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Systemic lupus erythematosus (SLE) is a heterogeneous autoimmune disorder
characterized by high autoantibodies levels and multiorgan tissue damage. The current
study investigated the role of CD64 in SLE patients and animal models. According to a
flow cytometry study, SLE patients showed an increase in CD64 expression in circulating
monocytes. There was a correlation between CD64 and SLEDAI, blood urea nitrogen
levels, and anti-Sm antibodies. In skin lesions of lupus MRL/lpr mice, there was high IgG
deposition and CD64 expression. In vitro, cytokines IL-10 and IFN-g upregulated CD64
expression in monocytes/macrophages that was inhibited by glucocorticoids. In CD64-
deficient mice, skin inflammation induced by lupus serum was reduced. Furthermore,
activation of spleen tyrosine kinase (Syk), Akt, and extracellular signal-regulated kinase
(Erk) was inhibited in CD64-deficient monocytes. The results suggest that CD64 could be
a biomarker for observing SLE progression, as well as a mechanistic checkpoint in
lupus pathogenesis.
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INTRODUCTION

Systemic lupus erythematosus (SLE), an autoimmune disease with a complex pathophysiology
and clinical manifestations, lacks specific prognostic indicators (1, 2). SLE is characterized by
high autoantibodies levels (anti-dsDNA, anti-Sm, and anti-phospholipid antibodies) in serum
and certain clinical manifestations such as skin inflammation and lupus nephritis (3, 4).
Treatment of SLE with glucocorticoids, hydroxychloroquine, and immunomodulators
(methotrexate, azathioprine, mycophenolate) has been recommended as the first-line
treatment (5, 6).
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FcgRs are receptors for the constant (Fc) region of IgG and are
extensively expressed on the membrane of immune cells. CD64
(FcgRI) is the only known high-affinity FcgR for IgG with a
restricted isotype specificity, whereas IgG affinity of CD32
(FcgRII) and CD16 (FcgRIII) is comparatively lower (7, 8).
Activating FcgRs with immunoreceptor tyrosine-based
activation motif (ITAM) in intracellular structure, CD64 and
CD16 recruit spleen tyrosine kinase (Syk), which assembles into
complexes at cell membrane via interaction between its SH2
domains and the receptor tyrosine-phosphorylated ITAM
domains (9).

Phosphoinositide 3-kinase (PI3K)/Akt (Protein Kinase B)
signaling pathway is firmly linked with Syk (10–12). Akt, a
mechanistic target of rapamycin complex 2 (mTORC2)
substrate, regulates various cellular responses through
phosphorylation and inactivation (13). Mitogen-activated
protein kinases (MAPKs) are serine/threonine-specific kinases
family, comprising extracellular signal-regulated kinase (Erk)
and c-Jun N-terminal kinase (JNK), which regulates cell
proliferation, difference, motility, and death (14). Although
PI3K/Akt and MAPKs signaling pathways are important in
cellular responses, aberrant activation can result in
inflammatory diseases (15).

Nuclear factor-kappa B (NF-kB), a promptly inducible
transcription factor, is comprised of homo- and heterodimers
of Rel A (p65), Rel B, p50, p52, and c-Rel in mammals (16). The
NF-kB pathway modifies cell’s biology and is generally involved
in multiple cell responses resulting from its hundreds of target
genes. Activation of NF-kB is obtained through phosphorylation
and degradation of IkB proteins (including IkBa), resulting in
the release of NF-kB dimers (17).

Several of our previous studies indicate that infiltrated
inflammatory cells, specifically monocytes, contribute to the
pathogenesis of tissue injuries in SLE (18–22). Furthermore, we
found that an animal model of lupus serum-induced skin
inflammation is a useful tool to investigate the pathogenesis of
skin injuries in SLE (19, 23). Herein, we studied the role of FcgRI/
CD64 in the pathogenesis of lupus by analyzing the expression of
CD64 in circulating monocytes from SLE patients and using a
model of lupus serum-induced skin inflammation in CD64-
deficient mice.
RESULTS

CD64 Expression in Monocytes Increased
in SLE Patients
In this study, we isolated peripheral blood mononuclear cells
(PBMCs) from 45 SLE patients and 18 healthy controls and
marked circulating monocytes with CD14. Data were collected
on demographic, clinical characteristics, and medication
(Table 1). The proportion of CD64+CD14+ and CD32+ CD14+

cells in PBMCs was about 3%, which accounts for almost all
monocytes, but the proportion of CD16+ CD14+ cells was only
about 1% in healthy controls and SLE patients (Figure 1A).
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CD64 expression was significantly increased in SLE patients
compared with controls (Figure 1B), but CD32 and CD16
expression did not differ significantly (Figure 1B). These
results revealed that CD64 was highly expressed on monocytes,
and the CD64 expression increased in SLE patients.

