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Abstract

In this study, we characterized a putative Flp/Tad pilus-encoding gene cluster, and we examined its regulation at the
transcriptional level and its role in the virulence of potato pathogenic enterobacteria of the genus Pectobacterium. The Flp/
Tad pilus-encoding gene clusters in Pectobacterium atrosepticum, Pectobacterium wasabiae and Pectobacterium aroidearum
were compared to previously characterized flp/tad gene clusters, including that of the well-studied Flp/Tad pilus model
organism Aggregatibacter actinomycetemcomitans, in which this pilus is a major virulence determinant. Comparative
analyses revealed substantial protein sequence similarity and open reading frame synteny between the previously
characterized flp/tad gene clusters and the cluster in Pectobacterium, suggesting that the predicted flp/tad gene cluster in
Pectobacterium encodes a Flp/Tad pilus-like structure. We detected genes for a novel two-component system adjacent to
the flp/tad gene cluster in Pectobacterium, and mutant analysis demonstrated that this system has a positive effect on the
transcription of selected Flp/Tad pilus biogenesis genes, suggesting that this response regulator regulate the flp/tad gene
cluster. Mutagenesis of either the predicted regulator gene or selected Flp/Tad pilus biogenesis genes had a significant
impact on the maceration ability of the bacterial strains in potato tubers, indicating that the Flp/Tad pilus-encoding gene
cluster represents a novel virulence determinant in Pectobacterium. Soft-rot enterobacteria in the genera Pectobacterium
and Dickeya are of great agricultural importance, and an investigation of the virulence of these pathogens could facilitate
improvements in agricultural practices, thus benefiting farmers, the potato industry and consumers.
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Introduction

Soft-rot enterobacteria of the genera Pectobacterium and Dickeya

are devastating phytopathogens that exert significant negative

impacts on agricultural production, causing losses in fields and in

storage. Many taxonomic groups of soft-rot enterobacteria have

been isolated from potato (Solanum tuberosum L.), which represents

one of the most economically important hosts of these pathogens.

These bacteria include Pectobacterium atrosepticum, Pectobacterium

carotovorum subsp. brasiliensis, a clade of Pectobacterium wasabiae and

a clade of Dickeya that is now tentatively known as Dickeya solani [1],

[2], [3], [4], [5], [6]. In addition to their agricultural importance,

the investigation of plant pathogenic enterobacteria could also

benefit studies of animal pathogens due their kinship with well-

known animal pathogens in the Enterobacteriaceae family such as

E. coli, Salmonella and Yersinia. This study could provide information

that is relevant to other bacterial groups through the investigation

of conserved virulence-related systems present in a variety of

pathogens.

Soft-rot enterobacteria are necrotrophs, and their pathogenesis

relies on suitable environmental conditions that support the

multiplication of these opportunistic pathogens and their prolific

production of plant cell wall-degrading enzymes (PCWDEs),

which cause the typical symptoms of soft rot [3]. In addition to

PCWDEs, soft-rot enterobacteria utilize several other factors to

colonize plant tissue and enhance disease progression. Such factors

include the extracellular Nip (necrosis inducing protein) and Svx (a

protein similar to an avirulence protein in Xanthomonas) proteins in

Pectobacterium, intracellular effectors secreted into the host cell via

the type III secretion system (T3SS) that have been characterized

in both Pectobacterium and Dickeya and type IV and VI secretion

systems (T4SS, T6SS) in Pectobacterium [5], [6]. However, T3SS is

not present in all Pectobacterium and Dickeya strains [5], [6]. In

addition, motility and surface structures such as lipopolysaccharide

(LPS) are important virulence determinants that facilitate the

persistence of the bacteria and colonization of the host plant [7],

[5]. In Dickeya, siderophores, which function in iron acquisition

from the surroundings play a major role in virulence; however,

their role has not yet been described in the Pectobacterium genus [5].
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In Pectobacterium, the production of PCWDEs and other virulence

determinants, such as T3SS and T6SS, is regulated by a complex

network in which several virulence traits are controlled by the

same regulatory systems [5], [8], [9].

We previously showed that Pectobacterium may have a novel

uncharacterized putative virulence determinant, the Flp/Tad

pilus, which is encoded by the flp-tad-rcp (fimbrial low-molecular-

weight protein/tight adherence protein/rough colony protein)

