
1

Vol.:(0123456789)

Scientific Reports |         (2022) 12:7208  | https://doi.org/10.1038/s41598-022-11258-w

www.nature.com/scientificreports

Leveraging machine learning tools 
and algorithms for analysis of fruit 
fly morphometrics
Daisy Salifu1*, Eric Ali Ibrahim1,2 & Henri E. Z. Tonnang1

Analysis of landmark-based morphometric measurements taken on body parts of insects have been 
a useful taxonomic approach alongside DNA barcoding in insect identification. Statistical analysis of 
morphometrics have largely been dominated by traditional methods and approaches such as principal 
component analysis (PCA), canonical variate analysis (CVA) and discriminant analysis (DA). However, 
advancement in computing power creates a paradigm shift to apply modern tools such as machine 
learning. Herein, we assess the predictive performance of four machine learning classifiers; K-nearest 
neighbor (KNN), random forest (RF), support vector machine (the linear, polynomial and radial 
kernel SVMs) and artificial neural network (ANNs) on fruit fly morphometrics that were previously 
analysed using PCA and CVA. KNN and RF performed poorly with overall model accuracy lower than 
“no-information rate” (NIR) (p value > 0.1). The SVM models had a predictive accuracy of > 95%, 
significantly higher than NIR (p < 0.001), Kappa > 0.78 and area under curve (AUC) of the receiver 
operating characteristics was > 0.91; while ANN model had a predictive accuracy of 96%, significantly 
higher than NIR, Kappa of 0.83 and AUC was 0.98. Wing veins 2, 3, 8, 10, 14 and tibia length were of 
higher importance than other variables based on both SVM and ANN models. We conclude that SVM 
and ANN models could be used to discriminate fruit fly species based on wing vein and tibia length 
measurements or any other morphologically similar pest taxa. These algorithms could be used as 
candidates for developing an integrated and smart application software for insect discrimination and 
identification. Variable importance analysis results in this study would be useful for future studies for 
deciding what must be measured.

Analysis of landmark-based morphometric measurements taken on body parts of insects have been a taxonomic 
approach alongside DNA barcoding in detecting morphological differences to discriminate closely related species, 
justify synonyms, demonstrate morphological variation across landscapes, altitudinal or geo-graphical gradients 
and propose new  species1–3. The measurements are usually of multivariate nature requiring multi-variate analysis 
techniques to be able to classify each specimen to a specific group. Analysis of morphometric measurements have 
been deemed as a viable alternative to the complicated and time-consuming taxonomic skills required in insect 
identification. Many studies have measured wing characteristics such as wing  venation2,4 and wing  geometry5–7 
as landmark for identification of insects. Morphometrics data have in many cases produced results congruent 
with phylogenetic groupings from DNA sequencing and hence morphometrics have gained popularity.

Conventional classification analysis approaches have been used to analyse morphometric measurements 
namely principal components analysis (PCA), discriminant analysis (DA), canonical variate analysis (CVA), 
cluster analysis (CA) just to mention a few. Hernández-Ortiz et al.8 used DA and CA on morphometrics variables 
of the acuelans¸ wing and menosotum to distinguish populations of Anastrepha fraterculus complex. Billah et al.9 
analyzed morphometric measurements of allopatric populations of fruit fly parasitoids from coffee fields using 
PCA and CVA where results showed that the relationship between the populations was corroborated by genetic 
evidence from amplified fragment length polymorphism (AFLP) data. A study by Khamis et al.2 used PCA and 
CVA to distinguish Bactrocera species collected from various countries to establish whether B. invadens samples 
collected from Africa could be distinguished from Asian Bactrocera species based on wing vein and tibia length 
morphometrics alongside DNA barcoding. The study showed some level of concordance between molecular 
and morphometric results. While conventional machine learning methods such as k-means cluster  analysis10, 
 PCA2,3, discriminant  analysis6, canonical variate  analysis5, have been widely used, modern machine learning 
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techniques are gradually gaining popularity for morphometrics in insect science. For instance, the k-nearest 
 neighbors11, artificial neural  network12 and random  forest13 algorithms were recently used for morphometrics 
of insects. While conventional methods are largely parametric in nature allowing distributional assumptions, 
modern machine learning techniques are mainly non-parametric, thus they do not make assumptions about the 
kind of mapping functions between output and input variables. Consequently, the novel algorithms are more 
robust in their performance. The objective of the present study is therefore to assess the predictive performance 
of four modern machine learning classifiers; K-nearest neighbor (KNN), random forest (RF), support vector 
machine (SVM) and artificial neural network (ANN) on morphometric measurements on fruit fly, Bactrocera 
spp and determine the variable importance (VI) of predictor variables. Such information would be useful for 
the development of an integrated and smart application software for insect discrimination and identification.

