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Abstract

Bacteria employ a myriad of regulatory mechanisms to adapt to the continuously changing environments that they face. They can,
for example, use post-translational modifications, such as Ne-lysine acetylation, to alter enzyme activity. Although a lot of progress
has been made, the extent and role of lysine acetylation in many bacterial strains remains uncharted. Here, we applied stable isotope
labeling by amino acids in cell culture (SILAC) in combination with the immunoprecipitation of acetylated peptides and LC-MS/MS to
measure the first Pseudomonas aeruginosa PAO1 acetylome, revealing 1076 unique acetylation sites in 508 proteins. Next, we assessed
interstrain acetylome differences within P. aeruginosa by comparing our PAO1 acetylome with two publicly available PA14 acetylomes,
and postulate that the overall acetylation patterns are not driven by strain-specific factors. In addition, the comparison of the P. aerug-
inosa acetylome to 30 other bacterial acetylomes revealed that a high percentage of transcription related proteins are acetylated in the
majority of bacterial species. This conservation could help prioritize the characterization of functional consequences of individual

acetylation sites.
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Introduction

In continuously changing environments, post-translational mod-
ifications (PTMs; i.e. alterations to proteins after their synthesis)
provide cells with a powerful and swift adaptation strategy. In-
deed, while generally small, PTMs impact protein function, activ-
ity, interactions, and/or localization (Macek et al. 2019). Moreover,
by modifying the pool of pre-existing proteins, PTMs outpace tran-
scriptional and translational regulation that act through the time-
and energy-consuming process of protein synthesis.

A common bacterial PTM is Ne-lysine acetylation, which is
the reversible addition of an acetyl-group to the sidechain of ly-
sine, elongating the residue and neutralizing its positive charge
(Hentchel and Escalante-Semerena 2015, Macek et al. 2019). This
modification results from either nonenzymatic processes or en-
zymatic reactions carried out by acetyltransferases (Lammers
2021). While this PTM was originally discovered in bacteria in
1992 (Barak et al. 1992), proteome-wide analyses of bacterial
acetylation sites were only charted from 2008 onwards (Yu et
al. 2008), following key technical developments. Indeed, due to
the low stoichiometry of this PTM, thorough enrichment proto-
cols, high accuracy mass spectrometers and software advances
proved critically important (Weinert et al. 2017, Virdg et al.
2020).

To date, the acetylomes of over 75 different bacterial species
have been charted. The list of bacteria with characterized acety-
lomes entails a wide diversity of species consisting of model or-
ganisms including Escherichia coli (Yu et al. 2008, Zhang et al. 2009,
2013a, Castanio-Cerezo et al. 2014, Meyer et al. 2016, Weinert et
al. 2017, Christensen et al. 2018), Salmonella enterica (serovar Ty-
phimurium) (Wang et al. 2010), and Bacillus subtilis (Kosono et al.
2015, Carabetta et al. 2016, Nakayasu et al. 2017, Ravikumar et
al. 2018, Reverdy et al. 2018), notorious pathogens including Pseu-
domonas aeruginosa (Ouidir et al. 2015, Gaviard et al. 2018, 2019)
and Mycobacterium tuberculosis (Liu et al. 2014, Xie et al. 2015,
Birhanuetal. 2017, Yang et al. 2018), as well as bacteria relevant to
biotechnology and industry, such as Thermus thermophilus (Okan-
ishi et al. 2013). The percentage of acetylated proteins reported
in these different species varies greatly, ranging from 5% in Borre-
lia burgdorferi (Bontemps-Gallo et al. 2018), 45% in Spiroplasma eri-
ocheiris (Meng et al. 2016) to 80.5% in Mycoplasma genitalium (Chen
et al. 2016). Common acetylation targets include enzymes of the
central metabolism, in which a high degree of conservation of
acetylation sites at catalytic residues has been reported (Wang
et al. 2010, Nakayasu et al. 2017), as well as proteins involved in
quorum sensing (Sun et al. 2019), chemotaxis (Barak et al. 1992),
virulence and antibiotic resistance (Luu and Carabetta 2021).
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However, it has come to light that interstrain differences might
also contribute to some strain-dependent phenotypic differences.
For example, Fang et al. (2022) showed that the increased acety-
lation of pyruvate kinase contributed to the antibiotic resistance
of several resistant strains. Similarly, large acetylome differences
were found between an antibiotic resistant and sensitive Acti-
nobacter baumannii strain by Kentache et al. (2016) and Liao et
al. (2017). In contrast, Birhanu et al. (2017) found extensive over-
lap between the acetylome of Lineage 7 and four M. tuberculo-
sis strains, although admittedly, this publication also included O-
acetylation. Nonetheless, due to the small number of studies and
their contrasting results, the significance of these interstrain dif-
ferences remains elusive.

Pseudomonas aeruginosa is a Gram-negative opportunistic hu-
man pathogen, characterized by its metabolic versatility and ex-
tensive genome plasticity. It is particularly difficult to eradicate,
due to the presence of multiple drug resistance mechanisms, and
presents a major health hazard for infected patients (Qin et al.
2022). The most commonly studied P. aeruginosa strains are PAO1
and PA14. The latter is a virulent strain isolated from human pa-
tients and is known to possess two additional pathogenicity is-
lands (Mikkelsen et al. 2011, Grace et al. 2022). The acetylome of
PA14 has previously been charted (Ouidir et al. 2015, Gaviard et
al. 2018, 2019), and revealed that many of the proteins involved in
translation (Gaviard et al. 2018) and carbon metabolism (Ouidir
et al. 2015, Gaviard et al. 2018) were acetylated. The strains PAO1
and PA14 each represent one of the two largest groups in the five-
group population structure of P. aeruginosa, which represent the
majority of all sequenced isolates to date (Freschi et al. 2019). The
acetylome of the laboratory strain PAO1 has not yet been stud-
ied and the interstrain acetylation differences within P. aeruginosa
remain unclear. In addition, it is unclear if bacterial acetylation
is widely conserved between different species or species-specific
acetylation pattern exist.