gene cluster (also referred to as the flp/tad gene cluster). This gene

cluster was expressed parallel to known virulence determinants

such as PCWDEs and T6SS in response to potato tuber extract in

P. atrosepticum SCRI1043 [10]. The Flp/Tad pilus has been

categorized as a type IVb pili, and the encoding cluster is present

in a wide variety of bacterial species and is considered a target of

horizontal gene transfer [11], [12]. To our knowledge, no type IV

pili are related to virulence in soft-rot enterobacteria. The Flp/

Tad pilus is composed of Flp/Fap pilin component proteins

(fimbrial low-molecular-weight protein/fibril-associated protein),

and the pilus often exhibits polar localization on the surface of

bacteria. At a minimum, the flp/tad gene cluster encodes the Flp/

Tad pili and the proteins necessary for the biogenesis of these pili

[13], [14], [15], [16], [17]. The Flp/Tad pilus was first

characterized in Aggregatibacter actinomycetemcomitans, the causative

agent of localized aggressive periodontitis, in which the pilus is

essential for colony morphology and biofilm formation and

functions as an important virulence factor (reviewed most recently

by Tomich et al. [11]). Since then, the Flp/Tad pilus has been

characterized in several other animal pathogenic bacteria of the

genera Haemophilus, Pasteurella, Pseudomonas and Yersinia and in one

environmental bacterium of the genus Caulobacter and has been

shown to be necessary for biofilm formation and/or virulence

[11]. The Flp/Tad pilus is also an important host colonization

factor in the gut bacterium Bifidobacterium breve [16]. The Flp/Tad

pilus locus was recently shown to encode a novel virulence

determinant in a phytopathogen (Ralstonia solanacearum), indicating

for the first time an important role for the pilus in other plant

pathogenic bacteria as well [17].

In this study, we further characterized flp/tad genes encoding

the predicted Flp/Tad pilus in soft-rot enterobacteria and

examined their role and regulation in virulence. First, we

performed a comparative genomics analysis of the flp/tad gene

cluster and identified a conserved cluster among soft-rot entero-

bacteria similar to that in other bacterial species. We determined

that the genes in the flp/tad gene cluster may be regulated by a

novel two-component system (TCS) in soft-rot enterobacteria.

Furthermore, we were able to demonstrate that mutagenesis of

either selected flp/tad genes or the novel response regulator of the

TCS delayed tissue maceration in potato tubers compared with

the wild-type strain. The novel response regulator identified in this

work may be an independent part of the regulatory web of

virulence in soft-rot enterobacteria and mainly regulates the flp/tad

gene cluster in response to environmental cues similar to those

used by other virulence determinants. This study provides novel

information regarding virulence determinants in soft-rot entero-

bacteria, providing a foundation for applied studies aimed at

improving plant health, an economically important aspect of

agricultural production and industry.

Materials and Methods

Bacterial Strains and Standard Culture Conditions
In this study, Pectobacterium atrosepticum SCRI1043 [18], Pecto-

bacterium wasabiae SCC3193 [19] and their derivatives (Table S1)

were utilized as bacterial models, and potato cv. Van Gogh (H&H

Tuominen, Finland) was used as a plant model. Escherichia coli

DH5a was utilized for molecular cloning. Pectobacterium strains

were grown under standard conditions in Luria broth (L3522,

Sigma-Aldrich) for 1 d at 28uC, and E. coli was grown in Luria

broth for 1 d at 37uC.

Bioinformatic Tools for Comparative Genomics
To identify the flp/tad gene cluster and compare the presence

and organization of the gene cluster in different bacterial genomes,

protein sequences were retrieved from the NCBI database and

utilized for comparison via blastp [20], [21]. The nucleotide

sequences of the flp/tad gene clusters in Pectobacterium and Dickeya

were also compared by utilizing blastn to search against the

nucleotide collection (nr/nt) and whole genome shotgun contig

databases in GenBank of NCBI (http://blast.ncbi.nlm.nih.gov/

Blast.cgi). To characterize the missing open reading frame (ORF)

of the Flp/Fap pilin component in P. atrosepticum SCRI1043,

selected genomic sequence of the flp/tad gene cluster of P.

atrosepticum SCRI1043 was analyzed using the ORF finder of

NCBI (http://www.ncbi.nlm.nih.gov/gorf/gorf.html), and the

predicted ORF was confirmed by comparison with close relatives

in the genus Pectobacterium by sequence alignment utilizing blastn

[20], [21] and Clustal Omega sequence alignment programs.

Clustal Omega is available at http://www.ebi.ac.uk/Tools/msa/

clustalo/.

Mutagenesis and in trans Complementation
The lRED recombinase system [22] was utilized for mutagen-

esis. For homologous recombination, an antibiotic cassette was

amplified from a template plasmid (pKD3) using specific primers

with sequence similarity to the template (P1 or P2 site) and to the

target sequence in the bacterial genome (Table S1). The antibiotic

cassette was amplified using the proofreading PCR enzyme

Phusion (F-530, Thermo Scientific/Finnzymes, Finland), and the

product was gel purified. Transformation and homologous

recombination by lRED were performed for Pectobacterium as

previously described [10], [6]. To complement genomic mutants,

the target gene or genes were amplified by PCR utilizing gene-

specific primers (Table S1) and the proofreading enzyme Phusion

(F-530, Thermo Scientific/Finnzymes, Finland) according to the

manufacturer’s instructions. The PCR products of ECA0785 (Flp/

Tad response regulator) and ECA3435 (VasH, sigma54-dependent

transcriptional activator) were gel purified, digested with BamHI-

SacI and HindIII-SacI (HF enzymes; NEB), respectively, and

ligated (T4 ligase; NEB) into the transcription vector pMW119

(Nippon Gene Co., Japan). The PCR product of W5S_0783 (Flp/

Fap pilin component) was also gel purified, digested with HindIII-

SacI (FastDigest; Thermo Scientific) and ligated (T4 DNA ligase;

Thermo Scientific) into pMW119.