Results
The k-nearest neighbor classifier. The optimal value for the tuning parameter k for kNN classification 
model was selected based on highest model accuracy on training data for a range of k values. Model accuracy 
reduced with increasing k values. Accuracy was highest for k = 5 (Table 1).

The kNN classifier model with k = 5 had a predictive accuracy rate of 0.932 [95% CI: 0.889, 0.957] and “no-
information rate” (NIR) of 0.929 with p value (accuracy > NIR) = 0.991, thus there is no evidence accuracy is 
higher than NIR, suggesting that the predictive performance of the kNN classifier on the data is not any better 
than random guessing. We cannot use this model to predict for new data.

The RF classifier. The RF hyperparameter, mtry was evaluated for the RF model using repeated cross-val-
idation and mtry equal to 7 was optimal. This means that the RF classifier used 7 predictors to split the tree. 
Graphical presentation of the results on accuracy against randomly selected predictors is as shown in Fig. 1.

The RF classifier model had an overall accuracy of 0.911 [95% CI: 0.874, 0.939], kappa statistic of 0.54 and 
NIR of 0.929 with p-value (accuracy > NIR) = 0.916 suggesting a poor model. We therefore do not pursue the 
confusion matrix.

Table 1.  Values of the tuning parameter, k and the corresponding accuracy and kappa statistics for the kNN 
model on the training dataset.

k Accuracy Kappa

5 0.927 0.639

7 0.924 0.615

9 0.915 0.564

11 0.908 0.510

13 0.904 0.483

15 0.897 0.430

17 0.893 0.399

19 0.889 0.367

21 0.887 0.348

23 0.884 0.324

Figure 1.  Variation in accuracy for number of randomly selected predictor variables (mtry) for the random 
forest classifier. Model accuracy is highest for mtry = 7.
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Support vector machine (SVM) classifier. Three SVM classifier models were implemented; linear ker-
nel SVM, polynomial kernel SVM and radial basis function SVM and here we provide the predictive perfor-
mance of these models respectively.

Linear kernel SVM. The linear SVM model attained highest accuracy with cost “C” of 5.75. This cost parameter 
was obtained using repeated cross-validation whose results are shown in Fig. 2.

The linear kernel SVM classification model (C = 5.75) had overall accuracy of 0.957 [95% CI: 0.929, 0.976]. 
The corresponding NIR was 0.886 with p-value < 0.0001 (accuracy > NIR), thus accuracy score was significantly 
higher than NIR which implies that the classifier model performed better than one could do by always predicting 
the most common class. The model had a Kappa of 0.811 signifying substantial strength of agreement between 
the model’s predictions and the actual labels of classes while controlling for accuracy of a random classifier. The 
AUC of the receiver operating characteristics for the linear kernel SVM classifier was 0.911. Table 2 displays the 

Figure 2.  Linear SVM model accuracy (y-axis) for values of cost parameter (x-axis) obtained from the repeated 
cross-validation of the training sample data. Cost “C” = 5.75 gives the optimal model.

