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SUMMARY

Protein kinase inhibitors are one of the most successful targeted therapies to
date. Despite this progress, additional kinase inhibitors are needed to expand
the target space as well as overcome drug resistance that has emerged in clinical
setting. Here, we developed KiDNN (Kinase inhibitor prediction using DeepNeu-
ral Networks). KiDNN utilizes non-linear, multilayer feedforward network that
mimics complex and dynamic kinase-driven signaling pathways. We used KiDNN
to predict the effect of �200 kinase inhibitors on migration of breast and liver
cancer cells. We show that the prediction accuracy of KiDNN outperformed other
prediction tools based on linearmodels.We validated that an inhibitor of tyrosine
kinase receptors, and an inhibitor of Src family kinases, decreased migration of
triple-negative breast cancer cells, consistent with the role of these kinases in
driving motility. Overall, we show that non-linear, DNN-based models provide
a powerful approach to in silico screen hundreds of kinase inhibitors.

INTRODUCTION

Kinase inhibitors represent a large class of US Food and Drug Administration-approved drugs and are

currently in use for the treatment of various cancers. Advances in ‘‘omics’’ technologies have led to the

development of high-throughput methods to efficiently and reliably profile the target selectivity of kinase

inhibitors in vitro and in a cellular environment (Klaeger et al., 2017; Schmidlin et al., 2019; Zegzouti et al.,

2016). Several groups have profiled hundreds of kinase inhibitors against sizable fractions of the �500 hu-

man protein kinases (Anastassiadis et al., 2011; Davis et al., 2011; Duong-Ly et al., 2016; Klaeger et al., 2017;

Schmidlin et al., 2019). The resulting ‘‘kinase-inhibitor interaction maps’’ revealed that majority of kinase

inhibitors bind multiple targets, despite the efforts to generate selective agents (Duong-Ly et al., 2016;

Klaeger et al., 2017). In some cases, these unintended targets result in off-target toxicity, whereas in other

instances, off-target binding is of clinical benefit, leading to the effect commonly referred to as polyphar-

macology. Although broadly acknowledged as a dominant mode of action, polypharmacology is currently

poorly understood and difficult to predict.

We and others have developed linear regression-based approaches, such as Kinome Regularization (KiR),

which exploit the polypharmacology of kinase inhibitors and rely on linear combinations of the contribu-

tions of kinases to cellular behavior to build models for predicting the effect of a particular inhibitor on spe-

cific cellular phenotypes (Gujral et al., 2014a, 2014b). However, kinase-driven signaling pathways are highly

complex and dynamic, and the outcome of a perturbation is difficult to predict from the linear combination

of the individual parts. Here, we hypothesize that there is a complex, non-linear dependence between the

activity profiles of inhibitors and their respective contribution to phenotypes, such as cell proliferation or

migration. This suggests that a non-linear, multilayer feedforward network would exhibit improved perfor-

mance over the linear approach. To test this hypothesis, we developed a deep neural network (DNN) based

on non-linear principles called KiDNN for Kinase Inhibitor prediction using Deep Neural Networks.

KiDNN takes advantage of the DNN framework that mimics the human brain. DNNs incorporate process-

ing nodes that are analogous to neurons (Zupan, 1994). In KiDNN, these nodes are connected by weighted

links into a complex, multi-layered neural network. All nodes, except those comprising the input layer,

receive weighted sums of the output from the nodes in the previous layer and transmit their output to no-

des in successive layers until the final output layer is reached (Dongare et al., 2012). We applied KiDNN to
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predict the effect of �200 kinase inhibitors on migration of triple-negative breast cancer (TNBC) cell line

(Hs578t) and liver cancer cells (FOCUS). We experimentally tested a subset of the inhibitors and deter-

mined that KiDNN predictions outperform predictions from the linear KiR model. As predicted by KiDNN,

we showed that inhibition of the tyrosine kinase receptor including PDGFRb and VEGFR and nonreceptor

tyrosine kinases Src decreases migration of Hs578t cells, consistent with the role of these kinases in driving

motility of TNBC cells (Jechlinger et al., 2006; Simiczyjew et al., 2018; Van Swearingen et al., 2017). Overall,

our results indicated that the application of models based on non-linear DNNs is superior to linear-based

models for predicting the cellular response to kinase inhibitors with known activity profiles.

RESULTS

Developing an Optimized KiDNN for Predicting Kinase Inhibitor Effect on Hs578t Cell

Migration

Kinase inhibitors are widely used to identify cellular signaling pathways underlying complex phenotypes.

Here, we developed a predictive DNN model and screened for kinase inhibitors that impaired migration

of cancer cells as a disease-relevant phenotype (Figure 1). In our previous study, we demonstrated that

a set of 32 kinase inhibitors as well as non-specific compounds provides >85% coverage of the 300 kinase

targets (Gujral et al., 2014b). To develop and optimize KiDNN models, we used a previously generated

experimental dataset for the quantitative effects of these 32 inhibitors on migration of Hs578t TNBC cells

(Gujral et al., 2014b).

To develop DNN models that effectively predict changes in cell migration in response to kinase inhibitors,

we devised a five-phase strategy for optimizing the neural network hyperparameters for maximum predic-

tive capability on Hs578t cell migration (Figure 2A). The first phase was deducing the range of overfitting,

where we used the training and validation loss to identify the optimal range of epochs. In subsequent

phases (phases 2–5), we performed optimization using Grid Search (Bergstra et al., 2011), in which

numerous models were built with every combination of hyperparameter values, and the top models (and

their respective combination of hyperparameter values) were identified. Various hyperparameters were

optimized in each phase. Batch size and epochs were optimized in phase 2. In phase 3, activation function,

weight initialization, and optimizers were tuned, whereas hidden layers, nodes per hidden layer, and

dropout were tuned in phase 4 (Figure 2A). Table S1 lists the tested hyperparameter values, and the Trans-

parent Methods outlines the definitions of the hyperparameters. When performing Grid Search,
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Figure 1. The Development of KiDNN

A schematic illustrating the supervised learning approach to develop, evaluate, and predict kinase inhibitor-mediated

changes in migration using KiDNN. The input variable is defined by a set of 32 kinase inhibitors and their target profiles

against 300 kinases (32X300 matrix). The numbers in input variable indicate percent residual kinase activity. Output

variable is defined by the response of 32 inhibitors onmigration of cancer cells measured using wound healing assay in 96-

well plates. The numbers in output variable indicate percent wound density. The development of KiDNN consisted of

model development phase during which hyperparameters are optimized, model evaluation where LOOCV is employed

to generate predictions, and model prediction where response to naive kinase inhibitors are predicted and

experimentally validated.
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hyperparameters that were not undergoing optimization were kept constant according to a set of baseline

hyperparameter values (see the Transparent Methods for details on how the baseline hyperparameter

values are updated). In the last phase (phase 5), the top two hyperparameter values identified in phases

2, 3, and 4 were used to perform a final Grid Search that selects the single top combination of all eight hy-

perparameter values. This set of eight hyperparameter values was then used to build the final KiDNN

model for predicting Hs578t cell migration (Figure 2A).

To evaluate and select the top hyperparameters in each phase, we applied leave-one-out-cross-validation

(LOOCV) (Zhang, 1993). In LOOCV, each time the KiDNNmodel was trained on the activity profiles of 31 of
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Figure 2. Tuning Network Hyperparameters and Structure for Optimal KiDNN Performance

(A) A schematic showing the progressive, multi-phase approach of optimizing the network hyperparameters/structure for

peak network performance.

(B) A plot showing the network validation MSE (k = 26) and training MSE as a function of the number of epochs. A

polynomial fit (n = 5) of the validation error is also shown and the range of overfitting is indicated.

(C) A heatmap showing the respective LOOCV MSE of 42 networks built with selected combinations of batch sizes and

epochs. Yellow regions indicate low relative errors.

(D) A 3D scatterplot illustrating respective LOOCV MSE of 300 networks built with selected combinations of activation

functions, weight initializations, and optimizers. Darker spheres indicate low relative errors corresponding to specific

combinations of hyperparameters.

(E) A 3D scatterplot illustrating respective LOOCVMSE of 120 networks built with selected combinations of hidden layers,

nodes per hidden layer, and dropout rate. Darker blue spheres indicate low relative errors corresponding to specific

combinations of hyperparameters. Complete list of hyperparameters tuned are listed in Table S1 and additional trials of

the top five hyperparameters are evaluated in Tables S2–S4.
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the 32 inhibitors and their effects on cell migration (Gujral et al., 2014b) to predict the effect of the excluded

inhibitor on cell migration. The process was repeated 33 times (including control), leaving out and predict-

ing the effect on migration for each of the 32 inhibitors. The average mean squared error (MSE) of all 33

predictions was used to evaluate predictive accuracy of various networks and select the hyperparameters

that produced the lowest LOOCV MSE.

In phase 1, we determined the range of model overfitting starting with an unoptimized baseline neural

network. We trained the baseline neural network on the Hs578t migration responses to 26 randomly

selected inhibitors (representing �80% of the data) to predict the effect on cell migration of the six

excluded inhibitors (the remaining �20% of the data). The model was trained for 400 epochs, which is

the total number of times KiDNN learned from the entire training dataset to optimize its weights. We

plotted the training MSE for the 26 kinase inhibitors and the cross-validation MSE of predicted and

observed migration for the six excluded kinase inhibitors as a function of the number of epochs (Figure 2B).

A polynomial fit (n = 5) for the cross-validation error indicated that the network’s predictive performance

improved until 125 epochs, after which the network gradually started to overfit the data. Although too

few epochs can cause underfitting of the data, suggesting the model stops learning too early, too many

epochs can cause themodel to overfit the training data such that themodel cannot generalize to effectively

predict the response to six left out kinase inhibitors on cell migration. Consequently, an optimal range of

epochs where the MSE reached a global minimum was selected using the validation error: 50, 75, 100, 125,

150, 175, 200 (Figure 2B). Since batch size (optimized in phase 2) can affect the optimal number of epochs, a

buffer of 75 epochs above and below the actual global minimum of 125 epochs ensured that the top com-

bination of epochs and batch size was selected with variations in batch size in phase 2.

In phase 2, we evaluated the optimal combination of batch size and epochs. The batch size is the number of

samples (individual observations in the dataset) input into KiDNN before updating the weights (Chollet,

2018). Using Grid Search, we constructed 42 networks representing the combinations of the seven epoch quan-

tities and six batch sizes and evaluated the accuracy of the network by LOOCV MSE (Figure 2C). Our data

showed that network error was minimized with larger batch sizes and lower quantities of epochs (Figure 2C,

lower right quadrant). We re-evaluated the top five combinations of epochs and batch sizes an additional five

times, which revealed that the top two combinations of batch size and epochs were 32-sample batch size

and 75 epochs (average MSE 100.48) and 16-sample batch size and 50 epochs (averageMSE 101.47) (Table S2).