CD64 Expression Was Correlated With
SLE Activity
To understand the potential role of dysregulation of CD64 in
SLE, we estimated the relationship between CD64 expression on
monocytes and SLE disease. In Table 2, clinical and laboratory
data demonstrate the difference between high CD64 expression
and low CD64 expression among patients with SLE. Patients
with greater CD64 expression received a higher SLE disease
activity index (SLEDAI) (Figure 2A). Furthermore, there were
higher blood urea nitrogen levels, the indicator of nephritis, in
high CD64 group patients (Figure 2B). Due to the important
role of autoantibodies in the pathophysiology of SLE, we
wondered if they have a correlation with CD64 expression. We
certainly found a parallel upregulation of anti-Sm antibodies
(Figure 2C). However, the elevation of anti-dsDNA antibodies
was not significant (Figure 2D). These results showed that CD64
expression is related to lupus disease activity.

Large Amount of CD64 Expression in Skin
Lesions in MRL/lpr Mice
MRL/lpr mice could develop lupus-like clinical symptoms
spontaneously, including skin inflammation. We examined IgG
deposition and CD64 expression in skin lesions in MRL/lprmice.
Histopathology indicated a number of inflammatory cells
infiltrated in the skin (Figure 3A). Inflammatory sites have a
large amount of IgG deposited (Figure 3B). Furthermore, we
found that CD64 expression was related to IgG deposition in skin
inflammatory sites of MRL/lprmice (Figure 3B). Based on these
findings, CD64 levels are related to IgG deposition and
skin inflammation.
TABLE 1 | Demographics clinical characteristics and medication use of subjects.

Controls (n = 18) SLE (n = 45)

Male:Female 2:16 5:40
Age (years) 40.33 ± 3.03 40.78 ± 2.21
SLE manifestation (%)a

CNS – 22.22
Skin – 42.22
Joint – 20.00
Anti-dsDNA – 46.51b

Anti-Sm – 42.86c

Anti-phospholipid – 11.63b

Medication use (%)
Glucocorticoids – 95.56
Antimalarials – 55.56
Cyclophosphamide – 26.67
Mofetil mycophenolate – 25.49
F
ebruary 2022 | Volume 13 | A
aSLE manifestations were recorded at any point during the course of the disease.
b43 of 45 SLE patients were tested anti-dsDNA and anti-phospholipid.
c42 of 45 SLE patients were tested anti-Sm. SLE, systemic lupus erythematosus; CNS,
central nervous system.
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IL-10 and IFN-g Increased CD64
Expression in Monocytes/Macrophages
According to our previous studies, IgG in SLE serum effectively
downregulated CD64 expression in monocytes (24). SLE patients,
however, had higher levels of CD64 expression than controls. To
investigate the potential inducer of upregulating CD64, we
stimulated monocytes/macrophages isolated from mouse spleen
with cytokines in vitro as cytokines in SLE serum are increased
(Table 2). We found IL-10 (Figure 4A) and IFN-g (Figure 4B)
elevated CD64 expression in monocytes/macrophages, and the
elevations were associated with the cytokines dose. As
dexamethasone is commonly used to treat SLE patients, we
investigated the effect of dexamethasone in CD64 upregulation
induced by cytokines. We found that the CD64 upregulation
induced by IL-10 and IFN-g was prevented by the medication of
high-dose of dexamethasone (Figures 4A, B). According to these
findings, the therapeutic effect of glucocorticoids is mediated, at
Frontiers in Immunology | www.frontiersin.org 3
least partially, by inhibiting elevated CD64 expression induced by
inflammatory cytokines.
The Role of CD64 in Skin Inflammation
Induced by Lupus Serum
To understand the role of CD64 in SLE, we established skin
inflammation induced by lupus serum in CD64-deficient mice.
There was no noteworthy difference in weight, skin, and spleen
between CD64-deficient mice and wild-type mice. Flow
cytometry data established that CD64 expression was knockout
in monocytes from CD64-deficient mice that we used in research
(Figure 5A). According to histopathology, the severity of skin
inflammation induced by SLE serum was significantly reduced in
CD64-deficient mice compared with wild mice (Figure 5B).
Immunohistochemistry (IHC) staining revealed that activation
of Syk was decreased in the skins of CD64-/- mice compared with
A