Table 2.  Classification results for the SVM classifiers on test dataset of morphometric measurements of 
Bactrocera spp., with observed species affiliation in the rows and predicted species allocation in the columns. 
Correct classification rate appears along the diagonal in bold. Bco—B. Correcta, Bcu—B. cucurbitae, Bdo—B. 
dorsalis, BI—B. invadens, Bka—B. kandiensis, Bol—B. oleae, Bzo—B. zonata; SVM-L: linear kernel SVM, SVM-
R: radial kernel SVM, SVM-P: polynomial kernel SVM.

Classifier Observed

Predicted (%)

Sensitivity SpecificityBco Bcu Bdo BI Bka Bol Bzo

SVM-L

Bco 80.0 0 0 20.0 0 0 0 1.000 0.997

Bcu 0 100 0 0 0 0 0 0.818 1.000

Bdo 0 0 25.0 75.0 0 0 0 0.500 0.981

BI 0 0.7 0.7 98.6 0 0 0 0.965 0.892

Bka 0 0 0 37.5 62.5 0 0 1.000 0.991

Bol 0 0 0 0 0 100 0 1.000 1.000

Bzo 0 0 0 0 0 0 100 1.000 1.000

SVM-R

Bco 80.0 0 0 20.0 0 0 0 1.000 0.997

Bcu 0 88.9 0 11.1 0 0 0 1.000 0.997

Bdo 0 0 37.5 62.5 0 0 0 1.000 0.984

BI 0 0 0 100 0 0 0 0.956 1.000

Bka 0 0 0 75.0 25.0 0 0 1.000 0.981

Bol 0 0 0 0 0 100 0 1.000 1.000

Bzo 0 0 0 0 0 0 100 1.000 1.000

SVM-P

Bco 80.0 0 0 20.0 0 0 0 0.800 0.997

Bcu 0 88.9 0 11.1 0 0 0 0.889 0.997

Bdo 0 0 50.0 50.0 0 0 0 1.000 0.988

BI 0.35 0.35 0 98.2 1.1 0 0 0.962 0.865

Bka 0 0 0 62.5 37.5 0 0 0.500 0.984

Bol 0 0 0 0 0 100 0 1.000 1.000

Bzo 0 0 0 0 0 0 100 1.000 1.000
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classifier predictions on the test dataset and classifier metrics based on the confusion matrix. From the predic-
tions, it is clear all samples of B. oleae (Bol), and B. zonata (Bzo) in the test dataset have been classified into their 
respective observed group. The linear kernel SVM model achieved sensitivity rate of above 80% for all species 
except for B. dorsalis (Bdo) while specificity ranged from 89 to 100%.

Radial kernel SVM classifier. Selection of optimal model for radial kernel SVM requires determination of the 
optimal values of tuning parameters namely gamma (γ) and cost (C). We tested different values of γ ranging 
from 0.01 to 0.1 with step 0.01 while C was in range 0.01 to 10.0 with step 0.25 and obtained the values that 
minimize the classification error for the tenfold cross-validation. The optimal model was obtained with γ = 0.06 
and C = 9.51. Using these parameters, the radial kernel SVM model had accuracy of 0.96 [95% CI: 0.933, 0.978], 
Kappa statistic of 0.810 and NIR of 0.91 with p-value (accuracy > NIR) = 0.0002. NIR being significantly lower 
than accuracy, suggests the radial kernel SVM model is superior to random guessing. The AUC of the receiver 
operating characteristics for the radial kernel SVM classifier was 0.933.

Just as with the linear kernel SVM model, the sensitivity and specificity for B. oleae (Bol), and B. zonata (Bzo) 
was 100%. (Table 2).

Polynomial SVM classifier model. The polynomial SVM model attained optimal accuracy at a degree of 2, 
scale of 2 and cost of 0.1. Using the test dataset, the classifier model yielded predictive accuracy of 0.951 [95% 
CI: 0.921, 0.972], Kappa statistic of 0.784 and NIR of 0.886 with p-value (accuracy > NIR) < 0.0001, suggesting 
a good model. The AUC of the receiver operating characteristics for the polynomial kernel SVM classifier was 
0.959. The sensitivity for B. oleae (Bol), B. zonata (Bzo) and B. dorsalis (Bdo) was 100% respectively, while the 
model had smallest sensitivity on B. kandiensis (Bka) (Table 2).