In phase 3, we tuned the weight initialization, optimizer, and activation function hyperparameters. We built

and evaluated 300 networks (5 activation functions x 10 weight initializations x 6 optimizers combinations)

using Grid Search (Figure 2D, Table S1). Our data indicated that networks built with the TanH (hyperbolic

tangent) and sigmoid activation functions were completely ineffective at predicting changes in cell migra-

tion (Figure 2D); thus, we excluded them from subsequent optimizations for activation function.We re-eval-

uated the top five combinations of weight initialization, optimizer, and activation function (Table S3). The

top two combinations of hyperparameters were truncated normal initialization, Adagrad optimizer, and

ELU activation function (average MSE 92.90) and truncated normal initialization, Adagrad optimizer, and

ReLU activation function (average MSE 94.62).

In phase 4, we optimized the dropout rate, the number of hidden layers, and the number of nodes per hid-

den layer. With Grid Search, we built and evaluated 120 networks (5 dropout rates x 3 hidden layer quan-

tities x 8 nodes per hidden layer). Networks built with lower dropout rates and more than one hidden layer

had greater predictive power as indicated by their lower average MSE values (Figure 2E). These results

confirm our initial hypothesis that the activity profiles of kinase inhibitors and their respective effect on

Hs578t cell migration have a complex, non-linear dependence that Deep Neural Networks can better pre-

dict rather than shallow neural networks with one hidden layer or linear models. We re-evaluated the top

five combinations of the hidden layer quantity, nodes per hidden layer, and dropout rate (Table S4). The

top two combinations of the hyperparameters were two hidden layers, 300 nodes per hidden layer, and

a dropout rate of 0 (average MSE 85.74) and two hidden layers, 200 nodes per hidden layer, and a dropout

rate of 0 (average MSE 89.86).

In phase 5, we tested the top two sets of hyperparameters (shaded rows in Tables S2–S4), which yielded 8

(23) networks that combined the two sets of hyperparameters from each of the three phases. To identify the

top performing model, we calculated the average LOOCVMSE andMAE (Mean Absolute Error) of five runs
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of each of the eight models (Table 1). The top two performing models both had similar MSE and MAE

values (Table 1). Given the similarity in performance between the two top-performing models, we selected

the model with the lowest average MSE (87.17) and simpler structure to build the final KiDNN model

(KiDNN-Hs578t).

The network architecture consisted of 300 input nodes (representing activity of each of the kinases from the

in vitro kinase profiling work that tested 178 inhibitors against 300 kinases, Dongare et al., 2012), two hid-

den layers with 200 nodes per layer, and a single output node for predicted migration (Figure 3). The batch

size of 32 equaled input sample size, commonly referred to as batch gradient descent, and the entire

training dataset was input through KiDNN-Hs578t 75 times (epochs) in total. Because the final model

included only 200 nodes in the hidden layer rather than the top-performing hyperparameter for the number

of nodes in the hidden layer (300 nodes, Table S4), this last phase captured a further optimized combination

of hyperparameters. Thus, our results support performing this last optimization phase rather than just

building the final model from the top-performing hyperparameters (lowest MSE) identified in each phase.

Evaluating the Predictive Capability of KiDNN Models for New Drugs

Having optimized the hyperparameters of KiDNN-Hs578t to yield the lowest validation MSE in predicting

changes in migration of Hs578t cells in response to kinase inhibitors, we evaluated the predictive capability

of KiDNN-Hs578t. First, we used LOOCV to predict the response to each of the 32 kinase inhibitors (entire

training dataset) and compared those with experimentally observed migration (Figure 4A). The MSE of the

predictions was 78.15, whereas the Pearson correlation was 0.88. On average, the model differed from

experimentally observed changes in cell migration by 5.80% for any given prediction.

Although the accuracy of predictions is informative in evaluating a model, a low variance of predictions can

ensure a high-precision network. A potential limitation of DNN models is that these models can produce

extremely high variance among predictions, resulting in drastically varying output from one run to another.

To test for variance in KiDNN-Hs578t, we determined LOOCV predictions of changes in cell migration in

response to each of the 32 inhibitors in our training set during 10 different evaluations by KiDNN-Hs578t

(Figure 4B). The mean standard deviation of all 33 (including control) predictions was 1.44, indicating an

Epochs Batch

Size

Weight

Initializer

Optimizer Activation Hidden

Layers

Nodes

per HL

Drop

out

Rate

Mean

MSE

Mean

MAE

50 16 Truncated

Normal

Adagrad ReLU 2 300 0 108.742 6.6

50 16 Truncated

Normal

Adagrad ReLU 2 200 0 101.4 6.6

75 32 Truncated

Normal

Adagrad ReLU 2 300 0 116.341 6.2

75 32 Truncated

Normal

Adagrad ReLU 2 200 0 99.2 5.9

50 16 Truncated

Normal

Adagrad ELU 2 300 0 90.3 5.9

50 16 Truncated

Normal

Adagrad ELU 2 200 0 95.7 6.1

75 32 Truncated

Normal

Adagrad ELU 2 300 0 87.4 5.6

75 32 Truncated

Normal

Adagrad ELU 2 200 0 87.2 5.68

Table 1. Evaluation of Networks from Combination of Top Hyperparameters Selected in Each Optimization Phase

The network with the lowest average MSE used to build KiDNN is highlighted. ReLU, rectified linear unit; ELU, exponential

linear unit; Adagrad, adaptive gradient.
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overall high prediction precision. With the low MSE and MAE (Figure 4A), this model has both high predic-

tion precision and accuracy for the effect of kinase inhibitors on Hs578t cell migration.

The previous analysis determined the accuracy and precision using the observed Hs578t migration in

response to inhibitors used in our training set, whereas we next used KiDNN-Hs578t to predict the effect

of 178 compounds (for which in vitro activity profiles against 300 kinases have previously been determined

[Anastassiadis et al., 2011]) on Hs578t cell migration. The experimentally measured effects of the 32 com-

pounds in our training set closely aligned with the curve formed by the predictedmigration effects of all 178

kinase inhibitors, indicating that the predicted effects are likely close to what one might expect to observe

experimentally (Figure 4C, Table S5). Of the 178 kinase inhibitors predicted by the model, 175 had differ-

ences between the predicted and interpolated migrations (based on polynomial interpolation (n = 6) of the

32 kinase inhibitors’ experimental migration) <10% and 137 had differences <5%.

To gain insight into the key signaling nodes targeted by the top KiDNNpredicted inhibitors, we determined the

correlation among the top 10 highly ranked and the least 10 effective inhibitors predicted by KiDNN to effect

migration of Hs578t cells. Staurosporine, K252a, and CDK1/2 inhibitor II, the three most promiscuous inhibitors

were omitted from this analysis.We found a strong positive correlation (r > 0.5 Pearson) among the top 10 highly

ranked inhibitors and negative correlation (r < �0.5) in terms of their activity profiles across all 300 kinases (Fig-

ure 4C). Furthermore, unsupervised clustering of the kinases clearly showed that the kinases that are inhibited

(<40% residual activity) by the top 10 most effective inhibitors are not inhibited (>90% residual activity) by any

of the least 10 effective predicted inhibitors (Figure S1). These kinases include Src family kinases and several

RTKs, including PDGFR, VEGFR, and FGFR1. Together, these data provide further support and biological ratio-

nale to KiDNN predicted most effective drugs that inhibit migration of Hs578t cells.

Experimental Validation of KiDNN-Hs578t Predictions in Hs578t Cells

A stringent test of any predictive model is its ability to forecast responses to a completely new dataset that

was not used for training the model. To evaluate predictive accuracy of KiDNN, we experimentally tested

the migration of Hs578t cells in response to eight kinase inhibitors that were not part of the 32 previously

evaluated. The overall small differences between the observed and predicted migration of the Hs578t cells

in response to the eight kinase inhibitors confirmed the high predictive performance of KiDNN (Figure 4D)

with the predictions differing on average from the observed responses by 4.99% (Figure 4E). Response to

five kinase inhibitors (Purvalanol A, Staurosporine N-benzoyl-, SU11652, PD98059, and Dovitinib) were pre-

dicted extremely well with a <5% difference (Figure 4D). The strong effect of Dovitinib, which inhibits Src

family kinases (Bello and Gujral, 2018), and SU11652, which inhibits receptor tyrosine kinases, such as

PDGFRb and VEGFR (Bello and Gujral, 2018), was evident in the wound migration assay (Figures 5A and

5B). With a 4.2% and 2.5% difference between the predicted effect and observed effect, respectively, these

results indicate that KiDNN could accurately identify and predict migration in response to drugs that had a

profound effect on the measured phenotype.
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Figure 3. Optimized KiDNN Architecture

A schematic illustrating the final architecture of KiDNN after hyperparameter optimization using training dataset from

Hs578t cell migration.
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In addition to identifying drugs that are effective, it is also desirable to identify kinase inhibitors with minimal ef-

fects or opposite effects from those sought for therapeutic intervention.Of the eight kinase inhibitors evaluated,

four had a limited effect (70%) on Hs578t cell migration relative to control (Figure 4D). All four kinase inhibitors

were predicted to have minimal effect by the model (>50% migration). Purvanol A, PD98059, and PDK1/Akt/Flt
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Figure 4. Predicting Response to Naive Kinase Inhibitors

(A) A plot showing comparison of KiDNN-predicted and measured percent migration in response to 32 inhibitors in

Hs578t cells using LOOCV. Migration in response to untreated/DMSO control was 70%. The MSE, MAE, and Pearson

correlations are also indicated.

(B) KiDNN model was run for 10 iterations to generate predictions for all 32 inhibitors. Green circles denote the mean

predicted migration, and the error bars show the standard deviation of predictions for each kinase inhibitor. The standard

deviation is also listed.

(C) A plot showing KiDNN-predicted response to 178 small molecule kinase inhibitors (146 untested). The black circles

denote the predicted percent migration, whereas blue circles denote the 32 experimentally validated kinase inhibitors.

The kinase inhibitors are ranked by predicted migration.

(D) A heatmap showing correlation of kinase target profiles of the 10 most and 10 least effective inhibitors predicted by

KiDNN.

(E) A table showing comparison of KiDNN-prediction and experimental changes in migration of Hs578t cells in response

to eight kinase inhibitors. Each inhibitor was tested at multiple doses (10 nM–10 mM), and the effect of kinase inhibitor at

500 nM dose was calculated using the dose-response curves. Hs578t cells treated with DMSO control showed migration

of 70%.
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Dual Pathway Inhibitor were all predicted accurately (<10% error), whereas JAK1 inhibitor I was not predicted as

accurately (>10%error). Together, these results validate that the KiDNNmodel can accurately predict changes in

cell migration in response to both highly effective and ineffective kinase inhibitors, even with a minimal training

dataset (�18% of entire set of all 178 kinase inhibitors).