Gene Expression Studies Utilizing Microarray and qPCR
Microarray sample (n = 3) preparation and the microarray

procedure, including statistical analyses, were performed as

described in our previous work [10]. For gene expression studies

by relative qPCR, bacteria were cultured until late log phase in

Luria broth or hrp-inducing minimal medium salts supplemented

with 0.4% polygalacturonic acid (PGA, P3850; Sigma-Aldrich) or

10% v/v potato tuber extract at 15uC (for microarray validation)

or 28uC (for examining flp/tad-related genes). The growth curves

were measured under the same conditions and independently

repeated 3 times with 3 replicates in each experiment. Bacterial

cells were harvested at late log/early stationary phase, and total

RNA was extracted as described earlier [23]. Prior to DNAse

treatment (Ambion TURBO DNA-freeTM Kit) and cDNA

Flp/Tad Pilus in Soft-Rot Enterobacteria

PLOS ONE | www.plosone.org 2 September 2013 | Volume 8 | Issue 9 | e73718



synthesis (Invitrogen VILO), the RNA was purified using the

Qiagen RNA cleanup kit. RNA concentration and integrity were

analyzed by agarose gel electrophoresis and spectrophotometric

measurements. For qPCR (Roche LightCyclerH 480 Real-Time

PCR System), 3 technical replicates were performed for each

sample, and each reaction (LightCyclerH 480 SYBR Green I

Master) contained 100 ng cDNA. The results were normalized

from Cp values by utilizing a previously described reference gene

proC [24], [10] and 22DDCT-method [25]. Primers for genes tested

by qPCR can be found in Table S1. Statistical analyses were

performed utilizing Student’s t-test function in Excel (TTEST,

Microsoft Office) as a pairwise comparison of selected bacterial

strains (n = 3, independent biological replicates per strain).

Accession Number of the Microarray Experiment
The microarray data discussed in this publication have been

deposited in NCBI’s Gene Expression Omnibus [26] and are

accessible through GEO Series accession number GSE48471

(http://www.ncbi.nlm.nih.gov/geo/query/acc.

cgi?acc =GSE48471).

Virulence Assays on Potato Tuber Slices
Bacteria were grown overnight and washed once with 10 mM

MgSO4 buffer, resuspended in the same buffer and adjusted to an

OD600 of 0.26 (SCRI1043) or 1.6 (SCC3193). Potato tubers (cv.

Van Gogh) were washed with tap water, surface sterilized in Na-

hypochlorite for 7 min, washed 4 times with sterile deionized

water and air-dried. Based on preliminary experiments, the

virulence assay settings were optimized separately for both wild-

type strains to analyze how mutations affect the virulence of the

bacterial strains. The tubers were labeled and stabbed with a

pipette tip to create a cavity for bacterial inoculation (50 ml of
SCRI1043 and its derivatives, 10 ml of SCC3193 and its

derivatives or 10 mM MgSO4). The wounds were sealed with

white Vaseline (YA, Finland), and the inoculated tubers were

wrapped in wet paper tissues and plastic wrap, placed into a plastic

seedling box, covered with a lid and sealed with masking tape. The

tubers were incubated at room temperature in the shade for 5 days

(for SCRI1043 and its derivatives) or 3 days (for SCC3193 and its

derivatives). After incubation, the potato tubers were cut in half,

and the softened tissue was scraped out and weighed. Statistical

analyses were performed for each independent experiment

(n = 10–15 tubers per strain) using Student’s t-test (equal variance)

function in Excel (TTEST, Microsoft office). Similar results were

obtained from a minimum of 3 independent experiments.

Enzymatic Assays
Assays to detect PCWDE production were conducted according

to previous publications [27]. Bacteria were grown overnight on

Luria broth plates, and fresh colonies were stabbed into indicator

plates to determine cellulase and pectinase secretion. P. wasabiae

SCC3193 was grown on indicator plates for 1 d at 28uC, and P.

atrosepticum was incubated on indicator plates for 2 d at 28uC. The
diameters of the halos that formed around the bacteria due to

substrate utilization were measured. The experiments were

repeated 3 times.

Motility Assays
For motility assays, plates containing hrp-inducing minimal

medium salts, 0.4% PGA and 0.25% agar were prepared, and

colonies from fresh bacterial plates were stabbed into the agar.

The plates were incubated overnight at room temperature, after

which the dispersion of bacteria was assessed and the plates were

photographed. Motility assays were performed a minimum of 3

times.

Biofilm Formation Assay in Polypropylene Eppendorf
Tubes
Biofilm formation was assessed essentially as described by

O’Toole and Kolter [28]. Overnight bacterial cultures grown in

Luria broth (10 ml) were inoculated into 400 ml Luria broth or M9

minimal salts supplemented with 0.4% glycerol as the sole carbon

source in polypropylene tubes (Eppendorf). After 6 and 18 h of

incubation at 30uC, 70 ml of 1% (w/v) crystal violet solution was

added to each tube and incubated at room temperature for

20 min. After washing the tubes 3 times with distilled water,

600 ml 96% ethanol was added to each tube to extract crystal

violet from the cells. Aliquots (100 ml) of crystal violet in ethanol

were quantified in a microtiter plate at A540 using an ELISA

reader (Tecan Sunrise-Basic). Each assay was performed at least 3

times with 3–5 parallel samples for each variant.