B

FIGURE 1 | CD64 expression in monocytes increased in SLE. (A) Representative flow cytometry of CD64, CD32 and CD16 expression on CD14+ monocytes of
peripheral blood mononuclear cells from SLE patients and healthy controls. (B) Flow cytometry analysis of surface expression of CD64, CD32 and CD16 on circulating
monocytes in healthy controls and SLE patients. Detection of CD64 expression comprises 18 healthy controls (male:female=2:16, age 40.33±3.03) and 45 SLE patients
(male:female=5:40, age 40.78±2.21). CD32 data comprises 12 healthy controls (male:female=2:10, age 43.25±4.12) and 39 SLE patients (male:female=3:36 , age 41.31
±2.35). CD16 data comprises 14 healthy controls (male:female=2:12, age 42.79±3.61) and 44 SLE patients (male:female=3:41, age 40.31±2.14). Bars represent the
average mean fluorescent intensity (MFI) of CD64, CD32 or CD16 on monocytes. Error bars represent standard deviation. *p < 0.05; ns, not significant.
February 2022 | Volume 13 | Article 824008
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wild mice (Figure 5C). The results showed that CD64 plays an
important role in cutaneous injury in SLE.
CD64 Is Required for SLE Serum-Mediated
Activation of Syk, Akt, and Erk
To gain insight into the molecular mechanisms by which CD64
promotes inflammation, we examined the effects of CD64
knockout on the signaling pathways activated by SLE serum.
We noticed that activation of Syk, Akt, and Erk was observed at 2
h after SLE serum treatment, and the activation was decreased in
CD64-deficient monocytes compared with wild monocytes
(Figures 6A, C–E). We further detected mTOR expression in
cell expressing Akt-S473 as a mTORC2 substrate. There was a
clear reduction in the mTOR in the CD64 knockout monocytes,
neither with SLE serum-stimulated or not, representing that
mTORC2 activity was significantly reduced (Figures 6A, F).
Alternatively, activation of NF-kB (IkBa, p65) and JNK induced
by lupus serum was not inhibited in CD64-deficient monocytes
(Figure 6B). These results suggested that SLE serum-activation
of Syk, Akt, and Erk requires CD64, while activation of NF-kB
and JNK is not CD64-dependent.
DISCUSSION

In previous studies, we demonstrated that tissue deposited lupus
IgG could trigger tissue inflammation, and monocytes/
macrophages, not lymphocytes or neutrophils play important
Frontiers in Immunology | www.frontiersin.org 4
roles in tissue inflammation triggered by lupus IgG (19, 23–25).
As a promising new marker for bacterial sepsis, CD64 expression
on neutrophils and monocytes had been linked with sepsis of
critically ill neonates and children (26). The present study
indicates that expression of CD64 but not CD32 and CD16 on
monocytes is upregulated in SLE compared with healthy
controls. In line with our observations, several studies had
showed that expression of CD64 on circulating monocytes was
in parallel with the serum immune complex level (27), ongoing
inflammation and nephritis (28), and type-I interferon levels (29)
in SLE. Our data show that the expression of CD64 on
monocytes is associated with the SLEDAI, blood urea nitrogen
levels, and anti-Sm antibodies in SLE patients, which indicate
CD64 might be linked with the activity of diseases and
organ damages.

The cytokine IL-10, which is anti-inflammatory and
tolerogenic, promotes B cell responses and is pathogenic in
SLE (30, 31). IFN- g is one of the significant cytokines that
stimulate monocytes to switch their differentiation from
dendritic cells to CD14-CD64+ macrophages (32). In our study,
both IL-10 and IFN-g raise the expression of CD64 on
monocytes/macrophages in a dose-dependent manner.
Glucocorticoids block the effects of IL10 and IFN-g on CD64
expression. Similar results had been reported with both cytokines
upregulated CD64 surface expression in autologous monocytes;
IL-10, but not IFN-g failed to induce CD64 elevation in human
neutrophils (33). Glucocorticoids may prevent the production of
IL-10 and IFN-g (34). Therefore, glucocorticoids, as powerful
therapeutic agents in SLE, are partly due to direct effects
on cytokines like IL-10 and IFN-g on CD64 expression.
TABLE 2 | Comparisons of CD64 expression (MFI) with laboratory measurements and dose of glucocorticoids in SLE.