Comparing Predictions from KiDNN with Those from KiR

The initial application of KiDNN was to predict the effects of kinase inhibitors on TNBC Hs578t cell migration,

whereas here we generated a KiDNNmodel for the effects of kinase inhibitors on liver cancer cells. Each KiDNN

must be optimized and trained for the specific cell and phenotype under investigation. Previously, we applied

the KiR approach tobuild amodel basedon a response to training set (32 inhibitors) and determined its ability to

predict the effect of 178 kinase inhibitors onmigration of liver cancer cells (FOCUS) (Gujral et al., 2014b). Here,we

used the same dataset to build an optimized KiDNNmodel and compared the predictions of the KiDNNmodel

with those of the KiR model. Using the same five-phase hyperparameter optimization strategy that we used to

build the KiDNN model for predicting migration of Hs578t cells (Figure 2), we determined an optimal KiDNN

architecture for the dataset collected on FOCUS cells.

The KiDNN-FOCUS architecture consisted of two hidden layers with 100 nodes per layer. Weights were up-

dated in batch sizes of two (mini-batch gradient descent) with the entire dataset input through KiDNN-

FOCUS a total of 120 times (epochs). The other network hyperparameters included the uniform weight

initialization, SELU activation function, and the Adagrad optimizer. The only hyperparameters in common

with KiDNN-Hs578t were the optimizer, the number of hidden layers, and the Dropout rate. The differences
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Figure 5. Evaluating Predictive Capability of KiDNN

(A) A plot showing relative migration of Hs578t cells in response to DMSO control, SU11652 (1 mM), or Dovitinib (1 mM).

Each point is a mean of three replicates, and the error bars denote SEM.

(B) Representative images of Hs578t cells at time 0 h (wounding) and 48 h post wounding. Wound area is highlighted in

yellow, and the migrating cells in the wound area are shown in blue mask.

(C) A plot showing comparison of KiDNN-predicted and measured percent migration in response to 32 inhibitors in

FOCUS cells using LOOCV. Migration in response to untreated/DMSO control was 70%.

(D) A plot showing KiDNN-predicted response to 178 small molecule kinase inhibitors (146 untested) in FOCUS cells. The

black circles denote the predicted percent migration, whereas the blue circles and red circles denote the percent

migration for 32 experimentally validated kinase inhibitors and 7 unseen inhibitors respectively. The kinase inhibitors are

ranked by predicted migration.
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in the two KiDNN models are consistent with the cancer cells coming from different tissues and having

different characteristics. As we did for KiDNN-Hs578t, we used LOOCV to evaluate the accuracy of the

KiDNN-FOCUS predictions. Using the 32 inhibitors from the training set plus the control, the MSE of the

LOOCV predictions was 114 and on average the model’s predictions differed from experimentally

observed migrations by 7.2% (Figure 5C).

We also used KiDNN-FOCUS to predict the effects of the seven kinase inhibitors that were not part of the

original dataset. Using the analyses of these seven inhibitors, we compared the predictive capability of KiR

(Gujral et al., 2014b) and KiDNN using the FOCUS models (Table 2). Our data showed that KiDNN predic-

tions outperformed KiR predictions with KiDNN reducing the prediction error (MSE) by �40% compared

with that of KiR. The average differences between KiR predictions and experimental observations

(10.65%) was also greater than those between KiDNN predictions and experimental observations (7.58%).

Predictions of KiDNN and KiR models did not agree (>10% difference between the models) for four of the

seven kinase inhibitors: Cdk2 Inhibitor IV (NU6140), Dovitinib, Staurosporine (N-benzoyl-), and SU11652. Of

these, SU11652 and Cdk Inhibitor IV (NU6140) were better predicted by KiDNN; Dovitinib and Staurospor-

ine (N-benzoyl-) were better predicted by KiR. In total, five inhibitors (Aminopurvanol A, AMPK Compound

C, Cdk Inhibitor IV [NU6140], GSK-3 Inhibitor XIII, and SU11652) were better predicted by KiDNN with an

average MSE of 17.09 and an average difference from observed migration of 3.36%. Dovitinib and Staur-

osporine (N-benzoyl-) were better predicted by KiR with an average MSE of 25.79 and an average differ-

ence from observed migration of 4.17%.

To further improve the KiDNN-FOCUS predictions, each time we included six of the seven inhibitors as part

of the training set and predicted the excluded inhibitor’s effect on migration of FOCUS cells (LOOCV). The

MSE of KiDNN-FOCUS LOOCV prediction for the seven kinase inhibitors was 78.19, a �26% decrease in

prediction error from KiDNN-FOCUS original predictions and a more than a 2-fold decrease in MSE

compared with KiR. This decrease in prediction error demonstrates that addition of experimental data

can drastically improve KiDNN performance enabling an iterative approach to build accurate KiDNN

models. We used this improved KiDNN-FOCUS model to predict the effect on FOCUS cell migration of

178 inhibitors (139 untested) with previously known activity profiles (Anastassiadis et al., 2011) and reported

effects on migration (Gujral et al., 2014b) (Figure 5D, see Table S6 for predicted and observed effects of

each kinase inhibitor). Of the 178 kinase inhibitors’ effect on FOCUS cell migration predicted by the model,

177 had differences between the predicted and interpolated migrations (based on polynomial interpola-

tion (n = 7) of the 39 kinase inhibitors’ experimental migration) <10% and 166 had differences <5%.

Kinase Inhibitor Measured Linear Regression

Predictions

KiDNN

Predictions

KiDNN LOOCV

Predictions

Aminopurvalanol A 66.8 60.3 64.2 66.3

AMPK compound C 64.8 54.5 57.1 56.6

Cdk2 inhibitor IV,

NU6140

70 52.7 66.3 63.8

Dovitinib 32.3 33.6 51.3 50.1

GSK-3 inhibitor XIII 59.5 53.7 59.9 62.0

Staurosporine, N-

benzoyl-

37.9 30.9 55.3 48.0

SU11652 47.0 20.7 49.4 50.9

Mean squared error 175.1 106.5 78.2

Table 2. Comparison of PredictedMigrations of the Seven Additional Inhibitors for Both KiDNN and KiR on FOCUS

In the KiDNN Predictions column, KiDNN was trained with the 32 kinase inhibitors and applied to the 7 additional inhibitors,

whereas in the KiDNN LOOCV Predictions column, each time 6 of the 7 additional inhibitors were added to the training set

and the remaining inhibitor’s migration was predicted for each of the 7 inhibitors. The MSE of the models’ predictions are

indicated.
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DISCUSSION

Technological advancement in ‘‘omics’’-based approaches for collecting large-scale datasets, particularly

those involving drug-target profiling, gene expression, and protein abundance and modification, have

unlocked the door to data-driven systems biology-based studies. Although studying a large number of

interactions even in a network of closely related proteins is powerful in principle, it is often hard to find

actionable or informative patterns in the data. Thus, system biologists rely on computational models to

analyze and make scientific breakthroughs from large-scale datasets. In particular, machine learning and

deep learning approaches are used to aid in model design and selection of compounds in pre-clinical

drug discovery (Zhavoronkov et al., 2019). These computational approaches offer an effective strategy

for prioritizing compounds that can lower the cost of pre-clinical trials by reducing the experimental search

to smaller, model-predicted subsets (Zhang et al., 2019).

Here, we developed KiDNN, a multilayer DNN approach (Figure 1) and applied it to predict changes in

migration of metastatic cancer cells in response to hundreds of kinase inhibitors. DNNs can capture

non-linear relationships among features, such as the effects of multispecific inhibitors on kinase activities

and the effects of kinase activities on complex cellular phenotypes like migration, and are better suited

than linear regression-based approaches for investigating questions with a large number of samples

and complex features. We applied KiDNN to predict kinase inhibitor effects on the migration of two cancer

cell lines, one a TNBC cell line and the other a hepatocellular carcinoma cell line. For each cell line KiDNN is

optimized and trained using existing data for the polypharmacology of a subset of kinase inhibitors and

data on the effects of those inhibitors on migration of each cell line. We used LOOCV MSE to assess the

predictive capability for each cell line-specific KiDNN and determined that KiDNN-Hs587t had an MSE

of <80 with predictions that differed from observed effects by <6%, while KiDNN-FOCUS had an MSE of

114 with predictions that differed by 7%. These small differences indicated that the two KiDNN models

had biologically acceptable performance. Furthermore, experimental validation showed that KiDNN pre-

dictions (MSE 78) were more accurate than KiR-based predictions (175) (Table 2), suggesting that using a

multilayered DNN substantially improves overall accuracy and performance over linear models.

The molecular heterogeneity of cancer underscores a need for screening drug candidates in multiple

patient-derived cell lines or animal models (Barretina et al., 2012). In oncology drug discovery and devel-

opment, this is often a cost-prohibitive and laborious undertaking. To address this, we showed that DNN

hyperparameters optimized on inhibitor responses in breast mesenchymal cells (Hs578t) coupled with a

new training dataset can be used as a starting point to build a KiDNN model that accurately predicted in-

hibitor responses in liver mesenchymal (FOCUS) cancer cells. Such promising results suggested that the

hyperparameters learned from one set of data can be used to generate KiDNN that predicts responses

in multiple relevant cancer cell lines with minimal training data from each cell line.

Finally, we applied the KiDNN approach to predict the effect of �200 kinase inhibitors on migration of

Hs578t and FOCUSmesenchymal cancer cells. Themodels predicted drugs that were effective at impairing

migration and those that were ineffective. Such information is valuable in drug discovery. Noteworthy for

the Hs578t cells, KiDNN-Hs578t accurately predicted response to Dovitinib (58.2% predicted versus 55.7%

observed) and SU11652 (48.6% predicted versus 44.4%, observed) (Figures 5A and 5B). Dovitinib is a Src

family kinase inhibitor (Anastassiadis et al., 2011), and SU11652 is an inhibitor of multiple receptor tyrosine

kinases, including PDGFRb and VEGFR (Bello and Gujral, 2018). Both Src and PDGFRb are important for

migration of TNBC cell lines (Ho-Yen et al., 2015; Jechlinger et al., 2006; Sausgruber et al., 2015; Simiczyjew

et al., 2018; Van Swearingen et al., 2017), highlighting validating the relevance of the KiDNN predictions.

The high predictive accuracy for individual kinase inhibitors demonstrated that KiDNN is a powerful deep

learning approach that overall performed significantly better than linear models for predicting the effects of a

large panel of kinase inhibitors on a complex cellular phenotype. Furthermore, the models can be retrained

on limited data from different cells. We predict that application of KiDNNmodeling coupled with polypharma-

cology profiling will enable cheaper and more effective screening than exhaustive, unbiased testing of com-

pound libraries. We anticipate future development of KiDNN models could integrate additional parameters,

such as non-kinase targets of kinase inhibitors, chemical moieties, pharmacokinetic properties, and othermedic-

inal chemistry properties, to enable de novo compound design, prioritization, and drug discovery. Furthermore,

combining KiDNN predictions for different cellular outcomes, such as proliferation, apoptosis, and migration,

could identify lead candidate drugs that produce desired outcomes without stimulating undesired ones.
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Limitations of the Study

A particular limitation of KiDNN and Deep Neural Network models broadly is their lack of interpretability in

predictions. Deep Neural Networks have traditionally been labeled black-box models as it is increasingly

difficult to inspect how the neural network model reaches its predictions as its complexity increases.