Results

The Flp/Tad Pilus-encoding Gene Cluster is Commonly
Present in Pectobacterium
Comparative genomics analyses demonstrated that the putative

Flp/Tad-like pilus-encoding gene cluster is conserved in all

Pectobacterium species for which genome sequences are available

in GenBank (P. carotovorum, P. atrosepticum, P. wasabiae, P. aroidearum

and P. carotovorum subsp. brasiliensis); however, this cluster is only

conserved in one Dickeya strain. In addition, its structure and/or

synteny are highly similar to those of Flp/Tad-like clusters

previously characterized in several other species (Figure 1). We

also discovered a predicted novel regulator (TCS) adjacent to the

flp/tad gene cluster in soft-rot enterobacteria (Figure 1). In one of

our model strains, P. atrosepticum SCRI1043, one of the necessary

Flp/Tad pilus-encoding genes (Flp/Fap pilin component) is not

predicted as an ORF [29]; however, based on our revised ORF

analysis, a gene is present (start-stop; 861131–861352) in the same

position with high sequence similarity (query coverage 100%,

identity 91–94%) to other Pectobacterium species for which complete

genome information is available (Figure S1).

The flp/tad gene cluster in soft-rot enterobacteria is highly

similar (on the amino acid level) to clusters with the same synteny

in Brenneria sp. EniD312 of the Enterobacteriaceae (for example

the Flp/Fap pilin component has a query coverage of 79% and an

identity of 90% compared to SCRI1043) and Marinomonas sp.

MWYL1 of the Oceanospirillaceae (for example the Flp/Fap pilin

component has a query coverage of 75% and an identity of 79%

compared to SCRI1043), which are phylogenetically more distant

members of the Gammaproteobacteria compared with soft-rot

enterobacteria (Figure 1). In addition, the synteny of the well-

studied Flp/Tad pilus-encoding cluster in A. actinomycetemcomitans is

similar to that of the cluster in soft-rot enterobacteria; however, the

amino acid sequence similarity is low (for example the Aggregati-

bacter Flp/Fap pilin component BAA25886 has a query coverage

of 70% and an identity of 42% compared to SCRI1043) compared

with that of the soft-rot enterobacteria Brenneria and Marinomonas

(Figure 1). The flp/tad gene clusters in R. solanacearum were

characterized previously by Wairuri and colleagues [17]. Interest-

ingly, the organization of the flp/tad gene clusters in the plant

pathogenic bacterium Ralstonia solanacearum differ slightly and their

sequence similarity is distinct from that of soft-rot enterobacteria

(Figure 1). The blastx alignment was not useful (result: no

significant similarity was found) for comparing P. atrosepticum

SCRI1043 (Flp/Fap pilin component start-stop; 861131–861352)

Flp/Tad Pilus in Soft-Rot Enterobacteria
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and R. solanacearum GMI1000 (Flp/Fap pilin component;

RSc0659) or A. actinomycetemcomitans (Flp/Fap pilin component;

BAA25886) and R. solanacearum GMI1000 (genomic Flp/Fap pilin

component; RSc0659).

The marked sequence and/or synteny similarity of the flp/tad

gene cluster in Pectobacterium to that of distantly related bacteria

and the lack of the flp/tad gene cluster in some close relatives

suggest that the predicted flp/tad gene cluster in soft-rot

enterobacteria indeed encodes the Flp/Tad pilus and that the

locus is likely of horizontal origin, benefiting several bacterial

species independent of their lifestyle.

A Novel Two-component System Regulates Flp/Tad Pilus-
encoding Genes in Pectobacterium
We previously demonstrated that flp/tad genes were upregulated

in the same plant mimicking condition as T6SS-related genes [10].

In this study, we wanted to more closely investigate genes

regulated by the T6SS-related sigma54-dependent transcriptional

activator (VasH) and examine the cross-regulation of T6SS and

the Flp/Tad pilus in P. atrosepticum SCRI1043 utilizing microarray

technology. VasH is a regulator of the hcp and vgrG genes, which

are related to T6SS [30], [31]. However, of the statistically

significant (FDR,0.05) differentially expressed genes in the

microarrays (including three flp/tad genes) (Figure 2A,

Figure 2D), only T6SS-related hcp genes were complemented in

trans in the VasH mutant as assessed by the more sensitive relative

qPCR method, as shown in independent experiments (Figure 2B,

Figure 2C, Figure 2D). Further investigations are necessary to

reveal the regulation of the flp/tad gene cluster in Pectobacterium.

Subsequently, we examined the role of the TCS that we

discovered (Figure 1) adjacent to the predicted Flp/Tad pilus-

encoding gene cluster (in P. atrosepticum SCRI1043, ECA0785-

ECA0786; in P. wasabiae SCC3193, W5S_0781-W5S_0782) in the

transcription of flp/tad genes. The predicted proteins of these gene

pairs have typical features of TCS, such as an OmpR (COG0745)

domain, a REC domain of response regulators (in ECA0785 and

W5S_0781), an ATPase domain, a BaeS kinase (COG0642)

domain and histidine kinase domains of a histidine kinase sensor

(in ECA0786 and W5S_0782).