Artificial neural network (ANN) classifier. The optimal ANN model was selected based on the accuracy 
obtained by varying the number of nodes of the network. The ANN model was optimal at 17 nodes and decay 
of 0.042. We fitted a feedforward (15-17-7) network, thus a model with 15 input neurons, 17 hidden neurons 
and 7 input neurons. The predictive accuracy for this model was 0.96 [95% CI: 0.933, 0.979], Kappa statistic of 
0.833 and NIR of 0.873 with p-value (accuracy > NIR) < 0.0001. Thus, the neural network was superior to NIR. 
The AUC of the receiver operating characteristics for the ANN model was 0.986. The classification results of the 
ANN classifier on test dataset and the estimated metrics are presented in Table 3. From the predictions, it is clear 
that all samples of B. Correcta (Bco), B. oleae (Bol), and B. zonata (Bzo) in the test dataset have been classified 
into their respective observed group. The metrics for ANN classifier suggests that sensitivity was lowest for B. 
dorsalis (Bdo) and B. kandiensis (Bka) while the sensitivity and specificity for B. Correcta (Bco), B. oleae (Bol) 
and B. zonata (Bzo) was 100%, respectively (Table 3).

Finally, a summary of performance metrics namely accuracy, Kappa, no-information rate (and associated 
p-values), and AUC of the ML classifiers under study are presented in Table 4. AUC is only estimated for the 
best classifiers, SVM and ANN.

Variable importance for the predictor morphometric measurements. The relative importance of 
variables was obtained for the SVM models and ANN model. All SVM models; linear kernel, radial kernel and 
polynomial kernel SVM gave similar results in terms of variable importance. The SVM models identified veins 
3, 2, 8 and 10 (in that order) as of higher importance than others in all species except for B. invadens (BI) and 
B. dorsalis (Bdo) where the models suggest that almost all predictor variables are of high importance, including 
veins 2, 3, 8 and 10 (Fig. 3). The VI graphical displays for the linear kernel and polynomial kernel SVMs are given 
as supplementary material (Supplementary Fig. S1 and Supplementary Fig. S2).

The variable importance (VI) results for the ANN model are displayed in Fig. 4. ANN model introduced vein 
3, 8, 2, 14 and tibia length as predictors of higher importance than others.

Table 3.  Classification results for the ANN classifier on test dataset of morphometric measurements of 
Bactrocera spp., with observed species affiliation in the rows and predicted species allocation in the columns. 
Correct classification rate appears along the diagonal in bold. Bco—B. Correcta, Bcu—B. cucurbitae, Bdo—B. 
dorsalis, BI—B. invadens, Bka—B. kandiensis, Bol—B. oleae, Bzo—B. zonata.

Observed

Predicted (%)

Sensitivity SpecificityBco Bcu Bdo BI Bka Bol Bzo

Bco 100 0 0 0 0 0 0 1.000 1.000

Bcu 0 88.9 0 11.1 0 0 0 0.889 0.997

Bdo 0 0 50.0 50.0 0 0 0 0.667 0.987

BI 0 0.35 0.35 98.2 1.1 0 0 0.975 0.878

Bka 0 0 12.5 25.0 62.5 0 0 0.625 0.991

Bol 0 0 0 0 0 100 0 1.000 1.000

Bzo 0 0 0 0 0 0 100 1.000 1.000
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Table 4.  Summary of performance metrics for all the machine learning classifiers under study. NIR 
no-information rate, Acc accuracy, AUC  Area under the curve of the receiver operating characteristics, SVM 
Support vector machine, ANN Artificial neural network.