To address this knowledge gap, we here present the first acety-
lome of P. aeruginosa strain PAO1, containing 1076 unique acetyla-
tion sites in 508 proteins. We compare the interstrain acetylome
differences between PAO1 and PA14 obtained by Ouidir et al. (2015)
and Gaviard et al. (2018), and postulate that the overall acetyla-
tion patterns are not driven by strain-specific factors. Additionally,
the comparison of the P. aeruginosa acetylome to 30 other bacte-
rial acetylomes reveals that high acetylation levels for transcrip-
tion related proteins are shared across bacterial species. This con-
served acetylome can help prioritize the characterization of func-
tional consequences of individual acetylation sites.

Materials and methods

Acetylomics

To analyse the acetylome of P. aeruginosa PAO1, a SILAC labeling
strategy was used together with immunoprecipitation and mass
spectrometry. This labeling strategy was used to quantify the rel-
ative acetylome changes upon overexpression of an unspecified
gene. However, in this study, we only focused on the nonoverex-
pression condition.

PAQ1 condition 1 cells (no overexpression) and PAO1 condition
2 cells were grown overnight at 37°C in MMP medium (30 mM
Na2HPO4, 14 mM KH2P0O4, 1 mM MgS04, 20 mM NH4S04, 20 mM
glucose, and 20 pM FeSO4) supplemented with 0.025% of ‘light’
Lysine (LysO) and 0.025% of the ‘heavy’ Lysine (Lys4), respectively.
From these overnight cultures, precultures were inoculated in the
same medium, grown until an OD600 = 0.5 and used to inocu-

late two flasks containing 500 ml of MMP medium supplemented
with 0.025% LysO and 0.025% Lys4, respectively. At an OD600 =
0.25, 1 mM IPTG was added to the flask containing Lys4. After
45 min of induction the cells were pelleted by centrifugation (15
min, 4600 rpm, 4°C). Lysis of this pellet was achieved using the
Y-PERTM Yeast Protein Extraction Reagent protocol (Thermo Sci-
entific). Briefly, lysozyme was added to a final concentration of
50 ng/ml and 1800 ul Y-PER Reagent (Thermo Scientific) was added
per 500 mg of pellet. The mixture was agitated for 20 min at 37°C,
sonicated (30 s, 40%) and pelleted by centrifugation at 14000 x g
for 30 min.

Proteins were then extracted from these cells using a chloro-
form/methanol protein precipitation as described before (Soufi
and Macek 2014). The protein precipitates were stored at —80°C.
Proteins were resolved in digestion buffer (6 M urea, 2 M thiourea,
10 mM Tris, and pH 8.0) and mixed (1:1 ratio according to pro-
tein amounts). 14 mg of the mixture was digested in solution with
trypsin as described previously (Borchert et al. 2010).

Lysine-acetylated peptides were enriched by immunoprecipi-
tation using anti-AcK antibodies as described before by Choud-
hary etal. (2017), with slight modifications. Peptides were desalted
using solid phase extraction and dissolved in IP buffer (50 mM
MOPS pH 7.2, 10 mM sodium phosphate and 50 mM sodium chlo-
ride). Peptides were incubated overnight at 4°C with agarose con-
jugated antiacetyllysine antibody (ImmuneChem) on a rotation
wheel. The immunoprecipitates were washed four times with
IP buffer and twice with water. Lysine-acetylated peptides were
eluted three times with 0.1% TFA in water. Pooled peptides were
purified using stage tips (Rappsilber et al. 2007) and analysed on
an EasyLC nano-HPLC (Thermo Scientific) coupled to an LTQ Or-
bitrap Elite mass spectrometer (Thermo Scientific) as described
previously (Franz-Wachtel et al. 2012). The peptide mixture was
injected onto the column in HPLC solvent A (0.5% acetic acid) at
a flow rate of 500 nl/min and subsequently eluted with a 227 min
segmented gradient of 5%-33% to 50%-90% HPLC solvent B (80%
acetonitrile in 0.5% acetic acid). During peptide elution the flow
rate was kept constant at 200 nl/min. The mass spectrometer
was operated in the positive ion mode. Full scan was acquired
in the mass range from m/z 300-2000 at a resolution of 120000
followed by HCD fragmentation of the 15 most intense precur-
sor ions. High-resolution HCD MS/MS spectra were acquired with
a resolution of 15000. The target values for the MS scan and
MS/MS fragmentation were 10° and 40000 charges, respectively.
Precursor ions were excluded from sequencing for 60 s after
MS/MS.

Acquired MS spectra were processed with the MaxQuant soft-
ware package version 1.2.2.9 (Cox and Mann 2008) with integrated
Andromeda search engine (Cox et al. 2011). Database searches
were performed against a target decoy (Elias and Gygi 2007) P.
aeruginosa PAO1 database obtained from Uniprot (on 23 June 2014)
(The UniProt Consortium 2023), containing 16 833 protein entries
and 248 commonly observed contaminants. In database search,
full tryptic specificity was required and up to two missed cleav-
ages were allowed. Carbamidomethylation of cysteine was set as
fixed modification; protein N-terminal acetylation, oxidation of
methionine, and acetylation of lysine were set as variable modifi-
cations. Initial precursor mass tolerance was set to 6 ppm at the
precursor ion and 20 ppm at the fragment ion level. False discov-
ery rates were set to 1% at peptide, acetylation site, and protein
group level. Subsequently, the acetylation sites identified in con-
dition 1 (intensity light >0) were further filtered based on the site
localization probability (>0.75) and PEP (<0.05), similar to Birhanu
etal. (2017).