Low CD64 patients (n = 22) High CD64 patients (n = 23) P valve

MFI of CD64 9481 ± 588.7 18600 ± 897.3 0.0464*
SLEDAI 5.5 ± 0.86 9.0 ± 1.09 0.0161*
C3 (g/L) 0.58 ± 0.05a 0.60 ± 0.04b 0.7211
C4 (g/L) 0.14 ± 0.02a 0.12 ± 0.01b 0.3747
IgG (g/L) 14.61 ± 1.50 13.44 ± 1.09c 0.5333
Anti-dsDNA (IU/mL) 25.19 ± 14.80a 46.77 ± 18.21c 0.3656
Anti-Sm (AI) 1.30 ± 0.45a 3.09 ± 0.76c 0.0482*
CRP (mg/L) 6.08 ± 1.95d 7.13 ± 1.44b 0.6614
ESR (mm/h) 22.05 ± 4.89 26.09 ± 5.35 0.5810
Urea nitrogen (mmol/L) 5.27 ± 0.38 7.80 ± 1.04 0.0303*
Creatinine (mmol/L) 57.39 ± 3.43 65.34 ± 5.34 0.2215
IL-2 (pg/mL) 1.86 ± 0.18 1.50 ± 0.24e 0.2264
IL-4 (pg/mL) 1.67 ± 0.09 1.82 ± 0.08e 0.2439
IL-6 (pg/mL) 6.63 ± 0.87 25.64 ± 11.05e 0.0796
IL-10 (pg/mL) 3.65 ± 0.34 4.55 ± 1.35e 0.5040
TNF-a (pg/mL) 12.43 ± 4.34 11.41 ± 4.04e 0.8650
IFN-g (pg/mL) 2.35 ± 0.49 6.43 ± 4.80f 0.3683
Dose of GCs (mg/d) 28.55 ± 6.11 38.12 ± 5.78 0.2612
February 2022 | Volume 13 | Article
According to the surface CD64 expression in circulating monocytes, SLE patients were classified into low and high CD64 groups. Laboratory measurements and dose of GCs (converted
into prednisone) were showed by mean ± standard error of the mean (SEM).
a21 of 22 low CD64 patients were tested C3, C4, anti-dsDNA and anti-Sm;
b21 of 23 high CD64 patients were tested C3, C4, CRP and anti-Sm;
c22 of 23 high CD64 patients were tested IgG and anti-dsDNA.
d18 of 22 low CD64 patients were tested CRP;
e20 of 23 high CD64 patients were tested IL-2, IL-4, IL-6, IL-10, TNF-a;
f19 of 23 high CD64 patients were tested IFN-g. *P < 0.05; P < 0.05 is considered statistically significant. Glucocorticoids, GCs.
824008
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Nevertheless, it is unclear for us why levels of cytokines IL-10
and IFN-g in SLE sera have no significant difference between
high and low CD64 group patients.

There are large amounts of IgG and CD64 in skin lesions of
MRL/lpr mice, and skin inflammation caused by lupus serum
was reduced significantly in CD64-deficient mice. We presented
that Syk inhibition suppresses the growth of lupus skin and
kidney disease in lupus-prone mice (35). Syk mediated skin
inflammation by activating Src family downstream (36). The
inhibition of Syk reduced skin inflammation and improved
epidermal barriers in vivo with atopic dermatitis (37). Variants
of Syk were identified in patients with multiorgan inflammation
accompanied by increased activation and increased downstream
signaling (38). Especially, the outcomes here indicated that the
expression of phosphorylated Syk was reduced in sites of lupus
serum injection in CD64-deficient mice, showing alleviated
skin inflammation.