To explore the possibility that the corresponding TCS regulates

the flp/tad gene cluster in soft-rot enterobacteria, we mutagenized

the response regulator (ECA0785) in P. atrosepticum SCRI1043 and

used relative qPCR to characterize the effect of this mutation on

flp/tad gene expression in different growth media after the culture

reached the stationary phase (Figure 3A, Figure 3B, Figure 3C),

which corresponds the growth phase in where the flp/tad genes

were originally characterized in P. atrosepticum SCRI1043 in our

earlier work [10]. We examined the flp/tad genes that were

differentially expressed in the VasH microarrays (Figure 2A: rcpA/

ECA0789, rcpB/ECA0790 and tadA/ECA0792) and the Flp/Fap

pilin component-encoding gene (start-stop; 861131–861352 in

SCRI1043). The expression levels of these genes were increased

Figure 1. Predicted Flp/Tad pilus-encoding gene cluster in Pectobacterium. Comparative genomics analysis revealed that the synteny of the
gene clusters encoding the putative novel virulence determinant Flp/Tad pilus in Pectobacterium and in one Dickeya species is similar to that in the
well-studied Flp/Tad model species Aggregatibacter actinomycetemcomitans. Flp = fimbrial low-molecular-weight protein. Tad = tight adherence
protein. Rcp= rough colony protein. The gene cluster comparison was based on genomic and protein sequence comparisons utilizing blastn and
blastp.
doi:10.1371/journal.pone.0073718.g001

Flp/Tad Pilus in Soft-Rot Enterobacteria
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under plant-mimicking conditions compared with rich growth

medium (Luria broth) (Figure 3A). The expression levels of these

flp/tad genes were significantly reduced in the ECA0785 response

regulator mutant strain compared with the corresponding wild-

type strain and were complemented in trans, suggesting that the

TCS adjacent to the flp/tad gene cluster may be necessary for the

expression of these genes (Figure 3B). These findings support the

hypotheses that the Flp/Tad pilus encoding genes are expressed in

Pectobacterium, the pilus is required under in planta conditions and

the flp/tad gene cluster is, at least partially, regulated by the

flanking novel two-component system in Pectobacterium.

The Novel Response Regulator and Flp/Tad Pilus Genes
are Both Necessary for Full Virulence of Pectobacterium
To determine if the flp/tad gene cluster is necessary for full

virulence of Pectobacterium in potato tubers, rcpA, rcpB, tadZ and tadA

(ECA0789–ECA0792, respectively) were deleted as a cluster from

P. atrosepticum SCRI1043, and W5S_0783 (Flp/Fap pilin compo-

nent) was deleted from P. wasabiae SCC3193. In both P. atrosepticum

and P. wasabiae, these regions were replaced with an antibiotic

cassette. The resulting mutants could be complemented in trans by

introducing the corresponding wild-type alleles into the mutants.

Bacteria (,107 cfu) were inoculated into potato tubers and

incubated under conditions favoring the development of soft-rot

symptoms. After incubation, the softened tuber tissue was

weighed, and the results were analyzed statistically. In this model,

Figure 2. VasH regulates hcp genes but not flp/tad genes in Pectobacterium atrosepticum. A) Microarray data showing that 15 genes were
downregulated in the DvasH mutant (FDR,0.05) compared with the wild-type strain P. atrosepticum SCRI1043. The two T6SS-related Hcp-encoding
genes are marked with blue, and the three Flp/Tad pilus-related genes are marked with red. The microarray results represent the average of three
independent experiments. B) Relative qPCR validation of the microarray results and complementation of the mutant vasH (ECA3435) in trans indicate
that VasH is likely to regulate hcp genes (p,0.03) but is not likely to regulate the predicted Flp/Fap pilin component-encoding gene (22DDCt:
SCRI1043; 0.7, DvasH; 1, DvasH(pMW119); 0.5, DvasH (pMW119::vasH); 0.7, p value for all relevant comparisons .0.08) in P. atrosepticum SCRI1043 C)
or other flp/tad genes observed in the microarrays (ECA0789, ECA0790 and ECA0792) or any other genes that were downregulated in the microarrays.
ECA4044 is a negative control and was not differentially expressed in the microarrays. The qPCR experiments were repeated a minimum of three
times, and the graphs show the averages and standard deviations of three independent experiments. D) Growth of P. atrosepticum SCRI1043 and
DvasH in hrp-inducing minimal medium salts supplemented with 10% v/v potato tuber extract at 15uC. The sampling point for the microarray and
qPCR experiments is marked with an arrow. The growth curves show the averages and standard deviations of three replicates in a single experiment,
which was repeated a minimum of three times with similar results.
doi:10.1371/journal.pone.0073718.g002

Flp/Tad Pilus in Soft-Rot Enterobacteria
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the P. atrosepticum SCRI1043 flp/tad partial cluster mutant (Dflp/
tad), the P. atrosepticum SCRI1043 regulator mutant (DECA0785)
and the P. wasabiae SCC3193 Flp/Fap pilin component mutant

(Dflp) displayed a significant delay in symptoms compared with the

wild-type strains and the respective mutant strains complemented

in trans (Figure 4A, Figure 4B, Figure 4C).