Although KiDNN prediction of cell migration of Hs578t and FOCUS cells closely followed experimental

values, the precise biological basis behind the predictions in terms of specific kinases or their combination

are difficult to extract. To address this limitation, future development of KiDNN could involve a feature

importance algorithm to deduce the primary kinases the KiDNN model relies on to make predictions.

Resource Availability

Lead Contact
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Materials Availability
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Data and Code Availability

Source code for KiDNN is available in Data S1.
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SUPPLEMENTAL INFORMATION

Supplemental Information can be found online at https://doi.org/10.1016/j.isci.2020.101129.

ACKNOWLEDGMENTS

This work was supported by the NIH/NCI (K22CA201229, P30CA015704), Fred Hutch Evergreen Fund, and

the Sidney Kimmel Foundation (Kimmel Scholar Award). We thank Drs. Nancy Gough and Milka Kostic for

helpful comments on the manuscript.

AUTHOR CONTRIBUTIONS

T.S.G. and S.V conceived the project. S.V. developed the KiDNN algorithm. T.S.G performed experiments.

S.V. and T.S.G. performed analysis. S.V. and T.S.G. wrote the manuscript.

DECLARATION OF INTERESTS

The authors declare no competing interests.

Received: February 13, 2020

Revised: April 4, 2020

Accepted: April 29, 2020

Published: May 22, 2020

REFERENCES
Anastassiadis, T., Deacon, S.W., Devarajan, K.,
Ma, H., and Peterson, J.R. (2011). Comprehensive
assay of kinase catalytic activity reveals features of
kinase inhibitor selectivity. Nat. Biotechnol. 29,
1039.

Barretina, J., Caponigro, G., Stransky, N.,
Venkatesan, K., Margolin, A.A., Kim, S., Wilson,
C.J., Lehár, J., Kryukov, G.V., and Sonkin, D.
(2012). The Cancer Cell Line Encyclopedia
enables predictive modelling of anticancer drug
sensitivity. Nature 483, 603.

Bello, T., and Gujral, T.S. (2018). KInhibition: a
kinase inhibitor selection portal. iScience 8,
49–53.

Bergstra, J.S., Bardenet, R., Bengio, Y., and Kégl,
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TRANSPARENT METHODS 

Model development & optimization of network hyperparameters 

The development and implementation of KiDNN was accomplished using the python Keras 

framework with a TensorFlow backend (Chollet, 2018). Leave-One-Out-Cross-Validation (LOOCV) was 

the primary network evaluation method used in this investigation. In LOOCV, each time [n-1] drugs are 

used to train the network to predict the excluded inhibitor’s effect on cell migration. The process is repeated 

a total of [n] times leaving out and predicting the effect on migration for every inhibitor. The average mean 

squared error (MSE) of all [n] inhibitors was used to cross-evaluate various networks. Since large errors in 

predicted and observed migration are undesirable as they can cause false positives and negatives, MSE was 

the primary error function used to optimize the network. 

For KiDNN to reach peak predictive performance for a specific cell-line, the optimal network 

architecture and hyperparameters need to be chosen. The complete set of hyperparameters and 

their definitions are shown below. Epochs; the number of iterations KiDNN is supplied the entire training 

dataset. Typically, the network needs to be input the entire dataset multiple times to effectively fit the 

network to the data(Jayachandiran). Batch Size; the number of samples (rows/individual observations of 

the dataset) input through KiDNN before updating weights(Chollet, 2018). Initializer; the distribution in 

the start of the training process from which starting weights are assigned. Activation function; function 

applied to the weighted sum of inputs and biases to produce output (Dongare et al., 2012). Optimizer; 

the algorithm that helps the network converge to the optimal set of weights. Hidden layers; the quantity 

of layers (consisting of several nodes) in-between the output and input layer. Multiple hidden layers can 

ensure that the network can capture complex, non-linear dependence between input and output (Zupan, 

1994).  Nodes per hidden layer; the number of individual units (nodes) per every hidden layer. 

Dropout rate; the percentage of individual nodes in a layer that is temporarily removed from the 

network along with its connections. Dropout is a common method of preventing model overfitting 

(increased performance in training set, but poor performance in test sets) and nodes from co-adapting too 

much (Srivastava et al., 2014). A complete 



list of all the specific values/names of the 8 hyperparameters are shown in Table S1. After optimization, 

the single top combination of the 8 hyperparameters is selected to build KiDNN. Besides these 

hyperparameters, the input and output layer remain set as there are 300 nodes in the input layer 

corresponding to the 300 kinases’ inhibition measured in the activity profile and 1 output node for the 

predicted cell migration.  

A common method of optimization used in numerous studies is Grid Search(Pontes et al., 2016), 

where all the various combinations of hyperparameter values are individually used to build several networks 

and the top combination is selected based on lowest MSE. Here, an exhaustive Grid Search optimizing all 

8 hyperparameters at once wasn’t a viable method because of the pure volume of required computations as 

more than 1,728,000 various networks would need to be evaluated. Consequently, a progressive, phase-by-

phase Grid Search approach (evaluated with LOOCV MSE) was used where Grid Search was performed 

on 2 to 3 hyperparameters at once, rather than all 8. This significantly reduces the computation time to 

optimize KiDNN as only ~470 networks were evaluated. Since this method would prevent combinations of 

the top hyperparameter values across phases from being evaluated, a final phase 5 was performed, where 

the top 2 combinations of hyperparameter values were combined across multiple phases to select one final 

combination used to build the final KiDNN model. This multi-phase Grid Search is particularly effective 

because values of hyperparameters that perform poorly in terms of predictive performance are disregarded 

in future phases of the Grid Search, while also significantly reducing computational time to optimize 

KiDNN. Additionally, between phases, the top selected hyperparameters optimized in the previous phase 

were used in the successive phases by updating a baseline network. The initiation of the optimization 

process began with a completely unoptimized baseline network with default hyperparameters. The baseline 

neural network consisted of 300 input nodes for each kinase’s activity, 2 hidden layers with 100 nodes per 

layer, and one output layer. The Adam optimizer, Rectified Linear Unit (ReLU) activation and Normal 

weight initialization distribution were used. Using the default baseline network, the network was optimized 

in 5 different phases to develop the final, fully-optimized KiDNN.  



In phase 1, the range of overfitting was identified, where the model starts to fit the training data too 

much to the point where its ability to predict response of the test set was compromised. The baseline model 

was trained on response to 26 (~ 80%) randomly selected inhibitors in the training set and tested on the 

remaining 6 inhibitors (~20%) for 400 epochs. The fluctuation of MSE between predicted and observed 

migration of the 6 excluded inhibitors and the 26 inhibitors of the training set was measured as a function 

of the number of epochs. Using this data, a range of epochs is selected where MSE reaches a global 

minimum, before overfitting of the data starts to occur.  

Using the range of epochs and batches sizes (listed in Table S1), Grid Search was performed to 

deduce the optimal combinations of epochs and batch size in phase 2. The top 5 combinations based on 

lowest LOOCV MSE are then re-run 5 additional times to ensure that the low MSE isn’t due to chance by 

using average LOOCV MSE rather than single-iteration MSE. From the 5 additional runs, the 2 top 

combinations are identified based on average LOOCV MSE and are later used in Phase 5. In phase 3, the 

activation function, optimizers and weight initializers are optimized, while in phase 4, the number of hidden 

layers, nodes per hidden layer and Dropout rate were optimized. In both phase 3 and phase 4, the same 

process as executed in phase 2 was repeated.  

As stated previously, the optimization process is progressive, where the top hyperparameters in one 

phase are used for the next. For example, the top combination of epochs and batch size selected in phase 2 

were used to update the baseline network in phase 3, and the top combination of activation functions, 

optimizers and weight initializations in phase 3 were used to update the baseline network in phase 4. In the 

final phase 5, the top 2 sets of hyperparameter values across phases 2 through 4 are combined to create 8 

(23) separate networks with various combinations of each set of hyperparameters from each phase using

Grid Search. The 8 networks are run a total of 5 times and the network with the lowest average LOOCV 

MSE is selected as the final network architecture used to build KiDNN. The efficacy of the final KiDNN 

model was further evaluated using the LOOCV MSE of the predicted and observed values and the mean 



standard deviation between 10 iterations of predictions to ensure a low-bias and high-precision neural 

network.  

Supervised Deep Learning Approach 

KiDNN was developed with Deep Neural Networks (DNNs), a non-linear, multi-layer feed-

forward network. DNNs mimic the human brain, with processing nodes analogous to neurons in our brain 

and collections of neurons representing complete, multi-layered neural networks (Zupan, 1994). In KiDNN, 

these nodes are connected by weighted links, with all nodes, except those composing the input layer, 

receiving weighted sums of the output from the nodes in the previous layer and transmitting their output to 

nodes in successive layers until the final output layer (e.g. measured phenotypes such as cell migration) is 

reached (Dongare et al., 2012). The output transmitted to the successive nodes from a prior node is 

computed using the following three steps. First, the weighted sum of the output of nodes in the previous 

layer is computed, then biases are added, and lastly, an activation function is applied to the output limiting 

the output between a finite range (-1 to 1 or 0 to 1 in this study) (Dongare et al., 2012). This computation 

is repeated until the final layer is reached with the final predicted migration outputted. The computation 

performed in an individual node is shown below: 

𝑜𝑜𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 =  𝑓𝑓 � �𝑥𝑥𝑖𝑖 𝑤𝑤𝑖𝑖 +
𝑛𝑛

𝑖𝑖=1

 𝑏𝑏� 

input: (𝑥𝑥1 𝑡𝑡𝑡𝑡 𝑥𝑥𝑛𝑛 )    weights: (𝑤𝑤1 𝑡𝑡𝑡𝑡 𝑤𝑤𝑛𝑛 )    bias: (𝑏𝑏)    activation function (𝑓𝑓) 

Ultimately, KiDNN is trained on activity profiles by repeatedly computing errors of millions of 

combinations of weights, feeding it back to the network, and adjusting its weights accordingly until the 

optimal set of weights and biases between individual nodes are found where the error function between 

predicted and observed migration is minimal. Keeping these optimal weights and biases constant, remaining 



untested inhibitors’ activity profiles can be inputted through KiDNN and the predicted migration can be 

computed.  

Applying KiDNN to naïve datasets (Hs578t & FOCUS) 

After selecting the optimal architecture and hyperparameters to develop KiDNN for Hs578t, the 

network was applied to completely unseen inhibitors to predict migration. The network was trained on the 

32 inhibitors’ activity profile and their resulting migration to predict migration in the 178 other inhibitors. 