We provide mechanistic insights into SLE with our studies.
As we demonstrated previously, the most prominent component
of lupus serum IgG-mediated inflammation is monocytes/
macrophages (20–22). Lupus serum and its IgG activated Syk
and NF-kB signaling, resulting in the release of TNF-a (19, 23).
Herein, SLE serum also activates Akt and MAPKs (Erk and JNK)
signaling. Consistently, Akt signaling and MAPKs signaling have
Frontiers in Immunology | www.frontiersin.org 5
been proved to be important in skin inflammation (15, 39–43).
According to studies, ultraviolet B causes acute skin
inflammation by phosphorylating MAPKs and Akt in human
keratinocytes (39, 40). Likewise, amelioration of skin
inflammation is achieved through inhibition of MAPK and Akt
signaling (15). Funding et al. stated that oxazolone-induced skin
inflammation is reduced in MAPK AP kinase 2 knockout mice
(41). The inhibition of MAPK pathways is a significant step for
glutamine and fish scale collagen peptides reducing skin
inflammation (42, 43). Additionally, the reduction of
phosphorylated Akt-S473 in the CD64 knockout mice
represents the inhibition of mTORC2. The mTOR protein,
with two complexes, mTORC1 and mTORC2, acts as a
regulator of cell growth, metabolism, and diseases (44).
Through Akt activation, mTORC2 increases mTORC1, which
enhances protein synthesis and inhibits autophagy (45). The
mTOR blockade with sirolimus (rapamycin) increases the T cell-
mediated immunity and improves the diseases activity in SLE
patients (46). mTOR-dependent lineage differentiation regulates
inflammation in multiple ways, and mTOR blockade may be a
therapeutic target (45). Here, the deficiency of CD64 obviously
inhibits the activation of Syk, Akt, Erk and significantly reduces
mTOR, suggesting that CD64-mediated skin inflammation is
dependent on Syk, Akt, Erk, and mTOR.
BA

DC

FIGURE 2 | CD64 expression in monocytes correlated with SLEDAI, anti-Sm antibodies and blood urea nitrogen levels in SLE. SLE patients were classified into low
and high CD64 groups, and the analysis of their SLEDAI (A), blood urea nitrogen (B), anti-Sm antibodies (C) and anti-dsDNA antibodies (D) were presented. 21 of
22 low CD64 patients were tested anti-dsDNA and anti-Sm; 21 of 23 high CD64 patients were tested anti-Sm; 22 of 23 high CD64 patients were tested anti-
dsDNA. *p < 0.05; n.s., not significant.
February 2022 | Volume 13 | Article 824008
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NF-kB signaling controls the cell biology process in survival,
inflammation, and other responses (47). However, the role of
NF-kB activation in skin inflammation seems to be debatable.
Although it has been reported that the epidermis-specific
deletion IkB kinase 2 inhibits NF-kB activation, severe skin
inflammation developed (48). Here, activation of NF-kB (p65
and IkBa) is still detected in monocytes/macrophages with
deletion of CD64 induced by SLE serum, but skin
inflammation is alleviated in CD64-deficient mice. It is thus
crucial to understand why both enhanced and defective NF-kB
signaling is able to cause skin inflammation.

There are a few limitations to be considered in this study.
First, SLE patients with infectious diseases had not been excluded
or categorized. As already stated, CD64 is also associated with
bacterial infections or other pathogens. Second, CD64 expression
in monocytes can be altered by glucocorticoids, while some of the
patients had been treated with glucocorticoids before. Third, we
studied a comparatively small number of SLE patients and
healthy controls for a single data.

In conclusion, the current study has demonstrated that
upregulation of surface CD64 expression in monocytes is
related to elevated SLEDAI, blood urea nitrogen levels, and
anti-Sm antibodies in SLE patients; IL-10 and IFN-g elevate
CD64 expression which can be eliminated by glucocorticoids.
Frontiers in Immunology | www.frontiersin.org 6
The deficiency of CD64 reduced lupus serum-induced skin
inflammation and inhibited the activation of Syk, Akt, and Erk.
These data suggest that monocytes/macrophages surface CD64
measurement might be a useful tool for diagnosing SLE, and
specific blockade CD64 might signify a therapeutic target for
organ tissue damage in SLE.
MATERIALS AND METHODS