Classifier model Accuracy [95% CI] Kappa NIR

p value

AUC (Acc > NIR)

k-Nearest Neighbor 0.932 [0.899, 0.957] 0.648 0.929 0.469

Random Forest 0.912 [0.874, 0.939] 0.536 0.929 0.916

SVM

 Linear kernel 0.957 [0.929, 0.976] 0.811 0.886  < 0.0001 0.911

 Radial kernel 0.960 [0.933, 0.979] 0.810 0.908 0.0002 0.933

 Polynomial kernel 0.951 [0.921, 0.972] 0.784 0.886  < 0.0001 0.959

ANN 0.960 [0.933, 0.979] 0.827 0.883  < 0.0001 0.986

Figure 3.  Analysis of variable importance (VI) for the radial kernel SVM model. Veins 3, 2, 8, and 10 are 
identified as predictors of higher importance than others in all species except for Bdo (B. dorsalis) and BI (B. 
invadens).
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Discussion
This paper evaluates novel analysis techniques, herein machine learning tools and algorithms namely, KNN, RF, 
SVM and ANN to classify fruit fly species based on morphometrics data that were previously analysed using 
conventional statistical methods. Although conventional classification methods are very popular in agricultural 
 sciences5,10, advancement in data science and computing power provide an opportunity to harness and integrate 
the novel and robust machine learning tools as analytics routine in insect science research as demonstrated by 
this example on morphometrics.

KNN and RF classifiers performed poorly with ‘no-information rate’ being higher than overall accuracy 
with p-value > 0.05, thus the models were no better than random guessing in the classification of Bactrocera 
spp. Millard and  Richardson14 showed that random forest models improve with larger training datasets. The 
RF classifier must have suffered even more from the small training samples of the minority classes leading to 
poor predictive performance. SVM and ANN models were superior to KNN and RF in that all the SVM models, 
namely linear kernel SVM, Polynomial kernel SVM and Radial kernel SVM, had overall accuracy of above 95% 
and AUC of > 91 and ANN had overall accuracy of 96% and AUC of 0.986 with ‘no-information rate’ significantly 
lower than accuracy for both ANN and the SVM models. The superiority of SVM in terms of accuracy was also 
shown in a study by Smoliński et al.15 in which two traditional machine learning classifiers (linear and quadratic 
discriminant classifiers) and four modern machine learning classifiers; kNN, Classification and regression trees, 
RF and SVM were used to discriminate stocks of fish species based on otolith shape.

Among the three forms of the SVM models, the linear kernel SVM (accuracy 95.7%, AUC = 0.911) and radial 
kernel SVM model (accuracy 96.0%, AUC = 0.933) had kappa values higher than the polynomial kernel (accu-
racy 95.1%, AUC = 0.959). This study makes a very narrow distinction on predictive performance among the 
three SVM models while  Nguyen16 who compared linear, polynomial and radial kernel SVM regression models 
concluded that the radial basis function was more appropriate than linear and polynomial kernel functions in 
predicting blast-induced ground vibration in an open-pit coal mine.

The data used in this study were initially analysed using principal component analysis (PCA) and canonical 
variate analysis (CVA) alongside DNA barcoding in Khamis et al.2. We therefore compare the classification of 
our best models with that obtained by DNA barcoding. Our best-chosen models, SVM and ANN predicted B. 
oleae and B. zonata as distinct groups while misclassification was largely among the three species B. kandiensis, B. 
invadens and B. dorsalis. These findings concur with results of DNA barcoding in Khamis et al. 2 and supported 
by mahalanobis squared distance which was smallest between B. invadens and B. dorsalis (11.4) and B. invadens 
and B. kandiensis (8.1) as compared to distance between B. invadens and B. zonata (43.1) and B. invadens and 
B. oleae (45.1).