The same method of optimization used to optimize KiDNN for Hs578t was used to optimize KiDNN for a 

new cell line (FOCUS). After the optimal hyperparameters were found, KiDNN was trained on the 32 

inhibitors’ activity profile and their resulting migration to predict migration in the 178 other inhibitors for 

FOCUS.  

Cell lines 

Hs578t was obtained from American Type Culture Collection. Hepatocellular carcinoma cell line 

(FOCUS) was obtained from J. Wands (Brown University). Both cell lines were grown at 37°C under 5% 

CO2, 95% ambient atmosphere and maintained in Dulbecco’s minimum essential medium (DMEM) 

supplemented with 10% FBS (Sigma). 

Kinetic cell migration assay 

To study the effect of kinase inhibitors on migration of Hs578t or FOCUS cells a wound-healing 

assay was employed as described previously (Gujral et al., 2014b). The details on the structure and 

preparation of this dataset has been disclosed previously (Gujral et al., 2014b). Briefly, cells were plated 

on 96-well plates (Essen Image Lock, Essen Instruments), and a wound was scratched with wound scratcher 

(Essen Instruments). Inhibitors at different doses were added immediately after wound scratching, wound 

confluence was monitored with Incucyte Live-Cell Imaging System and software (Essen Instruments). 



Wound closure was observed every 2 hours for 24-72 hours by comparing the mean relative wound density 

of at least three biological replicates in each experiment. 

 



 

 

Figure S1. Kinase target profiles of the most effective KiDNN-predicted inhibitors, Related to 

Figure 4. A heatmap of showing kinase targets profiles of the most effective and the least effective 

KiDNN predicted inhibitors. 



Table S1.  List of Parameters Optimized, Related to Figure 2. Epochs were selected from the training and validation loss plot (Fig. 

2B) by choosing 3 values above and 3 below the 125 epochs at which overfitting was observed. Batch size is an integer. Various 

types of kernel initializers, optimizer and activation functions were evaluated.  

Epochs 
Batch 
Size 

Weight Initializer Optimizer Activation 
Hidden Layers 

(HL) 
Nodes per HL Dropout Rate 

50 1 Uniform RMSprop Sigmoid 1 10 0 

75 2 Truncated 
Normal Adagrad TanH 2 25 0.05 

100 4 Normal Adamax ReLU 3 50 0.1 

125 8 Lecun Uniform Adadelta ELU  100 0.2 

150 16 Glorot Normal Adam SELU  150 0.5 

175 32 He Normal Nadam   200  

200  Glorot Uniform    250  

  Variance Scaling    300  

  He Uniform      
  Orthogonal      

 
ReLU; rectified linear unit, ELU; exponential linear unit, SELU; scaled exponential linear unit, TanH; hyperbolic tangent 
RMSprop; root mean square propagation, Adagrad; adaptive gradient, Adam; Adaptive moment estimation, Nadam; Nesterov-
accelerated adaptive moment estimation 
 
 



Table S2. Network Evaluation of Top Batch Size and Epoch Combinations, Related to Figure 2. The top 2 combinations are 
shaded. The one that was used for subsequent optimization is indicated in bold. 

Batch Size Epoch Average MSE 

8 50 106.41 

8 125 111.92 

16 50 101.47 

32 75 100.48 

32 125 103.00 



Table S3.  Network Evaluation of Top Weight Initializers, Optimizers and Activation 
Function Combinations, Related to Figure 2. The top 2 combinations are shaded. The 
one that was used for subsequent optimization is indicated in bold.  

Weight Initializer Optimizer Activation Mean MSE 

Uniform Adagrad ReLU 99.4 

Truncated Normal Adagrad ReLU 94.6 

Truncated Normal Adagrad ELU 92.9 

Lecun Uniform Adamax ELU 107.3 

Variance Scaling Nadam ReLU 101.7 

ReLU; rectified linear unit, ELU; exponential linear unit, Adagrad; adaptive gradient, Adam; 
Adaptive moment estimation, Nadam; Nesterov-accelerated adaptive moment estimation 



Table S4.  Network Evaluation of Top Hidden Layer Quantity, Nodes and Dropout 
Rate Combinations, Related to Figure 2. The top 2 combinations are shaded. The one 
that was used for subsequent optimization is indicated in bold.  

Hidden Layers 
(HL) Nodes per HL Dropout Rate Average MSE 

2 200 0 89.9 

2 300 0 85.7 

2 200 0.05 91.4 

3 250 0 94.0 

3 50 0.05 92.8 



Table S5. Predicted migration of Hs578t cells in response to top 20 most effective kinase 
inhibitors selected by KiDNN, Related to Figure 4 

Rank Kinase Inhibitor Predicted 
Migration 

1 Staurosporine 12.3 

2 K-252a 28.1 

3 SB 218078 35.9 

4 Cdk1/2 Inhibitor III 37.5 

5 PKR Inhibitor 46.8 

6 JAK3 Inhibitor VI 48.1 

7 SU11652 48.6 

8 Go 6976 49.9 

9 Indirubin Derivative E804 50.2 

10 Staurosporine, N-benzoyl- 51.4 

11 Bosutinib 52.7 

12 Sunitinib 54.2 

13 Syk Inhibitor 56.3 

14 GSK3 inhibitor IX 57.0 

15 JAK Inhibitor I 57.5 

16 Dasatinib 57.5 

17 AMPK Inhibitor, Compound C 57.8 

18 Dovitinib 58.2 

19 Aurora Kinase/Cdk Inhibitor 61.8 

20 Indirubin-3’-monoxime 61.8 



Table S6. Predicted migration of FOCUS cells in response to top 20 most effective kinase 
inhibitors selected by KiDNN-FOCUS, Related to Figure 5

Rank Kinase Inhibitor Predicted 
Migration 

1 Staurosporine 5.0 

2 Dasatinib 14.2 

3 Dovitinib 33.8 

4 Bosutinib 34.5 

5 Staurosporine, N-benzoyl- 38.8 

6 LCK inhibitor 38.8 

7 GSK3 inhibitor IX 41.6 

8 SB 218078 43.1 

9 SU11652 48.5 

10 Indirubin Derivative E804 48.6 

11 PDGFR RTK inhibitor 52.0 

12 K-252a 53.4 

13 PDK1/Akt/Flt Dual Pathway 
Inhibitor 55.5 

14 GSK-3 Inhibitor X 55.9 

15 Syk Inhibitor 56.4 

16 Sunitinib 57.6 

17 Flt-3 Inhibitor II 58.0 

18 TWS119 59.2 

19 Tozasertib 61.3 

20 GSK-3 Inhibitor XIII 61.4 



Table S7. Predicted and measured migration of Hs578t cells in response to all 40 kinase 
inhibitors, Related to Figure 4.   

Kinase Inhibitor Measured 
Migration 

KiDNN 
Predictions 

KiR 
Predictions 

Bosutinib 39.9 52.7 42.5 

Casein Kinase I Inhibitor D44 70 70.0 70.0 

Cdk1/2 Inhibitor III 36.2 37.5 35.5 

Dasatinib 21.2 57.5 28.7 

EGFR ErbB-2 Erbb-4 70 70.0 68.7 

Erlotinib 70 70.0 70.0 

Go 6983 70 67.8 67.2 

Gefitinib 70 70.0 66.5 

GSK3 inhibitor IX 49 57.0 51.7 

GSK-3b Inhibitor I 70 70.0 70.0 

H-89 70 70.0 68.3 

Imatinib 70 70.0 70.0 

JNK Inhibitor II 70 68.1 66.9 

K-252a 27.5 28.1 27.6 

Lapatinib 70 70.0 70.0 

LCK inhibitor 70 68.5 68.3 

LY294002 70 70.0 70.0 

Masitinib 70 70.0 68.4 

Met Kinase Inhibitor 68.6 65.3 67.5 

Nilotinib 70 68.2 67.8 

PDGFR RTK inhibitor 69 67.7 67.6 

Rapamycin 70 70.0 68.5 



ROCK Inhibitor 70 70.0 68.9 

SB 218078 29.4 35.9 30.0 

SB220025 56.9 70.0 57.6 

Sorafenib 65.4 70.0 68.4 

Src Kinase Inhibitor I 70 70.0 69.0 

Staurosporine 0.98 12.3 6.0 

Sunitinib 54.3 54.2 52.9 

Tofacitinib 70 70.0 70.0 

TWS119 68.3 62.2 61.2 

Vandetanib 66.6 65.3 62.4 

Aminopurvalanol A 70 68.6 61.8 

Staurosporine, N-benzoyl 56.3 51.4 45.5 

AMPK Inhibitor Compound C 65.8 57.8 56.6 

PDK1/Akt/Flt Dual Pathway 
Inhibitor 70 63.6 65.0 

SU11652 44.4 48.6 50.8 

JAK Inhibitor I 70 57.5 46.8 

PD 98059 70 70.0 70.0 

Dovitinib 55.7 58.2 54.9 

Mean Squared Error  38.91 109.39 

Mean Absolute Error   4.99 7.95 

 



Table S8. Predicted and measured migration of FOCUS cells in response to all 39 kinase 
inhibitors, Related to Figure 5.   

Kinase Inhibitor Measured 
Migration 

KiDNN 
Prediction 

KiR 
Prediction 

Staurosporine 4.5 5.0 20.1 

Dasatinib 11.6 14.2 25.2 

Bosutinib 33.4 34.5 39.7 

LCK inhibitor 36.5 38.8 42.0 

GSK3 inhibitor IX 40.9 41.6 49.5 

SB 218078 42.0 43.1 45.0 

PDGFR RTK inhibitor 47.7 52.0 49.7 

K-252a 52.4 53.4 43.2 

Sunitinib 56.2 57.6 57.0 

Sorafenib 58.1 64.7 65.6 

TWS119 58.3 59.2 47.3 

Vandetanib 64.2 65.9 58.6 

EGFR ErbB-2 Erbb-4 67.3 67.1 70.0 

Nilotinib 67.5 65.7 60.5 

Go 6983 68.0 68.9 68.5 

Src Kinase Inhibitor I 68.5 66.7 60.8 

Gefitinib 68.9 70.0 67.2 

SB220025 69.7 69.9 69.6 

Casein Kinase I Inhibitor D44 70.0 70.0 70.0 

Cdk1/2 Inhibitor III 70.0 70.0 61.9 

Erlotinib 70.0 70.0 70.0 

GSK-3b Inhibitor I 70.0 70.0 70.0 



H-89 70.0 68.8 70.0 

Imatinib 70.0 70.0 68.9 

JNK Inhibitor II 70.0 70.0 69.3 

Lapatinib 70.0 70.0 70.0 

LY294002 70.0 70.0 70.0 

Masitinib 70.0 65.6 62.9 

Met Kinase Inhibitor 70.0 70.0 65.4 

Rapamycin 70.0 70.0 68.5 

ROCK Inhibitor 70.0 70.0 70.0 

Tofacitinib 70.0 70.0 70.0 

Aminopurvalanol A 66.78 64.18 60.34 

AMPK Compound C 64.82 57.12 54.46 

Cdk2 Inhibitor IV, NU6140 70 66.31 52.71 

Dovitinib 32.34 51.26 33.6 

GSK-3 Inhibitor XIII 59.5 59.93 53.69 

Staurosporine, N-benzoyl- 37.94 55.32 30.87 

SU11652 47.04 49.41 20.72 

Mean Squared Error 106.48 175.12 



Data S1. KiDNN code, Related to Figures 1, 2 and 3. 