Patients and Controls
SLE patients were selected satisfying four or more of the revised
1997 American College of Rheumatology (ACR) (49) in Wuhan
Union Hospital from January 2021 to December 2021. The study
included 45 SLE patients and 18 healthy controls. In Table 1,
demographic data (age and gender), clinical manifestations,
laboratory measurements and medication usage were
summarized. SLE patients were further categorized into low
CD64 (MFI<13763, n=22) and high CD64 group (MFI≥13763,
n=23) according to a median of MFI. Their laboratory
measurements and dose of glucocorticoids were presented in
Table 2. Informed consent was received from all participants
under the Wuhan Union Hospital Review Board-approved
protocol (Number: 0267-01).
B

A

FIGURE 3 | CD64 markedly increased in skin damages in MRL/lpr mice. (A) Representative photograph of H&E staining skin inflammation of female 30-week-old
MRL/lpr mice and normal C57BL/6 mice. (B) Representative photograph of IgG and CD64 deposition stained by immunohistochemistry in skins of female 30-week-
old MRL/lpr mice and normal C57BL/6 mice.
February 2022 | Volume 13 | Article 824008
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Mice
CD64-deficient (18033) model organisms were obtained from
Shanghai Model Organisms Center. C57BL/6 mice were
procured from the Animal Center of Huazhong University of
Science and Technology (HUST). MRL/lpr mice (000485) were
procured from Jackson Laboratory (Bar Harbor, ME). All mice
were kept and fed under standard pathogen-free environments
with a 12 h light/dark cycle. The animal experiments protocol
was approved by the Institutional Animal Care and Use
Committee of HUST (IACUC Number: 2484).

Flow Cytometry
We collected heparinized whole blood (2mL) from SLE patients
and controls and isolated PBMCs. In 100 mL PBS, 2×106 PBMCs
were suspended. The cells were stained with allophycocyanin
(APC)-conjugated anti-CD64 (10.1, BD), APC-conjugated anti-
CD32 (FLI8.26, BD), APC-conjugated anti-CD16 (B73.1, BD).
Cells were simultaneously stained with phycoerythrin (PE)-
conjugated CD14 (M5E2, Biolegend) to characterize
monocytes for 30 min in the dark. Mouse spleen cells were
Frontiers in Immunology | www.frontiersin.org 7
collected after lysis buffer was used to remove red cells from one
half of the spleen. The cells were stained with PE-conjugated
anti-CD64 (X54-5/7.1, BD) and APC-conjugated anti-CD11b
(M1/70, Biolegend); 3×105 cells were analyzed by flow cytometer
(BD). For monocytes/macrophages cultured and stimulated by
IL-10, IFN-g and dexamethasone (DXM) in vitro, 1×104 cells
were analyzed by flow cytometer. Based on monocytes’ forward/
sideward light scatter patterns and their expression of CD14,
gates were set around them. All the flow cytometry data were
analyzed using FlowJo 10 (TreeStar, USA).

Isolation and Culture of Bone
Marrow-Derived Macrophages and
Splenic Monocytes/Macrophages
To obtain bone marrow-derived macrophages (BMMs), 6-week-
old C57BL/6 and CD64 deficient male mice were sacrificed by
cervical dislocation. The bone marrow cells (BMCs) were
isolated from the tibia and femur by instant high-speed
centrifugation, and then cells were cultured for 3 h with a
serum-free medium. We removed the adherent cells and
A

B

FIGURE 4 | IL-10 and IFN-g upregulated CD64 expression. (A) Flow cytometry detected CD64 expression in monocytes stimulated with various doses of IL-10 or
10 mM dexamethasone (DXM) for 20 h. Relative expression of CD64, showed as the fold group 0 ng/mL in MFI of monocytes. (B) Flow cytometry detected CD64
expression in monocytes stimulated with various doses of IFN-g or 10 mM dexamethasone (DXM) for 20 h. Relative expression of CD64, displayed as the fold group
0 ng/mL in MFI of monocytes. *p < 0.05, **p < 0.01.
February 2022 | Volume 13 | Article 824008
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cultured the non-adherent BMCs in suspension with a-MEM
medium with 10% FBS, 1% penicillin-streptomycin, and 30 ng/
mL of M-CSF for 6 d, and the medium was changed every 3 d.
Then the BMMs were harvested and stimulated using 20 mL SLE
serum for 2 h. Mouse spleens were ground, and mononuclear
cells were isolated to obtain splenic monocytes/macrophages.
Monocytes were obtained after suspended lymphocytes were
removed by incubation at 37°C for 3 h. We added M-CSF (10
ng) to the plates and cultured them for 3 d. Then several dose (0
ng/mL, 2 ng/mL, 10 ng/mL, 20 ng/mL, 100 ng/mL) of IL-10 and
IFN-g, and 10 mM DXM were added and stimulated monocytes/
macrophages for 20 h.