PCA is a linear transformation of data from multiple axis to principal component axis. The principal com-
ponents as new axis provides the best angle to see and evaluate the data such that any hidden group structures 
are revealed. On the other hand, Canonical variate analysis is similar to PCA but assumes that the group struc-
ture in the observations is known a priori. As applied on the morphometrics data, PCA and CVA were purely 
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Figure 4.  Analysis of variable importance (VI) for the artificial neural network model. Veins 3, 8, 2, 14 and tibia 
length are analysed as of higher importance than others in predicting the Bactrocera spp.
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descriptive and graphical while the machine learning techniques being assessed in this paper provide model’s 
performance measures such as accuracy, kappa, area under curve, no-information rate and hence superior to the 
conventional methods used previously. This superiority is well pronounced when the data available are balanced, 
and it is usually recommended to select an algorithm based on the available datasets. In other words, the poor 
predictions observed with KNN and RF are not directly resulting from the predictive ability of the algorithms, 
but it is rather a result of the type and quantity of dataset. Techniques such as RF is non-linear and known to 
perform extremely well with large and noisy datasets. Often, it is advisable to first apply PCA to clean the data 
prior to running this algorithm. PCA has the advantage that it is easy to implement and is purely descriptive.

This paper has further provided information on variable importance that was not previously provided for 
these data, thus our best machine learning classifiers, SVM and ANN have analysed wing veins 3, 2, 8, 10, 14 
and tibia length as predictor variables of higher importance than others. This information could be useful for 
future studies.

SVM and ANN algorithms achieved the highest predictive accuracy for the fruit fly morphometric meas-
urements with NIR lower than accuracy and thus our choice of classifiers for these data. However, we recom-
mend that discrimination studies should test a range of machine learning classifiers because the selection of the 
best-performing algorithms can be case-specific and depends, for instance, on the number of classes, similarity 
between groups, or type and number of variables in the  dataset17. We subjected our ML models to multi-class 
imbalanced data. In as much as SVM and ANN produced good results, we recommend the use of data generation 
mechanisms to generate synthetic samples to boost samples for the minority classes.

The findings of our study suggest that SVM and ANN algorithms are a good alternative to conventional 
statistical classifiers and can be used to discriminate fruit fly species based on wing vein measurements and 
tibia length or any other morphologically similar pest taxa. These algorithms could be used as candidates for 
developing an integrated and smart application software for insect discrimination and identification. The VI 
results in this study would be useful for future studies for deciding what must be measured.

Materials and methods
Description of the data. This study used secondary data on measurements of wing veins and tibia length 
of male samples of fruit fly Bactrocera spp collected from various parts of Africa and Asia. Specimen were col-
lected for Bactrocera invadens, Bactrocera correcta, Bactrocera cucurbitae, Bactrocera dorsalis, Bactrocera kandi-
ensis, Bactrocera oleae, and Bactrocera zonata. Fourteen wing vein distances between 15 selected landmarks of 
the right wing and right hind tibia length were measured. A full description of the data is found in Khamis et al.2. 
The summarized data on 14 wing vein measurements and tibia length (mm) are in Table 5.

Machine learning algorithms. We describe the four machine learning algorithms; KNN, RF, SVM and 
ANN to be used for classification of Bactrocera spp based on morphometrics data.

K-nearest neighbor. KNN is one of the simplest non-parametric distance-based machine learning algo-
rithms for classification. KNN algorithm assumes the similarity between the new case/data and available cases 
and put the new case into the category that is most similar to the available  categories18. KNN selects the num-

Table 5.  Mean measurements of wing vein distances and tibia length (mm) of fruit fly (Bactrocera spp.) 
specimen collected from African countries and Asia. Bco—B. Correcta (n = 18), Bcu—B. cucurbitae (n = 31), 
Bdo—B. dorsalis (n = 28), BI—B. invadens (n = 940), Bka—B. kandiensis (n = 28), Bol—B. oleae (n = 28), 
Bzo—B. zonata (n = 18).

Variable

Bactrocera spp.