Bioinformatics and biostatistics analyses
Enrichment analysis

Once the data was obtained, an enrichment analysis for GO and
KEGG terms (Ashburner et al. 2000, Kanehisa and Goto 2000, Kane-
hisa et al. 2017, 2021, The Gene Ontology Consortium et al. 2021)
was performed using the functional annotation tool of the DAVID
Bioinformatics database v.2021 (Huang et al. 2009, Sherman et al.
2022). This tool uses a modified version of the Fisher's Exact test,
called the EASE score, to identify enriched terms. The internal list
of all P aeruginosa PAO1 proteins was used as the background. The
effect of multiple testing was corrected by using a false discovery
rate threshold of 0.05.

Functional acetylation sites

First, a list of potentially functional lysine acetylation sites in bac-
teria was collated. This was accomplished by searching PubMed
using the query ‘[N-¢-lysine acetylation OR (lysine AND acetylatx)]
AND (bacterx)’ on PubMed on 08 March 2023. Subsequently, the
obtained research papers were screened for information concern-
ing the effect of acetylation, the method used to check the effect
of lysine acetylation and the conditions under which it was tested.
Sites for which acetylation influenced the behavior of the protein
and for which the effect of acetylation of the specific site was
tested using mutational experiments, either via blocking or mim-
icking the acetylation, or a genetic code expansion strategy were
included in our list.

Next, the collected sites were mapped to their respective sites
in PAO1 homologs using the BLAST+ software v2.15.0+. Specifi-
cally, the protein BLAST algorithm—with a word size of 5, a gap
open cost of 11, and a gap extend cost of 1 (default values of the
online BLAST tool)—was used to find homologs of the proteins
containing functional acetylation site (retrieved from UniProt on
9 December 2023) in the PAO1 proteome (UP000002438, retrieved
from UniProt on 23 December 2021). Proteins were only deemed
homologs if they had an E-value smaller than 10~°, a query cover-
age larger or equal to 70% and a percentage identity larger or equal
to 35%. Afterwards, the BLAST alignments were used to find the
lysine residues in the PAO1 homologs that correspond with the
functional lysine residues in the composed list. A misalignment
of one amino acid was allowed between the lysine in the original
and homologues protein.

Bacterial acetylome datasets

To compare our results to others, a list of acetylome datasets
was compiled by searching the PubMed and ProteomeXchange
database (5 May 2022). The query terms used in this search can
be found in Supplementary Table S13. Only bacterial datasets that
provided information on acetylated positions and for which a pro-
teome was available [either defined in the publication or available
on UniProt (The UniProt Consortium 2023)] were retained.
Subsequently, the protein identifiers and the position of the
acetylated amino acids were extracted. The acetylation sites were
then processed by mapping the identifiers to UniProt identifiers
(The UniProt Consortium 2023) (e.g. by searching for the protein ID
that belongs with the gene ID provided in the paper in the UniProt
proteome that was used in the same paper) and converting pep-
tide positions to protein positions, depending on the dataset and
the proteome that the creators of the dataset used. In the end,
a list of 30 datasets containing a total of 52796 acetylation sites
was obtained (Kim et al. 2013, Lee et al. 2013, Okanishi et al. 2013,
Castafio-Cerezo et al. 2014, Pan et al. 2014, Kosono et al. 2015,
Ouidir et al. 2015, Xie et al. 2015, Carabetta et al. 2016, Chen et
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al. 2016, 2017, Kentache et al. 2016, Birhanu et al. 2017, Weinert et
al. 2017, Gaviard et al. 2018, Jers et al. 2018, Liu et al. 2018, Raviku-
mar et al. 2018, Tirkowsky et al. 2018, Xu et al. 2018, 2020, Yang
et al. 2018, 2021, Sun et al. 2019, Wang et al. 2019, Marakasova et
al. 2020, Novak et al. 2020, Lei et al. 2021).

Comparison of the acetylomes of P. aeruginosa strain PAO1
and PA14

Two P. aeruginosa strain PA14 acetylome datasets were acquired us-
ing the previously described process (Ouidir et al. 2015, Gaviard et
al. 2018). These were subsequently compared to our PAO1 acety-
lome. To start, the site per protein distribution of these datasets
was analysed.

Next, the overlap between the acetylated sites was assessed. To
enable this, the acetylation sites in PA14 proteins were mapped to
their corresponding sites in PAO1 orthologs. These orthologs were
identified using OrthoFinder v2.5.4 (Emms and Kelly 2019). Next,
the acetylation positions in the PAO1 orthologs were determined
by aligning the PA14 proteins to their PAO1 counterparts using the
pairwise alignment algorithm implemented in the Bio.Align pack-
age of biopython v1.78 (Cock et al. 2009). To be more precise, this
algorithm was used in its ‘global’ mode with the BLOSUM62 ma-
trix as the substitution matrix. Additionally, a gap opening score
of 10 and extension score of 0.5 was used during the alignment
process, similar to Chaudhuri et al. (2015). For the remaining pa-
rameters (e.g. the mismatch score) the default values were used.
Alysine in a PAO1 ortholog was then considered a match with the
acetylated lysine in the PA14 protein, if it the lysine was either
directly aligned with the PA14 lysine or flanked the amino acid
aligned with the PA14 lysine.

Finally, the pathway coverage by acetylation—calculated as
the fraction of the genes in a pathway for which its protein
was acetylated—was compared between the three datasets for
each KEGG pathway. The pathway information needed for this
analysis—meaning the genes of P. aeruginosa strain PAO1 (pae) and
strain PA14 (pau), and the pathways to which they belong—was di-
rectly retrieved from the KEGG database (Kanehisa and Goto 2000,
Kanehisa et al. 2017, 2021) (release 104: 2022/10). The fraction
could be calculated after the pathway information was linked to
the UniProt IDs. This linking was accomplished using the UniProt
mapping tool, as it allowed us to find the KEGG gene id for each
UniProt protein ID (The UniProt Consortium 2023).