Based on current knowledge, the virulence determinants of soft-

rot enterobacteria are either connected via a multilevel regulatory

network and/or are induced under similar conditions in response

to environmental stimuli. It is also possible that the mutagenized

strains carry secondary mutations that affect virulence determi-

nants, although the in trans complementation suggests that the

altered phenotype is indeed a consequence of the deletion or

inactivation of the gene of interest. We experimentally clarified

whether the inactivation of flp/tad genes or the response regulator

has an effect on other major virulence determinants or on basic

metabolic functions such as population growth, the production of

PCWDEs and flagella-based motility. Under the experimental

conditions employed in this study, no significant differences were

observed between the mutant strains (Dflp/tad, DECA0785 and

Dflp) and the corresponding wild-type strains (SCRI1043 or

SCC3193) (Figure 5A, Figure 5B, Figure 5C). Under growth

conditions mimicking in planta conditions, P. atrosepticum reached a

higher cell density than P. wasabiae; however, there was no

difference between the mutagenized strains and the wild-type

strain (Figure 5A). In assays measuring PCWDE (pectinases and

cellulases) production, P. wasabiae performed better than P.

atrosepticum, although there were no differences between the

mutagenized strains and the wild-type strain (Figure 5B). In the

flagella-based motility assays, all tested strains were motile, and no

significant differences in the dispersion speed were observed

among the bacterial strains (Figure 5C). Based on these

experiments, it is plausible that the altered maceration ability of

the response regulator mutant (DECA0785) or the flp/tad mutants

(Dflp/tad and Dflp) is not a consequence of alterations in other

major virulence determinants. Although we cannot rule out the

possibility that the response regulator has targets other than the

flp/tad gene cluster, owing to the similarly reduced virulence

phenotype of the flp/tad gene cluster mutants (Figure 4A,

Figure 4B), we suggest that the impact of this novel virulence

regulator is mediated mainly through the regulation of the flp/tad

gene cluster.

In light of the role of the Flp/Tad pilus in biofilm formation in

other bacteria [32], [33], [34], [17], we investigated whether the

flp/tad gene cluster plays a role in biofilm formation in

Pectobacterium. In biofilm formation assays, P. wasabiae SCC3193

attached well into the polypropylene surface independent of the

culture medium, but P. atrosepticum SCRI1043 generated little or

no film under the same conditions (Figure 5D, Figure 5E).

However, none of the mutagenized strains (Dflp/tad, Dflp and

DECA0785) exhibited differential phenotypes when compared to

the wild-type strain in the biofilm formation assays (Figure 5D,

Figure 5E). Therefore, the function of the Flp/Tad pilus in biofilm

formation in Pectobacterium remains unknown. It is possible that

pilus formation is regulated both transcriptionally and post-

transcriptionally and that the pilus is generated only under the

right conditions such as when the bacterium is in contact with

plant tissue.

Discussion

In the current study, our aim was to examine the expression,

regulation and role in virulence of the predicted Flp/Tad pilus in

soft-rot enterobacteria of the genus Pectobacterium. The Flp/Tad

Figure 3. A novel two-component system in Pectobacterium
regulates predicted Flp/Tad pilus-encoding genes. A) Genes
encoding the Flp/Fap pilin component, RcpA (ECA0789), RcpB
(ECA0790) and TadA (ECA0792) were upregulated under in planta-
mimicking conditions (hrp-inducing minimal medium salts supplement-
ed with 0.4% polygalacturonic acid = PGA) compared with their levels in
rich medium (Luria broth) when measured by relative qPCR. However,
despite relatively large fold changes, only the Flp/Fap pilin component
result was statistically significant (p,0.02). Due to the analysis method
used for the relative qPCR data (22DDCt), the values obtained from the
Luria broth samples were normalized to be 1 and are thus very close to
the x-axis on the left side of the column, which represents the relative
fold change of PGA samples. B) A novel response regulator (ECA0785)
affected the expression levels of genes encoding Flp/Fap pilin
component, RcpA (ECA0789), RcpB (ECA0790) and TadA (ECA0792)
(p,0.05) under conditions that induce flp/tad gene expression (hrp-
inducing minimal medium salts supplemented with 0.4% polygalac-
turonic acid = PGA). The reduction of gene expression in the DECA0785
mutant was restored by in trans complementation (p,0.05). C) In vitro
growth of P. atrosepticum SCRI1043 and its derivative DECA0785 in hrp-
inducing minimal medium salts supplemented with 0.4% PGA at 28uC.
The sampling point for the qPCR experiments is marked with an arrow.
The experiments were repeated independently a minimum of three
times, and the figures represent the averages and standard deviations
of three independent experiments (A and B) or the averages of three
replicates in a single experiment (C).
doi:10.1371/journal.pone.0073718.g003
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Figure 4. The predicted Flp/Tad pilus is necessary for full virulence of Pectobacterium in potato tubers. A) A mutant strain of P.
atrosepticum SCRI1043 deficient in the expression of the full flp/tad gene cluster (Dflp/tad) exhibited impaired maceration capacity in potato tubers
compared with the wild-type strain (p = 0.004). The maceration capacity was complemented in trans (p = 0.047). B) A mutant strain of P. atrosepticum
SCRI1043 deficient in the expression of a putative response regulator of the flp/tad gene cluster (DECA0785) also displayed impaired virulence in
potato tubers (p = 0.0002), and the phenotype was restored by complementation in trans (p = 0.027). C) P. wasabiae SCC3193 lacking the predicted
Flp/Fap pilin component-encoding gene (Dflp) also displayed impaired maceration of potato tubers (p = 0.015), and the phenotype was
complemented in trans (p = 0.007). As a negative control, 10 mM MgSO4 buffer was used, confirming that the symptoms are a consequence of the
inoculated bacterial strains as opposed to the natural population of soft-rot bacteria. The virulence assays were repeated independently a minimum
of three times, and the figures represent a single biological replicate (n = 10–15 tubers per strain).
doi:10.1371/journal.pone.0073718.g004
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Figure 5. The predicted Flp/Tad pilus has no effect on growth, PCWDEs, motility or biofilm formation in vitro. A) In vitro growth of P.
atrosepticum SCRI1043, P. wasabiae SCC3193 and their derivatives (Dflp/tad, DECA0785 and Dflp) in hrp-inducing minimal media supplemented with
10% v/v potato tuber extract. P. wasabiae and P. atrosepticum reached different cell densities, although there was no significant difference between
the wild-type strains and the corresponding mutant strains. B) Production of plant cell wall-degrading enzymes (PCWDEs) in P. atrosepticum
SCRI1043, P. wasabiae SCC3193 and their derivatives (Dflp/tad, DECA0785 and Dflp) growing on indicator plates containing 0.7% polygalacturonic
acid (PGA) or 0.5% carboxymethylcellulose (CMC). In the figure, ‘‘average Ø’’ indicates the diameter of the halo around the bacteria in centimeters.
The averages and standard deviations (SD) of four replicates (n = 4) are provided, and the experiment was repeated a minimum of three times with
similar results. C) Flagella-based motility of P. atrosepticum SCRI1043, P. wasabiae SCC3193 and their derivatives (Dflp/tad, DECA0785 and Dflp) on
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pilus is a well characterized and visualized bacterial surface