Predicting Effect of Untested Kinase Inhibitors on Hs578t Cell Migration 

# Importing the libraries 
import numpy as np 
import pandas as pd 

#Importing migration and activity profile data 
response_data = pd.read_csv('hs578t_migration.csv') 
drug_list = response_data.iloc[:, 0].values 
alldrugs = pd.read_csv('allDrugs_migration.csv', encoding='latin1') 
alldrugs = alldrugs.set_index('compound') 
dataset = alldrugs.loc[drug_list] 
response = response_data['Hs578t'].values 
dataset["migration"] = response 

# Slicing the dataset 
X = dataset.iloc[:, 0:300].values 
y = dataset.iloc[:, 300].values 

# Importing the Keras libraries and packages 
import keras 
from keras.models import Sequential 
from keras.layers import Dense 
from keras.layers import Dropout 

# Initializing the ANN 
classifier = Sequential() 

# Adding the input layer and the first hidden layer 
classifier.add(Dense(units = 200, kernel_initializer = 'TruncatedNormal', activation = 'elu', 
input_dim = 300)) 

# Adding the second hidden layer 
classifier.add(Dense(units = 200, kernel_initializer = 'TruncatedNormal', activation = 'elu')) 

# Adding the output layer 
classifier.add(Dense(units = 1, kernel_initializer = 'TruncatedNormal' )) 

# Compiling the ANN 
classifier.compile(loss = 'mean_squared_error', optimizer='adagrad') 

# Fitting the ANN to the Training set 
classifier.fit(X, y, batch_size = 32, epochs = 75) 



 
# Predicting effect on cell migration for all 178 kinase inhibitors 
X_predict = alldrugs 
prediction_index = X_predict.index.tolist() 
X_predict = X_predict.iloc[:, 0:300].values 
y_pred = classifier.predict(X_predict) 
 

 
Training & Validation Loss – Hs578t 

 
# Importing the libraries 
import numpy as np 
import pandas as pd 
import keras 
from keras.models import Sequential 
from keras.layers import Dense 
import matplotlib.pyplot as plt 
 
# Importing migration and activity profile data 
response_data2 = pd.read_csv('hs578t_migration.csv') 
drug_list2 = response_data2.iloc[:, 0].values 
alldrugs2 = pd.read_csv('allDrugs_migration.csv', encoding='latin1') 
alldrugs2 = alldrugs2.set_index('compound') 
dataset2 = alldrugs2.loc[drug_list2] 
response2 = response_data2['Hs578t'].values 
dataset2["migration"] = response2 
 
# Importing the dataset 
X2 = dataset2.iloc[:, 0:300].values 
y2 = dataset2.iloc[:, 300].values 
 
#building model function 
def build_classifier(): 
    classifier = Sequential() 
    classifier.add(Dense(units = 100, kernel_initializer = 'normal', activation = 'relu', input_dim = 
300)) 
    classifier.add(Dense(units = 100, kernel_initializer = 'normal', activation = 'relu')) 
    classifier.add(Dense(units = 1, kernel_initializer = 'normal')) 
    classifier.compile(loss = 'mean_squared_error', optimizer= 'adam', metrics=[ 'mse']) 
    return classifier 
classifier = build_classifier() 
history = classifier.fit(X2, y2, validation_split= .2, epochs=500, batch_size=1, verbose=0) 
hist = pd.DataFrame(history.history) 
print(history.history.keys()) 
 
#plotting training and validation MSE as a function of epochs 



def plot_history(history): 
  hist = pd.DataFrame(history.history) 
  hist['epoch'] = history.epoch 
 
  plt.figure() 
  plt.xlabel('Epoch') 
  plt.ylabel('Mean Squared Error') 
  plt.plot(hist['epoch'], hist['mean_squared_error'], 
           label='Train Error') 
  plt.plot(hist['epoch'], hist['val_mean_squared_error'], 
           label = 'Validation Error') 
  z = np.polyfit(hist['epoch'].values, hist['val_mean_squared_error'].values, 5) 
  f = np.poly1d(z) 
  x_new = np.linspace(hist['epoch'].values[0], hist['epoch'].values[-1], 50) 
  y_new = f(x_new) 
  plt.plot(x_new, y_new, label = 'Polynomial Fit') 
  plt.title("Training & Validation MSE") 
  plt.ylim([0,200]) 
  plt.xlim([0,450]) 
  plt.legend() 
   
  plt.savefig("Training & Validation MSE.svg") 
  plt.show() 
 
 
plot_history(history) 
 
# exporting data 
best_fit_df = pd.DataFrame({"xnew": x_new, "ynew": y_new}) 
best_fit_df.to_excel("best_fit_line.xlsx", sheet_name='1') 
hist.to_excel("Train & Val Loss.xlsx", sheet_name='1') 

 
 

Epoch & Batch Size Optimization – Hs578t 
 
# Importing the libraries 
import numpy as np 
import pandas as pd 
import keras 
from keras.models import Sequential 
from keras.layers import Dense 
from keras import initializers 
from keras.layers import Dropout 
from sklearn.metrics import mean_squared_error 
from sklearn.metrics import mean_absolute_error 
from scipy.stats.stats import pearsonr 



 
#Importing migration and activity profile data 
response_data2 = pd.read_csv('hs578t_migration.csv') 
drug_list2 = response_data2.iloc[:, 0].values 
alldrugs2 = pd.read_csv('alldrugs_migration.csv', encoding='latin1') 
alldrugs2 = alldrugs2.set_index('compound') 
dataset2 = alldrugs2.loc[drug_list2] 
response2 = response_data2['Hs578t'].values 
dataset2["migration"] = response2 
 
# Slicing the dataset 
X2 = dataset2.iloc[:, 0:300].values 
y2 = dataset2.iloc[:, 300].values 
 
def cross_val( hl_units, init, opt, batch_size, epochs, act, dropout): 
    y_pred_all = [] 
    y_test_all = [] 
    for num in range(len(X2)): 
        y_test = y2[num] 
        X_test = X2[num, :] 
        X_test = np.array([X_test]) 
        X_test.T 
        X_train = np.delete(X2, (num), axis=0) 
        y_train = np.delete(y2, (num), axis=0) 
        classifier = Sequential() 
        classifier.add(Dense(units = hl_units, kernel_initializer = init, input_dim = 300, activation = 
act)) 
        classifier.add(Dense(units = hl_units, kernel_initializer = init, activation = act))  
        classifier.add(Dense(units = 1, kernel_initializer = init)) 
        classifier.compile(loss = 'mean_squared_error', optimizer = opt) 
        classifier.fit(X_train, y_train, batch_size = batch_size, epochs = epochs) 
        y_pred = classifier.predict(X_test) 
        y_pred_all.append(y_pred[0][0]) 
        y_test_all.append(y_test) 
 
    return (mean_squared_error(y_pred_all, y_test_all), mean_absolute_error(y_pred_all, 
y_test_all), pearsonr(y_pred_all, y_test_all)[0]) 
 
 
ep = [50,75,100,125,150,175,200] 
bs = [1,2,4,8,16,32] 
 
scores = [] 
 
#Performing Grid Search 
for epoch in ep: 



    for batch_size in bs: 
        scores.append(cross_val(100, 'normal', 'adam', batch_size, epoch, 'relu', 0.0)) 
 
 

Weight Initialization, Optimizer, Activation Function Optimization – Hs578t 
 

 
# Importing the libraries 
import numpy as np 
import pandas as pd 
import keras 
from keras.models import Sequential 
from keras.layers import Dense 
from keras import initializers 
from keras.layers import Dropout 
from sklearn.metrics import mean_squared_error 
from sklearn.metrics import mean_absolute_error 
from scipy.stats.stats import pearsonr 
 
#Importing migration and activity profile data 
response_data2 = pd.read_csv('hs578t_migration.csv') 
drug_list2 = response_data2.iloc[:, 0].values 
alldrugs2 = pd.read_csv('alldrugs_migration.csv', encoding='latin1') 
alldrugs2 = alldrugs2.set_index('compound') 
dataset2 = alldrugs2.loc[drug_list2] 
response2 = response_data2['Hs578t'].values 
dataset2["migration"] = response2 
 
# Slicing the dataset 
X2 = dataset2.iloc[:, 0:300].values 
y2 = dataset2.iloc[:, 300].values 
 
def cross_val( hl_units, init, opt, batch_size, epochs, act, dropout): 
    y_pred_all = [] 
    y_test_all = [] 
    for num in range(len(X2)): 
        y_test = y2[num] 
        X_test = X2[num, :] 
        X_test = np.array([X_test]) 
        X_test.T 
        X_train = np.delete(X2, (num), axis=0) 
        y_train = np.delete(y2, (num), axis=0) 
        classifier = Sequential() 
        classifier.add(Dense(units = hl_units, kernel_initializer = init, input_dim = 300, activation = 
act)) 
        classifier.add(Dense(units = hl_units, kernel_initializer = init, activation = act))  



        classifier.add(Dense(units = 1, kernel_initializer = init)) 
        classifier.compile(loss = 'mean_squared_error', optimizer = opt) 
        classifier.fit(X_train, y_train, batch_size = batch_size, epochs = epochs) 
        y_pred = classifier.predict(X_test) 
        y_pred_all.append(y_pred[0][0]) 
        y_test_all.append(y_test) 
 
    return (mean_squared_error(y_pred_all, y_test_all), mean_absolute_error(y_pred_all, 
y_test_all), pearsonr(y_pred_all, y_test_all)[0]) 
 
 
initializer = ['uniform', 'TruncatedNormal', 'normal', 'lecun_uniform', 'glorot_normal', 
'he_normal', 'glorot_uniform', 'VarianceScaling', 'orthogonal', 'he_uniform'] 
optimizer = ['rmsprop','adagrad', 'adamax', 'adadelta', 'adam', 'nadam'] 
activation = ['sigmoid', 'tanh', 'relu', 'elu', 'selu'] 
 
scores = [] 
 
#Performing Grid Search 
for init in initializer: 
    for opt in optimizer: 
 for act in activation: 
          scores.append(cross_val(100, init, opt, 32, 75, act, 0.0)) 
 
 

Hidden layer, Nodes per Hidden Layer and Dropout Rate Optimization – Hs578t  
 
# Importing the libraries 
import numpy as np 
import pandas as pd 
import keras 
from keras.models import Sequential 
from keras.layers import Dense 
from keras import initializers 
from keras.layers import Dropout 
from sklearn.metrics import mean_squared_error 
from sklearn.metrics import mean_absolute_error 
from scipy.stats.stats import pearsonr 
 