Comparison of the bacterial acetylomes

Similar to the PAO1-PA14 comparison, the pathway coverage was
analysed for and compared between each actylomics dataset.
However, in contrast to the previous analysis, we looked at path-
way coverage from a ‘pathway group’ level. Specifically, the groups
defined in the KEGG PATHWAY Database for the pathways in-
volved in metabolism, genetic information processing, environ-
mental information processing and cellular processing (e.g. car-
bohydrate metabolism) (Kanehisa and Goto 2000, Kanehisa et al.
2017, 2021).

Results

Determination of the PAO1 acetylome reveals
1076 unique acetylation sites

We analysed the acetylome of P. aeruginosa PAO1 using stable iso-
tope labeling by amino acids in cell culture (SILAC) in combina-
tion with LC-MS/MS. Next, we processed the raw MS files with
MaxQuant (1% FDR threshold) (Cox and Mann 2008, Cox et al.
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Figure 1. KEGG enrichment analysis of the identified acetylated proteins. The numbers next to each pathway represent the number of acetylated
proteins and total number of proteins in a pathway, respectively. To highlight similarities between the different enriched terms and the GO enrichment
analyses in supplementary Figure S1, terms related to the same process are displayed in the same colour. Overall, terms associated with translation,

the carbohydrate and amino acid metabolism are enriched.

2011), and sites with a site localization probability above 0.75 and
a posterior error probability (PEP) smaller than 0.05 were selected
(Birhanu et al. 2017). These filtering steps resulted in a total of 1076
unique identified sites in 508 proteins (Supplementary Table S1).

Functional enrichment analysis of the acetylated proteins pro-
vides a perspective on their biological relevance (Ashburner et
al. 2000, Huang et al. 2009, The Gene Ontology Consortium et
al. 2021, Sherman et al. 2022) (Fig. 1, Supplementary Figure S1,
Supplementary Table S2). Here, the enrichment analysis results
in several GO terms related to translation—such as tRNA bind-
ing, ribosomal subunit, and ribosome binding—being overrep-
resented in the acetylome (Supplementary Figure S1). In addi-
tion, we find proteins involved in two metabolic pathways, the
citrate cycle (TCA) and glycolysis, in our list of acetylated pro-
teins (Supplementary Figure S1). Analysis of enrichment of KEGG
metabolic pathways confirms that the TCA cycle and glycolysis
are enriched (Fig. 1). Additional metabolic pathways include path-
ways related to fatty acid metabolism, amino acid metabolism,
and the biosynthesis of secondary metabolites (e.g. monobactam).
Overall, these enrichment analyses show that acetylated proteins
are spread across different pathways and cellular processes, but
are predominantly found in proteins involved in translation and
carbon metabolism.

To assess whether the acetylation sites play a regulatory role in
the aforementioned processes, we performed a two-step analysis.
First, we compiled a list of experimentally confirmed acetylation
sites with a functional effect in other bacterial species (Ramakr-
ishnan et al. 1998, Crosby et al. 2010, Thao et al. 2010, Wang et
al. 2010, Li et al. 2011, 2017, 2020a, b, 2021, Liang et al. 2011, Lima
et al. 2011, 2012, 2016, Liang and Deutscher 2012, Hu et al. 2013,
Tucker and Escalante-Semerena 2013, Vergnolle et al. 2013, Zhang
et al. 2013b, 2016, 2020, 2022, Xu et al. 2014, Fraiberg et al. 2015,
Tu et al. 2015, Xie et al. 2015, Carabetta et al. 2016, 2019, Qin et al.

2016, Ren et al. 2016, 2019, Song et al. 2016, Sun et al. 2016, 2019,
You et al. 2016, Baron and Eisenbach 2017, Chen et al. 2017, Ishi-
gaki et al. 2017, Liao et al. 2017, Nakayasu et al. 2017, Sang et al.
2017, Wang et al. 2017, Wei et al. 2017, Ye et al. 2017, Venkat et al.
20173, b, 2018, 2019, Bi et al. 2018, Davis et al. 2018, Hockenberry
et al. 2018, Reverdy et al. 2018, Sakatos et al. 2018, Umehara et al.
2018, VanDrisse and Escalante-Semerena 2018, Yang et al. 2018,
Gao et al. 2019, Kim et al. 2020, Komine-Abe et al. 2021, Singh et
al. 2021, Barlow and Tsai 2022, Cai et al. 2022, Fang et al. 2022,
Luu et al. 2022, Di et al. 2023) (Supplementary Table S3). Second,
we mapped these sites to PAO1 homologs using pairwise sequence
alignments. The mapping results in 12 sites for which acetyla-
tion was shown to have an impact (Table 1). Two functional sites
are conserved at the residue level in proteins involved in trans-
lation; for the leucine-tRNA ligase LeuS residue K632 (EC 6.1.1.4)
and arginine—tRNA ligase ArgS residue K131 (EC 6.1.1.19) (Ye et
al. 2017), three for a protein involved in S-adenosylmethonionine
biosynthesis; S-adenosylmethionine synthase MetK (K267, K285,
and K386) (EC 2.5.1.6) (Sun et al. 2016), and one for a protein
from the TCA cycle; isocitrate dehydrogenase Icd K57 (EC 1.1.1.42)
(Venkat et al. 2018). Four additional sites—one in the RNA poly-
merase protein RpoA K291 (EC 2.7.7.6) (Lima et al. 2016) and the
other in the DNA-binding protein HU-beta HupB (K18, K86, and
K86) (Barlow and Tsai 2022), were found to influence transcrip-
tion and are present in the corresponding PAO1 proteins as well.
Overall, mutational experiments on these acetylation sites in the
original bacterial species showed mostly negative effects—such
as decreased enzymatic activity and decreased DNA compaction
(Supplementary Table S3). Based on the conservation it is likely
that the acetylation sites have the same effect on the P. aeruginosa
proteins. Moreover, the conservation of both the acylation of the
protein and the acetylated residue suggests an important func-
tion. Indeed, Lima et al. (2016) showed that transcription in E. coli
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Table 1. Acetylation sites with a functional effect also present in the P. aeruginosa PAO1 acetylome.