Bco Bcu Bdo BI Bka Bol Bzo

Vein 1 4.086 5.115 4.211 4.748 4.947 3.585 4.334

Vein 2 0.631 0.871 0.719 0.746 0.749 0.612 0.641

Vein 3 1.022 1.382 1.175 1.284 1.343 0.876 1.195

Vein 4 0.503 0.548 0.517 0.545 0.605 0.316 0.616

Vein 5 1.265 1.584 1.351 1.497 1.591 1.018 1.510

Vein 6 0.384 0.504 0.412 0.444 0.488 0.291 0.399

Vein 7 1.761 2.150 1.891 2.067 2.156 1.549 1.943

Vein 8 0.621 0.865 0.706 0.772 0.789 0.544 0.679

Vein 9 0.701 0.913 0.770 0.878 0.907 0.653 0.727

Vein 10 0.962 1.332 1.094 1.191 1.263 0.844 0.981

Vein 11 2.160 2.726 2.291 2.489 2.641 1.940 2.306

Vein 12 1.120 1.356 1.151 1.229 1.270 1.114 1.116

Vein 13 1.078 1.340 1.051 1.150 1.251 0.938 1.186

Vein 14 2.054 2.500 2.156 2.362 2.409 1.689 2.165

Tibia length 1.471 1.728 1.522 1.679 1.721 1.153 1.506
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ber k of the neighbors and calculates a distance measure, commonly Euclidian distance and then assigns the 
unknown observation to a class based on class majority of the k closest  neighbors11,19. Thus, k plays an important 
role in the performance of kNN algorithm and is a key tuning parameter of the model. Herein, the parameter 
k was determined through cross validation technique, in which different values of k were subjected to the kNN 
algorithm and the selected k corresponded to the value with the highest accuracy of the model.

Random forest. Random Forest is a tree-based machine learning technique that leverages the power of 
multiple decision trees considered as forest in an assemble paradigm for making  predictions20. A decision tree 
is a tree-structured classifier, where internal nodes represent the features of a dataset, branches represent the 
decision rules, and each leaf node represents the outcome. A decision tree has essentially two nodes; decision 
node and leaf  node20,21. Decision nodes are used to make decision and have multiple branches, whereas leaf 
nodes are the output of those decisions and do not contain any further branches. The decisions are performed 
based on features of the given dataset. The best feature for the root node and for sub-nodes is determined using 
attribute selection measure. A decision tree simply asks a question and based on the answer (Yes/No), it further 
splits the tree into subtrees. Random forest, as the name suggests, is a “forest” of randomly created decision trees. 
Each node in the decision tree works on a random subset of features/input variables to calculate the output. The 
random forest then combines the output of individual decision trees to generate the final output. To implement 
the random forest, there are two tuning parameters, the number of trees (ntree) and the number of features, the 
input variables in each split (mtry). To find the optimal RF model, a range of values for mtry parameter were 
tested and evaluated using repeated cross-validation and the optimal value was selected for which the model 
accuracy was highest, ntree was held constant as 2000.

Support vector machine algorithm. The goal of Support Vector Machine (SVM) algorithm is to estab-
lish the best line or decision boundary that can segregate n-dimensional space into classes that can easily put 
new subjected data points in the correct category in the future. This best decision boundary is called a hyper-
plane. SVM chooses the extreme points/vectors that help in creating the  hyperplane22,23. These extreme cases are 
referred to as support vectors, and hence the algorithm is termed as support vector machine. There are different 
kernel functions used in SVM and selecting an appropriate kernel function is crucial for the performance of the 
SVM. We evaluated the SVM with the simplest kernel, the linear kernel SVM, and two non-linear kernels; the 
polynomial kernel and the radial basis  kernel24. Non-linear kernel functions are necessary where samples cannot 
be separated linearly. There are two parameters that need to be tuned when implementing SVM classifier, thus 
the optimum parameters of cost, C and the kernel width parameter, gamma (γ). The C parameter decides the 
size of misclassification allowed for non-separable training data, which makes the adjustment of the rigidity of 
training data possible. The gamma (γ) affects the smoothing of the shape of the class-dividing hyperplane. In this 
study, C was evaluated using a range of values from 0.01 to 10.0 with step size of 0.25 while γ had values from 
0.01 to 0.1 with step size of 0.01. The linear kernel SVM has only one parameter. Optimal values were chosen 
corresponding to model with highest accuracy.