structure that has been observed in several animal pathogenic

bacteria, an environmental bacterium, a human gut bacterium

and in the phytopathogen R. solanacearum [11], [16], [17]. We

previously demonstrated that flp/tad genes are upregulated in

potato tubers mimicking in vitro conditions (apoplast vs. tuber vs.

stem), along with T6SS genes [10], indicating that the Flp/Tad

pilus may be co-regulated with T6SS and is essential for soft-rot

enterobacteria in planta.

Comparative genomics analysis indicated that the flp/tad gene

cluster is present in the genus Pectobacterium and in the strain Dickeya

zeae Ech1591 but is otherwise absent in the genus Dickeya. The

synteny of the cluster is highly similar to that of previously

characterized clusters in several animal pathogens (Figure 1). The

Flp/Tad pilus cluster has often been referred to as a Widespread

Colonization Island, which is a target of horizontal gene transfer

[35], [11]. Horizontal gene transfer enables the acquisition of

beneficial traits from distantly related species [36]. The presence of

a similar flp/tad gene cluster in distantly related bacterial species

and the lack of the cluster in some closely related soft-rot

enterobacteria together with data from previous studies [35], [11]

indicate that the flp/tad gene cluster may have a horizontal origin

in soft-rot enterobacteria. It is also likely that the cluster encodes

the Flp/Tad pilus because a similar cluster encodes Flp/Tad pilus

in the well-studied bacterial species A. actinomycetemcomitans [32],

[14], [37], [38], [39], [40].

Three flp/tad cluster genes were identified in our microarray

data (Figure 2). When comparing the P. atrosepticum SCRI1043

wild-type strain and its derivative DvasH (VasH is a sigma54-

dependent transcriptional activator), none of these flp/tad genes

were differentially expressed or complemented as analyzed by

relative qPCR, which is a more sensitive technique than

microarray analysis (Figure 2). T6SS and the Flp/Tad pilus are

likely required under similar environmental conditions in soft-rot

enterobacteria, and they may be induced, at least partially, by the

same external stimuli for example, plant tissue degradation

products as noted earlier [10]); however, we were unable to

confirm actual cross-talk between these two systems, at least not

via VasH. Two major global regulators of virulence (the quorum

sensing synthetase ExpI and the virulence gene repressor RsmA)

that affect global gene expression on the transcriptional level were

previously investigated using microarray techniques [41], [9]. Flp/

Tad pilus-related genes were not present in the microarray data in

either of these studies, indicating that the flp/tad gene cluster is not

controlled by quorum sensing or RsmA regulation in Pectobacterium.

This is in contrast to most other characterized virulence

determinants, such as PCWDEs, the type I secretion system

(T1SS), the type II secretion system (T2SS), T3SS and T6SS

(quorum sensing [41]) and PCWDEs, T6SS, Flagella and LPS

synthesis (RsmA [9]). Our work, together with previous studies,

suggests that the Flp/Tad pilus in Pectobacterium may be regulated

by a previously unknown regulatory system.

Based on comparative genomics (Figure 1), we identified a

putative TCS adjacent to the flp/tad gene cluster in the soft-rot

enterobacteria, Brenneria and Marinomonas. Mutagenesis of the

response regulator and in trans complementation of the mutant had

significant effects on the expression of flp/tad genes in P. atrosepticum

SCRI1043 (Figure 3), indicating that we have discovered a

regulator for the flp/tad gene cluster and hence a novel regulator in

Pectobacterium. The flp/tad gene cluster and the flanking TCS are

predicted to be transcribed in 5 operons in P. wasabiae SCC3193,

similar to corresponding genes in P. atrosepticum SCRI1043 [6].