#Importing migration and activity profile data 
response_data2 = pd.read_csv('hs578t_migration.csv') 
drug_list2 = response_data2.iloc[:, 0].values 
alldrugs2 = pd.read_csv('alldrugs_migration.csv', encoding='latin1') 
alldrugs2 = alldrugs2.set_index('compound') 
dataset2 = alldrugs2.loc[drug_list2] 
response2 = response_data2['Hs578t'].values 



dataset2["migration"] = response2 
 
# Slicing the dataset 
X2 = dataset2.iloc[:, 0:300].values 
y2 = dataset2.iloc[:, 300].values 
 
#LOOCV function for 1 hidden layer 
def cross_val1( hl_units, init, opt, batch_size, epochs, act, dropout): 
    y_pred_all = [] 
    y_test_all = [] 
    for num in range(len(X2)): 
        y_test = y2[num] 
        X_test = X2[num, :] 
        X_test = np.array([X_test]) 
        X_test.T 
        X_train = np.delete(X2, (num), axis=0) 
        y_train = np.delete(y2, (num), axis=0) 
        classifier = Sequential() 
        classifier.add(Dense(units = hl_units, kernel_initializer = init, input_dim = 300, activation = 
act)) 
        classifier.add(Dropout(dropout)) 
        classifier.add(Dense(units = 1, kernel_initializer = init)) 
        classifier.compile(loss = 'mean_squared_error', optimizer = opt) 
        classifier.fit(X_train, y_train, batch_size = batch_size, epochs = epochs) 
        y_pred = classifier.predict(X_test) 
        y_pred_all.append(y_pred[0][0]) 
        y_test_all.append(y_test) 
 
    return (mean_squared_error(y_pred_all, y_test_all), mean_absolute_error(y_pred_all, 
y_test_all), pearsonr(y_pred_all, y_test_all)[0]) 
 
#LOOCV function for 2 hidden layers 
def cross_val2( hl_units, init, opt, batch_size, epochs, act, dropout): 
    y_pred_all = [] 
    y_test_all = [] 
    for num in range(len(X2)): 
        y_test = y2[num] 
        X_test = X2[num, :] 
        X_test = np.array([X_test]) 
        X_test.T 
        X_train = np.delete(X2, (num), axis=0) 
        y_train = np.delete(y2, (num), axis=0) 
        classifier = Sequential() 
        classifier.add(Dense(units = hl_units, kernel_initializer = init, input_dim = 300, activation = 
act)) 
        classifier.add(Dropout(dropout)) 



        classifier.add(Dense(units = hl_units, kernel_initializer = init, input_dim = 300, activation = 
act)) 
        classifier.add(Dropout(dropout)) 
        classifier.add(Dense(units = 1, kernel_initializer = init)) 
        classifier.compile(loss = 'mean_squared_error', optimizer = opt) 
        classifier.fit(X_train, y_train, batch_size = batch_size, epochs = epochs) 
        y_pred = classifier.predict(X_test) 
        y_pred_all.append(y_pred[0][0]) 
        y_test_all.append(y_test) 
 
    return (mean_squared_error(y_pred_all, y_test_all), mean_absolute_error(y_pred_all, 
y_test_all), pearsonr(y_pred_all, y_test_all)[0]) 
 
#LOOCV function for 3 hidden layers 
def cross_val3( hl_units, init, opt, batch_size, epochs, act, dropout): 
    y_pred_all = [] 
    y_test_all = [] 
    for num in range(len(X2)): 
        y_test = y2[num] 
        X_test = X2[num, :] 
        X_test = np.array([X_test]) 
        X_test.T 
        X_train = np.delete(X2, (num), axis=0) 
        y_train = np.delete(y2, (num), axis=0) 
        classifier = Sequential() 
        classifier.add(Dense(units = hl_units, kernel_initializer = init, input_dim = 300, activation = 
act)) 
        classifier.add(Dropout(dropout)) 
        classifier.add(Dense(units = hl_units, kernel_initializer = init, input_dim = 300, activation = 
act)) 
        classifier.add(Dropout(dropout)) 
        classifier.add(Dense(units = hl_units, kernel_initializer = init, input_dim = 300, activation = 
act)) 
        classifier.add(Dropout(dropout)) 
        classifier.add(Dense(units = 1, kernel_initializer = init)) 
        classifier.compile(loss = 'mean_squared_error', optimizer = opt) 
        classifier.fit(X_train, y_train, batch_size = batch_size, epochs = epochs) 
        y_pred = classifier.predict(X_test) 
        y_pred_all.append(y_pred[0][0]) 
        y_test_all.append(y_test) 
 
    return (mean_squared_error(y_pred_all, y_test_all), mean_absolute_error(y_pred_all, 
y_test_all), pearsonr(y_pred_all, y_test_all)[0]) 
 
 
#List of possible values 



nodes_per_hidden_layer = [10,25,50,100,150,200,250,300] 
dropout_rate = [0,0.05,0.1,0.2,0.5] 
 
scores = [] 
 
#Performing Grid Search 
for nodes in nodes_per_hidden_layer: 
    for dr in dropout_rate: 
         scores.append(cross_val1(nodes, ‘TruncatedNormal’, ‘adagrad’, 32, 75, ‘elu’, dr)) 
 
for nodes in nodes_per_hidden_layer: 
    for dr in dropout_rate: 
         scores.append(cross_val2(nodes, ‘TruncatedNormal’, ‘adagrad’, 32, 75, ‘elu’, dr)) 
 
for nodes in nodes_per_hidden_layer: 
    for dr in dropout_rate: 
         scores.append(cross_val3(nodes, ‘TruncatedNormal’, ‘adagrad’, 32, 75, ‘elu’, dr)) 
 
 
 
 

Predicting Effect of Untested Kinase Inhibitors on FOCUS Cell Migration 
 

# Importing the libraries 
import numpy as np 
import pandas as pd 
 
#Importing migration and activity profile data 
response_data = pd.read_csv('focus_migration.csv') 
drug_list = response_data.iloc[:, 0].values 
alldrugs = pd.read_csv('allDrugs_migration.csv', encoding='latin1') 
alldrugs = alldrugs.set_index('compound') 
dataset = alldrugs.loc[drug_list] 
response = response_data['FOCUS'].values 
dataset["migration"] = response 
 
# Slicing the dataset 
X = dataset.iloc[:, 0:300].values 
y = dataset.iloc[:, 300].values 
 
 
# Importing the Keras libraries and packages 
import keras 
from keras.models import Sequential 
from keras.layers import Dense 
from keras.layers import Dropout 



 
# Initializing the ANN 
classifier = Sequential() 
 
# Adding the input layer and the first hidden layer 
classifier.add(Dense(units = 200, kernel_initializer = 'TruncatedNormal', activation = 'elu', 
input_dim = 300)) 
 
# Adding the second hidden layer 
classifier.add(Dense(units = 200, kernel_initializer = 'TruncatedNormal', activation = 'elu')) 
 
# Adding the output layer 
classifier.add(Dense(units = 1, kernel_initializer = 'TruncatedNormal' )) 
 
# Compiling the ANN 
classifier.compile(loss = 'mean_squared_error', optimizer='adagrad') 
 
# Fitting the ANN to the Training set 
classifier.fit(X, y, batch_size = 32, epochs = 75) 
 
# Predicting effect on cell migration for all 178 kinase inhibitors 
X_predict = alldrugs 
prediction_index = X_predict.index.tolist() 
X_predict = X_predict.iloc[:, 0:300].values 
y_pred = classifier.predict(X_predict) 
 

 
Training & Validation Loss – FOCUS 

 
# Importing the libraries 
import numpy as np 
import pandas as pd 
import keras 
from keras.models import Sequential 
from keras.layers import Dense 
import matplotlib.pyplot as plt 
 
# Importing migration and activity profile data 
response_data2 = pd.read_csv('focus_migration.csv') 
drug_list2 = response_data2.iloc[:, 0].values 
alldrugs2 = pd.read_csv('allDrugs_migration.csv', encoding='latin1') 
alldrugs2 = alldrugs2.set_index('compound') 
dataset2 = alldrugs2.loc[drug_list2] 
response2 = response_data2['FOCUS'].values 
dataset2["migration"] = response2 
 



# Importing the dataset 
X2 = dataset2.iloc[:, 0:300].values 
y2 = dataset2.iloc[:, 300].values 
 
#building model function 
def build_classifier(): 
    classifier = Sequential() 
    classifier.add(Dense(units = 100, kernel_initializer = 'normal', activation = 'relu', input_dim = 
300)) 
    classifier.add(Dense(units = 100, kernel_initializer = 'normal', activation = 'relu')) 
    classifier.add(Dense(units = 1, kernel_initializer = 'normal')) 
    classifier.compile(loss = 'mean_squared_error', optimizer= 'adam', metrics=[ 'mse']) 
    return classifier 
classifier = build_classifier() 
history = classifier.fit(X2, y2, validation_split= .2, epochs=500, batch_size=1, verbose=0) 
hist = pd.DataFrame(history.history) 
print(history.history.keys()) 
 
#plotting training and validation MSE as a function of epochs 
def plot_history(history): 
  hist = pd.DataFrame(history.history) 
  hist['epoch'] = history.epoch 
 
  plt.figure() 
  plt.xlabel('Epoch') 
  plt.ylabel('Mean Squared Error') 
  plt.plot(hist['epoch'], hist['mean_squared_error'], 
           label='Train Error') 
  plt.plot(hist['epoch'], hist['val_mean_squared_error'], 
           label = 'Validation Error') 
  z = np.polyfit(hist['epoch'].values, hist['val_mean_squared_error'].values, 5) 
  f = np.poly1d(z) 
  x_new = np.linspace(hist['epoch'].values[0], hist['epoch'].values[-1], 50) 
  y_new = f(x_new) 
  plt.plot(x_new, y_new, label = 'Polynomial Fit') 
  plt.title("Training & Validation MSE") 
  plt.ylim([0,200]) 
  plt.xlim([0,450]) 
  plt.legend() 
   
  plt.savefig("Training & Validation MSE.svg") 
  plt.show() 
 
 
plot_history(history) 
 



# exporting data 
best_fit_df = pd.DataFrame({"xnew": x_new, "ynew": y_new}) 
best_fit_df.to_excel("best_fit_line.xlsx", sheet_name='1') 
hist.to_excel("Train & Val Loss.xlsx", sheet_name='1') 

 
 

Epoch & Batch Size Optimization – FOCUS 
 
# Importing the libraries 
import numpy as np 
import pandas as pd 
import keras 
from keras.models import Sequential 
from keras.layers import Dense 
from keras import initializers 
from keras.layers import Dropout 
from sklearn.metrics import mean_squared_error 
from sklearn.metrics import mean_absolute_error 
from scipy.stats.stats import pearsonr 
 