Artificial neural network. Artificial neural networks, as the name implies, are inspired from their biologi-
cal counterparts, the biological brain, and the nervous system. In artificial intelligence, an ANN is based on a 
collection of connected units or nodes called artificial neurons, which loosely model the neurons in a biologi-
cal  brain25. ANN can be applied in supervised and unsupervised training. We use ANN as supervised learning 
algorithm which means that we provide the input data containing the independent variables and the output data 
that contains the dependent  variable26,27. A feed-forward neural network with three layers: input layer, hidden 
layer and output layer is used (Fig. 5). The back-propagation algorithm, the mostly used optimization technique 
for the training of feed forward neural networks is  used28. During data processing, predictions are made in ANN 
based on the values in the input nodes and the weights, one weight for each input feature. The nodes in the input 
layer are connected with the output layer via the weight parameters. In the output layer, the values in the input 
nodes are multiplied with their corresponding weights and are added together. A bias term is added to the sum 
to improve the level of robustness of the neural network. The sum is passed through an activation function, usu-
ally sigmoid activation function:

The result of the activation function, Eq. (1) is basically the predicted output for the input features. The back-
propagation optimization technique provides the means to adjust the free parameters of the network to minimize 
error between actual and predicted outcome. In this study, the input layer consists of 15 neurons, the wing vein 
and tibia length variables and the output layer has 7 neurons, the fruit fly species. The number of neurons for 
the hidden layer was determined by trial and error.

Analytics. The data comprise of 1091 observations on 15 morphometric measurements. The output variable 
are the seven fruit fly species namely; B. correcta (Bcor), B. cucurbitae (Bcu), B. dorsalis (Bdo), B. invadens (BI), 
B. kandiensis (Bka), B. oleae (Bol) and B. zonata (Bzo) (Table 5).

The classification algorithms K-Nearest Neighbor, Random Forest, Support Vector Machine (SVM), and 
Artificial Neural Network (ANN) were trained on 70% of the fruit fly morphometric dataset while 30% of the 
data was used as test set.

(1)f (x) =
1

1+ e−(x)
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Each model’s performance was evaluated based on accuracy score, Kappa, AUC of the receiver operating char-
acteristics and ‘no- information rate’ (NIR) derived using confusion matrix. A confusion matrix is a table defining 
the predictive performance of a classifier on a set of test data for which the true values are known. The accuracy is 
the proportion of samples accurately classified. Kappa statistic reveals how well the model’s predictions match the 
actual labels of classes while controlling for accuracy of a random classifier. Landis and  Koch29 classified Kappa 
statistics within the range of 0.00 and 0.20 as implying poor agreement between classifier’s predictions and the 
actual labels of the classes; 0.21–0.40 imply fair strength of agreement; 0.41–0.60 imply moderate agreement; 
0.61- 0.80 imply substantial strength of agreement while 0.81–1.00 imply an almost perfect agreement. NIR is the 
score realized by classifier model in predicting the classes when the information beyond the overall distribution 
of the classes being predicted is unknown. A model with higher NIR than accuracy implies poor  performance30.

Other model diagnostic metrics on individual outcome classes include sensitivity and specificity. Sensitivity 
is the rate at which true positives are correctly classified while specificity is the rate at which true negatives are 
correctly classified.

All statistical analyses were conducted using the R software version 4.0.431. The classification models were 
implemented using the caret  package32. In addition, the SVM classifier required kernlab  package33 and e1071 
 package34 while ANN classifier required neuralnet  package35 and nnet  package36. The ggplot2  package37 was used 
for graphical visualisations. The models were constructed using fivefold cross validation with the hold out fold 
used to measure the accuracy of each model.

Code Availability
R code used in this paper is available at http:// dmmg. icipe. org/ datap ortal/ datas et/ afric an- fruit- fly- progr am. The 
data are available at https:// github. com/ icipe- offic ial/ Machi ne- Learn ing- Algor ithms- on- Insect- Morph ometr 
ics- Data.
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