers have wondered whether they could lessen symptoms of apathy by administering 

methyl-phenidate, a treatment for Attention Deficit Hyperactivity Disorder (ADHD) that is 

known to improve motivation in non-AD patients.53 Methylphenidate is thought to have 

many of its beneficial catecholamine actions in ADHD by strengthening PFC function,53 

and it may boost remaining PFC circuits in AD patients as well. Methylphenidate may also 

enhance motivation by enhancing dopamine actions in striatum, a region more resilient in 

AD.

The catecholamines norepinephrine and dopamine are synthesized by neurons in brainstem 

that project to forebrain, with dense projections to subcortical structures such as the 

thalamus and striatum, respectively, and a more delicate projection to the cortex, including 

the PFC.54,55 Methylphenidate blocks dopamine transporters and increases extracellular 

dopamine concentrations in the striatum56 and in the medial PFC.57 A comprehensive 

examination of catecholamine changes (Fig. 2A) made the surprising discovery that 

methylphenidate produces an even greater increase in norepinephrine than dopamine in rat 

medial PFC.58 The low, clinically relevant doses used had greater effects on PFC than those 

seen subcortically in nucleus accumbens or septum.58 Thus, methylphenidate effects on PFC 

catecholamine actions may be particularly important to understanding the clinical benefits of 

this compound, as described below.

Catecholamine Actions in Striatum and Thalamus

The effects of dopamine on striatal physiology and function have been studied extensively.26 

The parallel pathways through the basal ganglia governing motor, cognitive and affective 

responses25 all involve the interplay of the Direct and Indirect circuits within the basal 

ganglia (Fig. 3). The Direct Pathway excites movements, thoughts, and emotions, and is 

potentiated by DA stimulation of D1R.59 In contrast, the Indirect Pathway inhibits 

movements, thoughts and emotions, but is suppressed by DA stimulation of D2R, resulting 

in the disinhibition of action.59 Thus, dopamine has an overall excitatory effect in striatum 

through both D1R and D2R mechanisms. Catecholamine actions in the thalamus have 

received much less attention than dopamine actions in the striatum. However, recordings 
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from the thalamus in rats indicate that moderate increases in locus ceruleus activity enhance 

sensory processing through the thalamus.60,61 Of relevance to the current review, systemic 

administration of methylphenidate enhanced visual processing in lateral geniculate nucleus.
62 Thus, some of methylphenidate’s beneficial actions may occur by enhancing thalamic 

functions.

Catecholamines have an Inverted U Dose/Response in PFC

Both norepinephrine and dopamine have an inverted U dose/response on PFC function,58 

where either insufficient or excessive levels of catecholamines impair PFC function, while 

moderate levels are essential for optimal function (Fig. 2B). The level of catecholamine 

release increases with increasing arousal (Fig. 2B), and the amount of catecholamine release 

can engage different receptors, for example, where moderate levels of norepinephrine during 

alert waking engage high affinity α2A-AR, while very high levels of norepinephrine release 

during stress can engage lower affinity receptors, such as α1A-AR.63 Thus, the level of 

catecholamine release can serve as a “switch” by engaging differing receptors.

The dorsolateral PFC is able to create goals for action through recurrent, excitatory N-

methyl-D-aspartate (NMDA) receptor circuits that can maintain information without sensory 

stimulation, the foundation of abstract thought and goal-directed behavior.36,64 As 

summarized in Figure 4, the connectivity of these circuits is powerfully controlled by 

catecholamines, with moderate levels strengthening and refining inputs, and high-level 

weakening connections.65 Thus, while low doses of methylphenidate may boost PFC 

function, these findings caution that excessive catecholamine release in PFC, for example, 

via doses of methylphenidate that are too high, can worsen PFC function and may be 

counterproductive to therapeutic strategies. An inverted U dose response on PFC physiology 

and function has been seen with methylphenidate administration in both rats and monkeys.
66-68

Methylphenidate Effects in Human Subjects

In contrast to animal studies where within-subjects dose-response studies are common, 

understanding the methylphenidate dose-response on PFC executive function requires 

between study comparisons, and can reflect differing results between individuals with 

ADHD and those with healthier PFC abilities. For example, a meta-analysis of therapeutic 

doses of methylphenidate in ADHD patients shows improved executive functioning and 

enhancement of PFC activity measured with fMRI.69 However, studies of cognition in 

humans rarely administer high doses, and thus a true dose/response curve cannot easily be 

assessed. A meta-review of single-dose studies of methylphenidate in adults indicates that it 

is the lower doses (e.g., 10-20 mg) that are more optimal for working memory and paired 

associates learning, while higher doses (e.g., 40-60 mg) can actually impair performance70 

and that the optimal dose for impulse control may differ from that for working memory.71

Positron emission tomography (PET) imaging has enabled investigators to relate doses of 

methylphenidate to catecholamine transporter occupancy.72,73 The estimated dose of oral 

methylphenidate required to block 50% of dopamine transporters in striatum (ED50) 

corresponded to 0.25 mg/kg,72 and of norepinephrine transporters in thalamus and other 
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norepinephrine transporter-rich areas to 0.14 mg/kg.73 Therefore, the average efficacious 

maintenance doses of methylphenidate in ADHD (0.35-0.55 mg/kg) occupy 70%-80% of 

norepinephrine transporters but only 60%-70% of dopamine transporters. Those findings are 

consistent with the higher in vitro affinity of methylphenidate for norepinephrine 

transporters than dopamine transporters74 and suggest the potential relevance of 

norepinephrine transporter inhibition in the therapeutic effects of methylphenidate.