The regulation of the flp/tad genes has been investigated in several

animal pathogens [38], [39], [42], [15], but a regulatory system

similar to that which we have characterized in Pectobacterium has

not been reported. In Pseudomonas aeruginosa, the flp/tad gene cluster

is regulated by another TCS [15], and there is no significant

sequence similarity to the TCS of Pectobacterium (in a blastx

comparison of the Flp/Fap pilin component of P. atrosepticum

SCRI1043 and P. aeruginosa PAO1, no significant similarity was

found). Based on this study and previous studies, we suggest that

the TCS described in this work is a novel regulator and that it

regulates the flp/tad gene cluster in Pectobacterium and, potentially,

that in Brenneria and Marinomonas.

To characterize the role of the Flp/Tad pilus in virulence of

Pectobacterium, we performed virulence assays in potato tubers. In

these virulence assays, we compared the maceration efficiency of

the mutant strains (lacking flp/tad genes or the novel Flp/Tad pilus

response regulator) with that of the wild-type strain and the in

trans-complemented mutant strains. Initially, we performed several

preliminary virulence assays to determine the best conditions for

these mutants. Unexpectedly, neither the flp/tadmutant strains nor

the TCS regulatory mutant were as effective in disease develop-

ment as the wild-type strain, even though a significant number of

cells (107 cfu per inoculation site) were inoculated (Figure 4). The

Flp/Tad pilus has been shown to be necessary for attachment and

biofilm formation [32], [33], [34], [17]; thus, it was anticipated

that the pilus in soft-rot enterobacteria would be required for

attachment to the plant tissue and might have a greater impact

during the initial steps of the infection. The delayed disease

development and in planta complementation of the flp/tad mutant

strains compared with the wild-type strain in this study (Figure 4)

could have occurred because the flp/tad gene cluster in soft-rot

enterobacteria is necessary for the organization of the bacterial

population into a biofilm-like structure during the maceration

stage; however, no direct evidence is available to support this

hypothesis. Our biofilm assays on abiotic surfaces (Figure 5) did

not support the hypothesis that the Flp/Tad pilus plays a role in

attachment to surfaces or in biofilm formation. Furthermore, in

the case of P. atrosepticum, it was unclear if the cells were attached to

the abiotic surface. Overall, P. atrosepticum rarely forms a biofilm-

like structure under abiotic conditions, with the exception of LPS-

deficient mutant strains of P. atrosepticum SCRI1043 [7] and the c-

di-GMP-overexpressing P. atrosepticum SCRI1043 [43], which

produce more biofilm than the wild-type strain. However, in

Haemophilus ducreyi, the flp/tad gene cluster is required for

attachment to a plastic surface and to HFF cells as well as for

microcolony formation when co-cultured with HFF cells; however,

it has no effect on virulence in animal models [33], suggesting a

specific role for this gene cluster in bacterial population structure

during biofilm formation rather than a role in attachment to the

host tissue during infection. It is also possible that the flp/tad gene

0.25% agar plates. All strains were motile, and no significant differences in spreading were observed. D) The in vitro biofilm formation ability of P.
atrosepticum SCRI1043 and P. wasabiae SCC3193 differed in 0.4% glycerol after 18 h of incubation, but there was no significant difference between
the wild-type strains and the corresponding mutant strains (Dflp/tad, DECA0785, Dflp). E) The in vitro biofilm formation of P. atrosepticum SCRI1043
and P. wasabiae SCC3193 differed in Luria broth after 6 h of incubation, but there was no difference between the wild-type strains and the
corresponding mutant strains (Dflp/tad, DECA0785 and Dflp). All experiments were repeated a minimum of three times with a minimum of three
replicates. The figures represent the averages and standard deviations of one experiment.
doi:10.1371/journal.pone.0073718.g005
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cluster in Pectobacterium is tightly regulated in planta, and our in vitro

assays did not support pilus formation. In conclusion, we suggest

that the flp/tad gene cluster in Pectobacterium is a novel virulence

determinant and that its mechanistic function provides an

interesting target for future investigations.

Despite the unknown virulence mechanism of the flp/tad gene

cluster in soft-rot enterobacteria, we suggest that the cluster

consists of genes encoding the Flp/Tad pilus and an adjacent

transcriptional activator (a response regulator in the TCS adjacent

to the flp/tad gene cluster). It is plausible that the observed

decrease in the virulence of flp/tad mutants and their in trans

complementation with the wild-type alleles is due to their specific

function in Flp/Tad pilus regulation in planta rather than due to a

secondary mutation or signaling related to other known virulence

determinants. To our knowledge, no pilus (secretion of its own

structural proteins only) or fimbria has been characterized as

having a significant effect on the virulence of soft-rot enterobac-

teria. The response regulator may be a novel regulator in soft-rot

enterobacteria and may be one of a few specific regulators that

function independently of the regulatory network to solely regulate

the biogenesis of the Flp/Tad pilus, which has a significant effect

on the virulence of Pectobacterium in potato tubers.
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