P. aeruginosa homolog
(matched Kac site)

Publication Organism Protein (Kac site)

P. aeruginosa protein

description Gene name

Lima et al. (2016) E. coli POA7Z4 (K291)

052760 (K290)

DNA-directed RNA polymerase  rpoA
subunit alpha

Singh et al. (2021) M. tuberculosis POWGMY7 (K207) Q9HW?21 (K203) Probable two-component PA4381
response regulator
Ye et al. (2017) E. coli P07813 (K619) Q9HX33 (K632) Leucine-tRNA ligase leus
Ye et al. (2017) E. coli P11875 (K126) Q9HUCS (K131) Arginine-tRNA ligase args
Barlow and Tsai (2022) E. coli POACF4 (K86) P05384 (K86) DNA-binding protein HU-beta hupB
Luu et al. (2022) B. subtilis P08821 (K18, K80, P05384 (K18, K80, and K86) DNA-binding protein HU-beta hupB
and K86)
Venkat et al. (2018) E. coli P08200 (K55) QOIOLS5 (K57) Isocitrate dehydrogenase icd
(NADP)
Sun et al. (2016) E. coli AOAT40N627 (K266,  Q9ISZ0 (K267, K285, and S-adenosylmethionine synthase metK
K284, and K373) K386)
Carabetta et al. (2019) B. subtilis P08821 (K18, K80, P05384 (K18, K80, and K86) DNA-binding protein HU-beta hupB

and K86)

Note: A list of sites from 67 publications was compared to our PAO1 acetylome. Further details regarding the biological effect of the sites in this list, how they are
acetylated and more can be found in supplementary Table S3 (Ramakrishnan, Schuster and Bourret 1998; Crosby et al. 2010; Thao et al. 2010; Wang et al. 2010;
Liang, Malhotra and Deutscher 2011; Li et al. 2011, 2017, 2020a, 2020b, 2021; Lima et al. 2011, 2012, 2016; Liang and Deutscher 2012; Hu et al. 2013; Tucker and
Escalante-Semerena 2013; Vergnolle, Xu and Blanchard 2013; Zhang et al. 2013b, 2016, 2020, 2022; Xu et al. 2014; Fraiberg et al. 2015; Tu et al. 2015; Xie et al. 2015;
Carabetta et al. 2016, 2019; Qin et al. 2016; Ren et al. 2016, 2019; Song et al. 2016; Sun et al. 2016, 2019; You et al. 2016; Baron and Eisenbach 2017; Chen et al. 2017,
Ishigaki et al. 2017; Liao et al. 2017; Nakayasu et al. 2017; Sang et al. 2017; Venkat et al. 2017b, 2017a, 2018, 2019; You et al 2016; Wei et al. 2017; Ye et al. 2017; Bi et
al. 2018; Davis et al. 2018; Hockenberry et al. 2018; Reverdy et al. 2018; Sakatos et al. 2018; Umehara et al. 2018; VanDrisse and Escalante-Semerena 2018; Yang et al.
2018; Gao et al. 2019; Kim et al. 2020; Komine-Abe et al. 2021; Singh et al. 2021; Barlow and Tsai 2022; Cai et al. 2022; Fang et al. 2022; Luu et al. 2022; Di et al. 2023).

depends on RpoA acetylation, the conservation of this acetylation
among distant species suggests that this is universal among bac-
teria.

Despite the substantial number of detected acetylation sites
in ribosomal proteins, the potentially functional acetylation sites
discovered by Zhang et al. (2020)—which influence the chaperone
activity of S1 (protein POAG67,K411, and K464), and potentially EF-
TU recruitment and GTP hydrolysis (protein POA7K2 and K66) in E.
coli—were not present in our acetylome (Supplementary Table S3).
In total, the PAO1 acetylome contains 91 acetylation sites in 42
out of 56 structural ribosomal proteins (Supplementary Table S4).
Seven of these sites are located relatively close to these previously
described sites (Fig. 2) (Leijjonmarck et al. 1987, Goddard et al. 2018,
Berman et al. 2000, Jumper et al. 2021, Pettersen et al. 2021, Varadi
et al. 2022, Meng et al. 2023). However, upon closer inspection, we
can observe that the acetylated sidechains are oriented away from
the sidechains of the sites described by Zhang et al. (2020). Never-
theless, due to their proximity, the detected acetylation sites could
still play a regulatory role.

Comparison of the PAO1 and PA14 acetylomes
indicates protein- and site- but not
pathway-level differences

We studied the interstrain acetylome variation in P. aeruginosa
PAO1 and PA14, by comparing overlapping acetylated proteins and
lysine residues. The number of acetylated proteins and sites be-
tween the PAO1 acetylome studied here and Gaviard et al’s (2018)
PA14 acetylome are generally consistent. We identified 508 acety-
lated proteins and 1076 sites, while Gaviard et al. (2018) found 522
proteins and 1102 unique sites. Taking into account the smaller
PAQO1 proteome (5564 versus 5886 proteins; The UniProt Consor-
tium 2023), the acetylomes are even more similar. Indeed, the
PAO1 acetylome covers a slightly larger part of the strain’s pro-
teome (9.1% of the proteins), compared to the PA14 acetylome
(8.7%). Compared to Gaviard et al’s (2018) acetylome, larger dif-
ferences could be observed between our and Ouidir et al.’s (2015)
acetylome. We identified 188 additional proteins and 646 addi-

tional acetylation sites in our study and consequently obtain a
higher fraction of acetylated proteins (9.1%) versus Ouidir et al.’s
study (2015) (5.4%).