PET studies have also permitted the effect of methylphenidate on extracellular levels of 

dopamine to be translated from animals to human brain. Volkow et al.75 showed that oral 

methylphenidate (average dose 0.8 mg/kg) significantly increased extracellular dopamine in 

the brains of healthy control subjects, as evidenced by a significant 20% reduction in D2 

receptor availability in striatum. A subsequent study by Clatworthy et al.71 reported that 

methylphenidate effects on dopamine release ([11C]-raclopride receptor availability) in 

differing striatal subregions of young healthy subjects correlated with performance on a 

working memory versus reversal task. These results provide direct evidence that oral 

methylphenidate at doses within the therapeutic range significantly increases extracellular 

dopamine in human brain. Unfortunately, data on increases in extracellular norepinephrine 

in human brain by therapeutic doses of methylphenidate are not available, and PET imaging 

to detect a catecholamine receptor signal is limited to subcortical brain regions.

Caveats and Limitations

Several cautionary notes must be kept in mind when exploring methylphenidate as a 

therapeutic for apathy in AD. First, the dose of methylphenidate must be optimized, as 

elderly patients may have changes in bioavailability and drug metabolism. As described 

above, high doses can worsen PFC function, as well as having worrisome side effects such 

as tachycardia. Previous and current studies of apathy in AD have not attempted a thorough 

exploration of the safety and efficacy of methylphenidate at doses greater than 20 mg/day.
23,24 However, these doses are based on longstanding clinical experience in older adults,76 

and not all participants with apathy in AD are able to tolerate a dose of 20 mg/day.23 

Therefore, higher doses may not be feasible in this population. Second, the degenerative 

course of the disease will likely limit the beneficial actions of methylphenidate, due to 

neurofibrillary tangle accumulation in locus ceruleus neurons,46 reduced catecholamine 

concentrations in the aging cortex as compensatory mechanisms become inadequate,77-79 

and the eventual degeneration of the PFC pyramidal cell circuits that guide motivated 

behavior.46,80 Under these decorticate conditions, increasing dopamine actions in the basal 

ganglia may remain, but may produce agitation and perseveration rather than enhanced 

motivation. Third, this review considers methylphenidate for apathy as a syndrome in 

isolation, whereas it frequently co-occurs with other neuropsychiatric symptoms, 

particularly depression.81 Since we excluded current diagnosis of major depressive episode 

in our previous23 and current trials, they will not address, for example, how methylphenidate 

may interact with traditional antidepressants or may enhance motivation to participate in 

nonpharmacologic interventions for depression in AD. Future studies will need to address 

these and other issues for patients with AD and multiple neuropsychiatric symptoms.
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CONCLUSION

In this review, we have attempted to establish the public health and clinical significance of 

the apathy syndrome in AD, as well as the unmet need for better treatment of the symptoms 

of apathy. The catecholaminergic treatment methylphenidate is currently under consideration 

for the treatment of apathy in AD. Understanding the neuronal circuits subserving motivated 

behavior and their reliance on catecholamine actions provides a rationale for 

methylphenidate in the treatment of apathy in patients with AD. Anatomical, physiological, 

and behavioral studies have identified parallel, cortical-basal ganglia-thalamic circuits that 

govern action, cognition, and emotion and play key roles in motivated behavior. 

Understanding the distinct contributions to motivated behavior of subregions of the PFC—

dorsolateral, orbital-ventromedial, dorsomedial—helps to explain why degeneration of these 

areas results in apathetic behaviors. We propose that the degeneration of the PFC in AD 

produces symptoms of apathy. We further propose that methylphenidate treatment may 

ameliorate those symptoms by boosting norepinephrine and dopamine actions in prefrontal-

striatal-thalamocortical circuits.

Initial trials of methylphenidate for the treatment of apathy in AD have yielded encouraging 

results. In a Phase II trial (ADMET), methylphenidate (up to 10 mg orally twice daily) 

showed significant improvement in symptoms of apathy compared to placebo.24 More 

recently, Padala et al. reported that in male veterans with mild AD and apathy, this same 

dose of methylphenidate treatment significantly improved apathy, as well as cognition, 

functional status, caregiver burden, depression, and clinical global impression of change 

after 12 weeks of treatment.23 Both of these preliminary studies found methylphenidate at 

these doses to be safe and well tolerated in this population. The primary aim of the ADMET 

2 study is to determine whether methylphenidate is effective in improving clinically 

significant apathy in a larger sample of 200 participants with AD, over a longer 6-month 

treatment period.