#Importing migration and activity profile data 
response_data2 = pd.read_csv('focus_migration.csv') 
drug_list2 = response_data2.iloc[:, 0].values 
alldrugs2 = pd.read_csv('alldrugs_migration.csv', encoding='latin1') 
alldrugs2 = alldrugs2.set_index('compound') 
dataset2 = alldrugs2.loc[drug_list2] 
response2 = response_data2['FOCUS'].values 
dataset2["migration"] = response2 
 
# Slicing the dataset 
X2 = dataset2.iloc[:, 0:300].values 
y2 = dataset2.iloc[:, 300].values 
 
def cross_val( hl_units, init, opt, batch_size, epochs, act, dropout): 
    y_pred_all = [] 
    y_test_all = [] 
    for num in range(len(X2)): 
        y_test = y2[num] 
        X_test = X2[num, :] 
        X_test = np.array([X_test]) 
        X_test.T 
        X_train = np.delete(X2, (num), axis=0) 
        y_train = np.delete(y2, (num), axis=0) 
        classifier = Sequential() 
        classifier.add(Dense(units = hl_units, kernel_initializer = init, input_dim = 300, activation = 
act)) 



        classifier.add(Dense(units = hl_units, kernel_initializer = init, activation = act))  
        classifier.add(Dense(units = 1, kernel_initializer = init)) 
        classifier.compile(loss = 'mean_squared_error', optimizer = opt) 
        classifier.fit(X_train, y_train, batch_size = batch_size, epochs = epochs) 
        y_pred = classifier.predict(X_test) 
        y_pred_all.append(y_pred[0][0]) 
        y_test_all.append(y_test) 
 
    return (mean_squared_error(y_pred_all, y_test_all), mean_absolute_error(y_pred_all, 
y_test_all), pearsonr(y_pred_all, y_test_all)[0]) 
 
 
ep = [50,75,100,125,150,175,200] 
bs = [1,2,4,8,16,32] 
 
scores = [] 
 
#Performing Grid Search 
for epoch in ep: 
    for batch_size in bs: 
        scores.append(cross_val(100, 'normal', 'adam', batch_size, epoch, 'relu', 0.0)) 
 
 

Weight Initialization, Optimizer, Activation Function Optimization – FOCUS 
 

 
# Importing the libraries 
import numpy as np 
import pandas as pd 
import keras 
from keras.models import Sequential 
from keras.layers import Dense 
from keras import initializers 
from keras.layers import Dropout 
from sklearn.metrics import mean_squared_error 
from sklearn.metrics import mean_absolute_error 
from scipy.stats.stats import pearsonr 
 
#Importing migration and activity profile data 
response_data2 = pd.read_csv('focus_migration.csv') 
drug_list2 = response_data2.iloc[:, 0].values 
alldrugs2 = pd.read_csv('alldrugs_migration.csv', encoding='latin1') 
alldrugs2 = alldrugs2.set_index('compound') 
dataset2 = alldrugs2.loc[drug_list2] 
response2 = response_data2['FOCUS'].values 
dataset2["migration"] = response2 



 
# Slicing the dataset 
X2 = dataset2.iloc[:, 0:300].values 
y2 = dataset2.iloc[:, 300].values 
 
def cross_val( hl_units, init, opt, batch_size, epochs, act, dropout): 
    y_pred_all = [] 
    y_test_all = [] 
    for num in range(len(X2)): 
        y_test = y2[num] 
        X_test = X2[num, :] 
        X_test = np.array([X_test]) 
        X_test.T 
        X_train = np.delete(X2, (num), axis=0) 
        y_train = np.delete(y2, (num), axis=0) 
        classifier = Sequential() 
        classifier.add(Dense(units = hl_units, kernel_initializer = init, input_dim = 300, activation = 
act)) 
        classifier.add(Dense(units = hl_units, kernel_initializer = init, activation = act))  
        classifier.add(Dense(units = 1, kernel_initializer = init)) 
        classifier.compile(loss = 'mean_squared_error', optimizer = opt) 
        classifier.fit(X_train, y_train, batch_size = batch_size, epochs = epochs) 
        y_pred = classifier.predict(X_test) 
        y_pred_all.append(y_pred[0][0]) 
        y_test_all.append(y_test) 
 
    return (mean_squared_error(y_pred_all, y_test_all), mean_absolute_error(y_pred_all, 
y_test_all), pearsonr(y_pred_all, y_test_all)[0]) 
 
 
initializer = ['uniform', 'TruncatedNormal', 'normal', 'lecun_uniform', 'glorot_normal', 
'he_normal', 'glorot_uniform', 'VarianceScaling', 'orthogonal', 'he_uniform'] 
optimizer = ['rmsprop','adagrad', 'adamax', 'adadelta', 'adam', 'nadam'] 
activation = ['sigmoid', 'tanh', 'relu', 'elu', 'selu'] 
 
scores = [] 
 
#Performing Grid Search 
for init in initializer: 
    for opt in optimizer: 
 for act in activation: 
          scores.append(cross_val(100, init, opt, 2, 120, act, 0.0)) 
 
 

Hidden layer, Nodes per Hidden Layer and Dropout Rate Optimization – FOCUS  
 



# Importing the libraries 
import numpy as np 
import pandas as pd 
import keras 
from keras.models import Sequential 
from keras.layers import Dense 
from keras import initializers 
from keras.layers import Dropout 
from sklearn.metrics import mean_squared_error 
from sklearn.metrics import mean_absolute_error 
from scipy.stats.stats import pearsonr 
 
#Importing migration and activity profile data 
response_data2 = pd.read_csv('focus_migration.csv') 
drug_list2 = response_data2.iloc[:, 0].values 
alldrugs2 = pd.read_csv('alldrugs_migration.csv', encoding='latin1') 
alldrugs2 = alldrugs2.set_index('compound') 
dataset2 = alldrugs2.loc[drug_list2] 
response2 = response_data2['FOCUS'].values 
dataset2["migration"] = response2 
 
# Slicing the dataset 
X2 = dataset2.iloc[:, 0:300].values 
y2 = dataset2.iloc[:, 300].values 
 
#LOOCV function for 1 hidden layer 
def cross_val1( hl_units, init, opt, batch_size, epochs, act, dropout): 
    y_pred_all = [] 
    y_test_all = [] 
    for num in range(len(X2)): 
        y_test = y2[num] 
        X_test = X2[num, :] 
        X_test = np.array([X_test]) 
        X_test.T 
        X_train = np.delete(X2, (num), axis=0) 
        y_train = np.delete(y2, (num), axis=0) 
        classifier = Sequential() 
        classifier.add(Dense(units = hl_units, kernel_initializer = init, input_dim = 300, activation = 
act)) 
        classifier.add(Dropout(dropout)) 
        classifier.add(Dense(units = 1, kernel_initializer = init)) 
        classifier.compile(loss = 'mean_squared_error', optimizer = opt) 
        classifier.fit(X_train, y_train, batch_size = batch_size, epochs = epochs) 
        y_pred = classifier.predict(X_test) 
        y_pred_all.append(y_pred[0][0]) 
        y_test_all.append(y_test) 



 
    return (mean_squared_error(y_pred_all, y_test_all), mean_absolute_error(y_pred_all, 
y_test_all), pearsonr(y_pred_all, y_test_all)[0]) 
 
#LOOCV function for 2 hidden layers 
def cross_val2( hl_units, init, opt, batch_size, epochs, act, dropout): 
    y_pred_all = [] 
    y_test_all = [] 
    for num in range(len(X2)): 
        y_test = y2[num] 
        X_test = X2[num, :] 
        X_test = np.array([X_test]) 
        X_test.T 
        X_train = np.delete(X2, (num), axis=0) 
        y_train = np.delete(y2, (num), axis=0) 
        classifier = Sequential() 
        classifier.add(Dense(units = hl_units, kernel_initializer = init, input_dim = 300, activation = 
act)) 
        classifier.add(Dropout(dropout)) 
        classifier.add(Dense(units = hl_units, kernel_initializer = init, input_dim = 300, activation = 
act)) 
        classifier.add(Dropout(dropout)) 
        classifier.add(Dense(units = 1, kernel_initializer = init)) 
        classifier.compile(loss = 'mean_squared_error', optimizer = opt) 
        classifier.fit(X_train, y_train, batch_size = batch_size, epochs = epochs) 
        y_pred = classifier.predict(X_test) 
        y_pred_all.append(y_pred[0][0]) 
        y_test_all.append(y_test) 
 
    return (mean_squared_error(y_pred_all, y_test_all), mean_absolute_error(y_pred_all, 
y_test_all), pearsonr(y_pred_all, y_test_all)[0]) 
 
#LOOCV function for 3 hidden layers 
def cross_val3( hl_units, init, opt, batch_size, epochs, act, dropout): 
    y_pred_all = [] 
    y_test_all = [] 
    for num in range(len(X2)): 
        y_test = y2[num] 
        X_test = X2[num, :] 
        X_test = np.array([X_test]) 
        X_test.T 
        X_train = np.delete(X2, (num), axis=0) 
        y_train = np.delete(y2, (num), axis=0) 
        classifier = Sequential() 
        classifier.add(Dense(units = hl_units, kernel_initializer = init, input_dim = 300, activation = 
act)) 



        classifier.add(Dropout(dropout)) 
        classifier.add(Dense(units = hl_units, kernel_initializer = init, input_dim = 300, activation = 
act)) 
        classifier.add(Dropout(dropout)) 
        classifier.add(Dense(units = hl_units, kernel_initializer = init, input_dim = 300, activation = 
act)) 
        classifier.add(Dropout(dropout)) 
        classifier.add(Dense(units = 1, kernel_initializer = init)) 
        classifier.compile(loss = 'mean_squared_error', optimizer = opt) 
        classifier.fit(X_train, y_train, batch_size = batch_size, epochs = epochs) 
        y_pred = classifier.predict(X_test) 
        y_pred_all.append(y_pred[0][0]) 
        y_test_all.append(y_test) 
 
    return (mean_squared_error(y_pred_all, y_test_all), mean_absolute_error(y_pred_all, 
y_test_all), pearsonr(y_pred_all, y_test_all)[0]) 
 
 
#List of possible values 
nodes_per_hidden_layer = [10,25,50,100,150,200,250,300] 
dropout_rate = [0,0.05,0.1,0.2,0.5] 
 
scores = [] 
 
#Performing Grid Search 
for nodes in nodes_per_hidden_layer: 
    for dr in dropout_rate: 
         scores.append(cross_val1(nodes, ‘uniform’, ‘adagrad’, 2, 120, ‘selu’, dr)) 
 
for nodes in nodes_per_hidden_layer: 
    for dr in dropout_rate: 
         scores.append(cross_val2(nodes, ‘uniform’, ‘adagrad’, 2, 120, ‘selu’, dr)) 
 
for nodes in nodes_per_hidden_layer: 
    for dr in dropout_rate: 
         scores.append(cross_val3(nodes, ‘uniform’, ‘adagrad’, 2, 120, ‘selu’, dr)) 
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