In addition to the acetylome size, the distribution of the num-
ber of acetylated sites per protein are similar between the PAO1
acetylome and Gaviard et al’s (2018) PA14 acetylome (Fig. 3).
Most proteins contain one acetylation site. However, some pos-
sess many more. For example, Chaperone protein DnaK (Q02FR1)
displayed 17 acetylation sites in the study by Gaviard et al. (2018)
(Supplementary Table S5). In addition, it is of note that several
of these proteins that possess multiple acetylation sites are ho-
mologs. For example, Chaperonin GroEL (P30718-EC 5.6.1.7) con-
tains 14 acetylation sites in our acetylome and 11 and 13 sites in
its PA14 homolog (Q02H55) in Gaviard et al.’s (2018) and Ouidir et
al.’s (2015) acetylome, respectively (Supplementary Table S5). This
trend of high numbers of acetylation sites in both strains—and
even between the two PA14 datasets—does not hold for the major-
ity of proteins. To illustrate, Cysteine desulfurase IscS (Q02RW8-
EC2.8.1.7) contains seven acetylation sites in Gaviard et al.’s (2018)
acetylome, none in Ouidir et al.’s (2015) dataset and only one in its
PAO1 homologin our acetylome (Supplementary Table S5). Within
the context of these acetylome comparisons, it is important to
keep in mind that the acetylome of Ouidir et al. (2015) is markedly
smaller. As such, these similarities with Gaviard’s acetylome and
differences with Ouidir's might be attributable by differences in
the experimental setup of the studies in question.

Due to the smaller PA14 acetylome measured by Ouidir et al.
(2015), most of the metabolic pathways showed reduced acetyla-
tion levels—defined as the fraction of genes involved in a KEGG
pathway for which their corresponding proteins were found to
be acetylated—compared to those for the two other P. aeruginosa
acetylomes (Fig. 4). Despite the similarities regarding the num-
ber of acetylated proteins and sites between the PAO1 and PA14
acetylome from Gaviard et al. (2018), the overall acetylation pat-
terns at the pathway level also display several differences. In gen-
eral, acetylation events are spread throughout the metabolic net-
work. Only 15 of the 102 metabolic pathways lacked any acety-
lated proteins for all three acetylomes, six of which belong to the


https://academic.oup.com/femsml/article-lookup/doi/10.1093/femsml/uqae018#supplementary-data
https://academic.oup.com/femsml/article-lookup/doi/10.1093/femsml/uqae018#supplementary-data
https://academic.oup.com/femsml/article-lookup/doi/10.1093/femsml/uqae018#supplementary-data
https://academic.oup.com/femsml/article-lookup/doi/10.1093/femsml/uqae018#supplementary-data
https://academic.oup.com/femsml/article-lookup/doi/10.1093/femsml/uqae018#supplementary-data
https://academic.oup.com/femsml/article-lookup/doi/10.1093/femsml/uqae018#supplementary-data
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Figure 2. Lysine acetylation of the ribosomal proteins, QQHWC8 and Q9HZ71, in P. aeruginosa surrounding two sites that were shown to have potential
regulatory role - via mutational studies — in E. coli by Zhang et al. (2020). In this figure, acetylation sites that were measured in this study are
highlighted in green on the Pseudomonas AlphaFold structures (Jumper et al. 2021, Varadi et al. 2022) (beige) using ChimeraX (Goddard et al. 2018,
Pettersen et al. 2021, Meng et al. 2023). Two sites described by Zhang et al. (2020), K66 in protein POA7K2 and K464 in protein POAG67, are highlighted in
cyan on the E. coli structures (pink). The POA7K2 structure originates from the PDB database (1CTF) (Lejjonmarck and Liljas 1987, Berman et al. 2000)
and POAG67 from the AlphaFold database (Varadi et al. 2022). Seven of the measured acetylation sites are located relatively closely to these previously
characterised sites, thereby suggesting a possible regulatory role of these sites as well.

‘pathway group’, which is involved in xenobiotics biodegradation
and metabolism. The remaining unacetylated pathways are dis-
tributed across the other pathway groups, excluding the amino
acid, energy, nucleotide metabolism, and the global and overview
maps pathway groups.

Interestingly, several pathways with relatively high acetylation
levels are shared among the three acetylomes (Fig. 4). The two
prime examples here are the glycolysis and TCA cycle pathways
of the carbohydrate metabolism. They display acetylation levels
of between 30.1% (11/36) in Ouidir et al.’s (2015) acetylome and
52.8% (19/36) in PAO1, and between 53.6% (15/28) in Ouidir et al.’s
(2015) acetylome in PAO1 and 67.9% (19/28) in PAO1, respectively
(Supplementary Table S6). As mentioned previously, these path-
ways are often found to be acetylated in acetylome studies (Ouidir
et al. 2015, Nakayasu et al. 2017, Gaviard et al. 2018). Notably, the
acarbose and validamycin biosynthesis pathway show high acety-
lation levels for all P. aeruginosa acetylomes (50%-100%). However,
this pathway only contains two protein coding genes. As such,
high acetylation levels can easily be reached.

By contrast, not every pathway, which shows extensive acety-
lation in one dataset is highly acetylated in another. For exam-
ple, the monobactam biosynthesis pathway only possesses a high
acetylation level in PAO1, whereas the naphthalene degradation
pathway has extensive acetylation levels in the PA14 acetylomes.
Nevertheless, similar to the acarbose and validamycin pathway,
we must keep in mind that the monobactam and naphthalene
pathways are small. Missing a single acetylated protein can dras-
tically affect the acetylation level. However, there are some path-
ways, which consist of more proteins that show differences in
acetylation levels. For example, in PAO1 13 out of 34 proteins in-
volved in the pyrimidine metabolism are acetylated, whereas only
three and six out of the 36 proteins in the same pathway in the
Gaviard et al. (2018) and Ouidir et al. (2015) acetylomes are acety-
lated, respectively.