Directions for Future Research

ADMET 2 will still leave unanswered several important questions about the neurobiology of 

apathy and the neurobiology of methylphenidate treatment. A blood-based biomarkers 

administrative supplement for the ADMET 2 grant provides for collection of blood 

specimens in a portion of the participants to generate preliminary data about a number of 

potential biomarkers of apathy and its treatment in AD. The objectives are to understand 

biomarker correlates of apathy and of change in apathy over time, and to identify possible 

predictors of treatment response. In the original ADMET trial, a distinct group of 

approximately one-third of the sample had a dramatic response to treatment, but another 

third showed minimal improvement, and the final third had no benefit from treatment.24 

Importantly, no significant clinical differences were observed between responders and 

nonresponders, suggesting that biomarker information may be necessary for prediction of 

treatment response. In order to elucidate this heterogeneity of response, the biomarker 

substudy of ADMET 2 will investigate a number of specific blood-based biomarkers, 

including microRNA (focused on dopamine and norepinephrine transporters), lipidomics, 

and markers of oxidative stress, inflammation (cytokines), and neuronal loss (S 100 
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calciumbinding protein B, neurofilament light chain protein). This substudy will generate 

preliminary data about promising blood-based biomarkers that may be further evaluated in a 

larger sample.

Apart from blood-based biomarkers, PET studies may yet elucidate the relative contribution 

of dopaminergic versus noradrenergic contributions to apathy and to methylphenidate 

treatment response. Longitudinal PET studies could be undertaken to compare brain 

dopamine and norepinephrine transporter binding in the same AD participants—to 

determine their relative associations with baseline apathy and longitudinal change in apathy, 

and to determine the predictive value of these PET measures for methylphenidate treatment 

response.
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FIGURE 1. 
Prefrontal cortical brain regions that mediate motivated behavior affected in Alzheimer’s 

disease. (A) Prefrontal cortical-basal ganglia circuits that play key roles in motivated 

behavior. Dashed lines represent indirect connections. (B) Tau pathology afflicts prefrontal 

cortical circuits, mediating motivated behaviors beginning in Braak Stage III/IV. dmPFC: 

dorsomedial prefrontal cortex; dlPFC: dorsolateral prefrontal cortex; oPFC: orbital 

prefrontal cortex; ACC: anterior cingulate cortex. Premotor: premotor cortex.
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FIGURE 2. 
Actions of methylphenidate via catecholamines in prefrontal cortex. (A) Methylphenidate 

has greater effects on catecholamine levels in prefrontal cortex than in subcortical structures 

in rat brain. (B) Catecholamines have an inverted U dose response on prefrontal top-down 

control, where either too little or too much is detrimental to function. The beneficial effects 

of moderate norepinephrine levels are through high affinity, postsynaptic alpha-2A-AR, 

while the detrimental actions at high levels of norepinephrine release are through low 

affinity alpha-1-AR. In contrast, dopamine has both beneficial and detrimental actions 

through increasing engagement of D1R. PFC: prefrontal cortex, MSA: medial septal area, 

NAc: nucleus accumbens. Adapted from Berridge and Arnsten, 2013.53
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FIGURE 3. 
Dopamine effects on basal ganglia circuitry. The basal ganglia have parallel circuits for the 

control of movement, cognition, and emotion. The basal ganglia regulate the output of the 

thalamus, and its ability to excite the cortex. There are two major pathways emanating from 

the striatum: a Direct pathway that overall excites thalamocortical projections (by inhibiting 

the inhibitory effects of Gpi/SNr on thalamus), and an Indirect pathway that overall inhibits 

thalamocortical projections (by a still more complex series of connections). Dopamine 

facilitates movements, thoughts, and emotions by exciting the Direct pathway via D1R, and 

inhibiting the Indirect pathway via D2R. DA: dopamine; Thal-Cort: thalamo-cortical; GPe: 

globus pallidus external segment, GPi: globus pallidus internal segment; SubTh: subthalamic 

nucleus; SNc: substantia nigra pars compacta; SNr: substantia nigra pars reticulate; VTA: 

ventral tegmental area.
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FIGURE 4. 
Catecholamine effects on prefrontal cortical connectivity. Catecholamines have powerful 

effects on the connectivity of prefrontal cortical recurrent excitatory circuits needed to 

generate top-down goals for action. These newly evolved synapses rely on N-methyl-D-

aspartate (NMDA) receptors for neurotransmission. They also contain the molecular 

machinery to rapidly weaken connections through feedforward calcium-cAMP signaling, 

opening nearby potassium (K+) channels to functionally disconnect the circuit. Moderate 

levels of catecholamine release strengthen connectivity, through alpha-2A-AR inhibiting 

cAMP opening of K+ channels. D1R within the synapse may also enhance firing by 

phosphorylating NMDA receptors to maintain them within the synapse. In contrast, 

excessive catecholamine release weakens connectivity by driving calcium-cAMP opening of 

K+ channels through alpha-1AR and D1R actions at locations away from the synapse. For 

more detailed discussion of this topic, see the following video on how stress and fatigue can 

alter prefrontal function: https://www.youtube.com/watch?v=vdDvChLuQsA&t=6s.
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