Injection Protocol, Histopathology and
Immunohistochemistry (IHC)
8-week-old female C57BL/6 and CD64-deficient mice were
intradermally injected 100 mL SLE serum to induce skin
inflammation. Then skins were fixed in 4% paraformaldehyde
three days after injection. After fixation, the samples were
dehydrated in ethanol, embedded in paraffin, cut into 5 mm
pieces, and stained with hematoxylin and eosin (HE). Skin
inflammation was evaluated as our previous publication (18).
Frontiers in Immunology | www.frontiersin.org 8
The tissue slides were incubated overnight with an anti-
phospho-Syk (TA8404, Abmart) antibody at 4°C for the IHC
assay. Afterwards, slides were incubated with biotinylated
secondary antibodies, and all sections were counterstained with
Mayer’s hematoxylin.

Western Blotting
Immunoblotting experiments were conducted with whole-cell
were lysed in radio immunoprecipitation assay (RIPA) buffer.
Protease inhibitors and phosphatase inhibitors were added in
RIPA buffer to avoid protein degradation. After eliminating cell
debris, cell lysates were boiled for 5 min with SDS loading buffer,
and resolved on SDS-PAGE gels. The proteins were then
transferred onto polyvinylidene fluoride membranes (Millipore,
USA) by using the Trans-Blot® Turbo™ Blotting System (Bio-
Rad). Afterwards, the membranes were blocked with 5% bovine
serum albumin (BSA) and further incubated with the indicated
antibodies. Anti-phospho-Syk (AP0524), anti-Syk (A2123), anti-
phospho-p65 (AP0123), anti-p65 (A19653) and anti-GAPDH
(AC002) were procured from ABclonal. Anti-phospho-Akt
(56569), anti-Akt (55561), anti-phospho-Erk (57165), and Erk
(55487), anti-phospho-IkBa (56280), anti-IkBa (55026), anti-
A

B C

FIGURE 5 | Deficiency of CD64 in mice alleviated skin inflammation induced by SLE serum. (A) Flow cytometry analysis of CD64 and CD11b in splenic cells. n=5
per group. **p < 0.01. (B) Representative histopathology of skin inflammation from CD64 deficient (-/-) mice and wild (+/+) mice with intradermal injection of 100 mL
lupus serum. Black arrows refer to inflammatory cells. (C) Immunohistochemistry of phosphorylated Syk (p-Syk) in the skins from CD64-deficient and wild mice with
intradermal injection of lupus serum. Black arrows refer to deposited p-Syk.
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phospho-JNK (56315), and JNK (40073) were obtained from
Abmart. Anti-mTOR (4517) was obtained was acquired from
CST. For protein detection, ChemiDoc Touch Imaging System
from Bio-Rad was used.
Frontiers in Immunology | www.frontiersin.org 9
Statistical Analysis
All the results, including at least three independent experiments,
are presented as mean ± SEM. Data were analyzed by unpaired
two-tailed Student’s t-test (for two groups) or one-way ANOVA
BA

DC

FE

FIGURE 6 | SLE serum promoted inflammation through CD64/Syk/Akt/Erk signaling pathway in macrophages. Bone marrow-derived macrophages (BMMs) were
isolated from CD64 wild (+/+) and CD64 deficient (-/-) mice. Western blot identified protein levels in BMMs stimulated with 20mL SLE serum or normal saline for 2 h.
(A) Representative picture of phosphorylated Syk (p-Syk) and total Syk, phosphorylated Akt (p-Akt) and total Akt, phosphorylated Erk (p-Erk) and total Erk, and
mTOR protein levels measured by Western blot. (B) Western blot identified phosphorylated IkBa (p- IkBa) and total IkBa, phosphorylated p65 (p-p65) and total p65,
phosphorylated JNK (p-JNK) and total JNK in BMMs. (C–F) Bar graphs depicting the changes in the relative expression of p-Syk (C), p-Akt (D), p-Erk (E) and
mTOR (F). **p < 0.01, ****p < 0.0001.
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test (for ≥3 groups). GraphPad Prism 8 (GraphPad Software,
Inc.) was used to execute all statistical analyses.
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