Aside from the metabolic pathways, the acetylation levels of
the pathways involved in cellular processes, environmental in-
formation processing, genetic information processing, and hu-

man diseases (that includes antimicrobial resistance) were in-
vestigated as well. Here, the common highly acetylated pro-
cesses are associated with the functioning of RNA polymerase
and RNA degradation (Fig. 5). In the former process, homologs
of all the proteins that are acetylated in PAO1 (3) are acetylated
in PA14, albeit not as many sites per protein. The fourth pro-
tein involved in this process according to KEGG, RpoZ (Q9HTM1-
EC 2.7.7.6), is only acetylated in the Ouidir et al. (2015) acety-
lome. In the RNA degradation process, most proteins acety-
lated in PAO1 are also acetylated in one of the PA14 acety-
lomes. Two proteins in particular—chaperonin GroEL (P30718) and
chaperon protein DnaK (Q9HV43)—are highly acetylated across
all three acetylomes (11-14 sites per protein) (Supplementary
Table S7). The only protein that is uniquely acetylated in the
PAO1 acetylome is Q9x4P2, an RNA pyrophosphohydrolase. In-
terestingly, the ribosome pathway is more heavily acetylated
in PAO1 than PA14. Here, 17 proteins are uniquely acetylated
in PAOL. However, here too the most acetylated proteins are
acetylated in at least one of the PA14 acetylomes (Supplementary
Table S7).

The distribution of acetylation events in virulence-related pro-
cesses based on the VFDB database (Liu et al. 2022) revealed that
19 and 22 virulence factors were acetylated in PAO1 and PA14, re-
spectively (Supplementary Table S8). Notably, there is little over-
lap between the specific proteins that were acetylated in these
two strains. Nevertheless, the acetylated proteins are involved in
mostly the same processes and subprocesses (e.g. biofilm forma-
tion, adherence, and so on), with exception of the virulence factors
related to pyocyanin. The proteins in the latter were only acety-
lated in PA14.

Given the lack of large differences at the pathway level, the nat-
ural follow-up question was whether this trend continued at the
protein and acetylation site level. To analyse this, we mapped the
PA14 acetylation sites to their corresponding sites for their PAO1
orthologs. In this manner, orthologs could be found for respec-
tively 96.5% and 97.7% of the acetylated proteins extracted from
the publications of Ouidir et al. (2015) and Gaviard et al. (2018).


https://academic.oup.com/femsml/article-lookup/doi/10.1093/femsml/uqae018#supplementary-data
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Figure 3. Site per protein distribution of the two available PA14 acetylomes by Ouidir et al. (2015) and Gaviard et al. (2018) and our PAO1 acetylome. A
similar distribution can be observed between our and the Gaviard et al. dataset. Most acetylated proteins contain one acetylation site, however, a few

proteins possess many more.

This corresponds to respectively 7 and 12 proteins for which no
orthologs could be found (Ouidir et al. 2015, Gaviard et al. 2018).
Notably, only one of these, the CRISPR-associated protein Csy2
(Q02MMO), plays a role in antiviral defense. The sites themselves
were also mapped with high efficiency. A matching lysine in a
PAO1 ortholog was found for 96.5% of the extracted sites from
the Ouidir et al. (2015) acetylome and 97.7% of the extracted sites
from Gaviard research team acetylome. In the end, the mapping
process revealed a total of 880 proteins and 2107 sites across the
three datasets (Fig. 6). In total, our PAO1 acetylome shared 52.8%
of the proteins and 29.3% of the sites with the PA14 acetylome
of Gaviard et al. (2018), and 25.2% of the proteins and 9.1% of
the sites with the PA14 acetylome of Ouidir et al. (2015) Con-
sequently, most of the acetylated proteins and sites are unique
to one of the datasets. To be more precise, 42.7% proteins and
67.2% sites in the POA1 acetylome, 38.2% proteins and 65.1% sites
in the PA14 acetylome of Gaviard et al. (2018), and 41.8% pro-
teins and 63.6% sites in the PA14 acetylome of Ouidir et al. (2015)
were unique in their respective acetylome. Based on the absolute
number of overlapping acetylated proteins and sites, our PAO1
acetylome appears to be more similar to the PA14 acetylome of

Gaviard et al. (2018) than that of Ouidir et al. (2015), similar to
the previous comparisons (number of proteins, sites, sites per pro-
tein distribution). However, if we inspect the fractions of shared
proteins and sites, this view changes. For example, the Ouidir
acetylome shares 50.6% of all its proteins and 27.6% of all its
sites with the Gaviard acetylome. This is quite similar compared
to our acetylome, which shares 52.8% and 29.2% of its proteins
and sites with Gaviard et al.’s (2018) acetylome, respectively. Nev-
ertheless, we can conclude that clear differences exist between
the Pseudomonas acetylomes (Ouidir et al. 2015, Gaviard et al.
2018).

Some conservation can also be observed; 105 proteins and
60 sites are shared between the three acetylomes. Several of
these shared proteins are part of earlier discussed processes, such
as the TCA cycle, RNA polymerase related processes and RNA
degradation. The latter possesses the protein, which shares the
largest number of sites (six) with the PA14 acetylomes, called
chaperonin GroEL (P30718). Other processes that are featured in
this overlapping region are: ribosomal processes (e.g. small ri-
bosomal subunit protein uS2 K128-082850), glycolysis (e.g phos-
phoglycerate kinase K120 —-Q9I5Y4-EC 2.7.2.3), and reaction to
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Figure 4. Overview of acetylation levels throughout a subsection of metabolic KEGG pathways in P. aeruginosa strain PAO1 and PA14. The colour of each
cell in the heatmap corresponds to the fraction of genes involved in a KEGG pathway for which their corresponding proteins were found to be
acetylated. This fraction is also referred to as the acetylation level of a pathway in this paper. Specifically, two acetylomes from P. aeruginosa strain
PA14 were compared with our PAO1 acetylome (Ouidir et al. 2015, Gaviard et al. 2018). Several pathways were highly acetylated in all three datasets
(e.g. TCA cycle). On the other hand, for some pathways large differences could be observed, e.g. the naphthalene degradation and monobactam
biosynthesis pathway. However, some of these differences may be caused by pathways containing a limited number of proteins.

oxidative stresses (e.g. superoxide dismutase K128-P53641-EC
1.15.1.1). Notably, some of the potentially functional sites in our
PAO1 acetylome (Table 1) were also found in the PA14 acety-
lomes (e.g. HupB K67, S-adenosylmethionine synthase K35 and
K285). This conservation further suggests that these acetylation
events play a functional role in P. aeruginosa. Finally, one site in
a Cysteine-tRNA ligase (Q9I2U7 K73-EC 6.1.1.16) was present in
the three acetylomes. As acetylation events were shown to have
an effect in other tRNA ligases, this could be an interesting site to
study (Venkat et al. 2017a).

Interspecies comparison reveals high acetylation
levels in proteins involved in transcription

Since the publication of the first bacterial acetylome in 2008, sev-
eral bacterial acetylomes have been mapped and published (Yu et
al. 2008). The publications that passed our criteria (acetylation site
information and an available UniProt (or other) proteome) were
selected for comparison with our PAO1 acetylome (see methods)
(28/50 publications). In total, 30 acetylomes were found, covering
23 bacterial species (Kim et al. 2013, Lee et al. 2013, Okanishi et al.
2013, Castano-Cerezo et al. 2014, Pan et al. 2014, Kosono et al. 2015,
Ouidir et al. 2015, Xie et al. 2015, Carabetta et al. 2016, Chen et al.

2016, 2017, Kentache et al. 2016, Birhanu et al. 2017, Weinert et al.
2017, Gaviard et al. 2018, Jers et al. 2018, Liu et al. 2018, Raviku-
mar et al. 2018, TUrkowsky et al. 2018, Xu et al. 2018, 2020, Yang et
al. 2018, 2021, Sun et al. 2019, Wang et al. 2019, Marakasova et al.
2020, Novak et al. 2020, Lei et al. 2021). After mapping all protein
identifiers to their respective UniProt Accession numbers—these
acetylomes covered between 0.8% and 80.5% of the proteomes of
these bacterial species. However, the extensive coverages (80.5%
and 58.0%) were only measured for two genome-reduced bacteria,
Mycoplasma pneumoniae and M. genitalium, in the same study (Chen
et al. 2016). The remaining acetylomes, including the P. aeruginosa
PAO1 acetylome (9.1%), covered less than 31% of the bacterial pro-
teomes (Supplementary Table S9).

Similar to the PAO1-PA14 comparison, we calculated the acety-
lation levels in biological processes for the selected datasets.
However, instead of focusing on all the individual KEGG path-
ways, we opted to rely on the ‘pathway groups’ defined by KEGG
(Supplementary Table S10). Based on the hierarchical clustering of
the acetylation patterns, the datasets were grouped in three main
clusters (Fig. 7), with cluster B and C having more similar acety-
lation levels. Cluster A is comprised of two Mycoplasma species—
M. pneumoniae and M. genitalium—which display high acetylation
levels for all pathway groups (Fig. 7, cluster A). The remaining two
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Figure 5. Overview of acetylation levels across the KEGG pathways — involved in cellular processes, environmental information processing, genetic
information processing and human diseases - in P. aeruginosa. The colour of each cell in the heatmap corresponds to fraction of genes involved in a
KEGG pathway for which their corresponding proteins were found to be acetylated. This fraction is also referred to as the acetylation level of a
pathway in this paper. Specifically, two acetylomes from P. aeruginosa strain PA14 were compared with our PAO1 acetylome (Ouidir et al. 2015, Gaviard
et al. 2018). Transcription-related genes were highly acetylated in all three datasets (e.g. TCA cycle). For some pathways differences could be seen (e.g.
ribosome). However, no clear separation of the acetylomes based on the strain to which they belong, could be seen.
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Figure 6. The overlapping acetylated proteins (A) and sites (B) between our PAO1 acetylome and the publicly available PA14 acetylomes. To start, the
gene IDs provided by the two PA14 publications were converted to UniProt IDs in order to know which proteins to align in a later phase. Unfortunately,
not every gene ID could be converted. As such, a few acetylated proteins were not included in this analysis. In total, 94.4% of Ouidir et al’s acetylated
proteins and 94.9% of the sites were successfully mapped to PAO1. Moreover, 97.9% of Gaviard et al.’s acetylated proteins and 98.2% of their sites were
successfully mapped to PAO1. Next, the overlap was determined after mapping the PA14 sites to their corresponding positions in PAO1 orthologs.
Overall, we can see that many of the acetylated proteins and sites are unique to each dataset.
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Figure 7. Distribution of acetylation events throughout the KEGG ‘pathways groups’ across 31 bacterial acetylomes. The colour of each cell in the
heatmap corresponds to the fraction of genes involved in a KEGG pathway group for which their corresponding proteins were found to be acetylated.
This fraction is also referred to as the acetylation level of the pathway group in this paper. Cells were coloured grey if no annotations were found in a
particular species. If almost no annotations were available for any of the bacterial species in this comparison, the pathway group was left out of this
figure. At the bottom, one row highlights the mapping success. This grayscale represents the fraction of acetylated proteins that were successfully
mapped to UniProt identifiers from the original datasets. The datasets are clustered in three main clusters (A, B, C). Cluster A contains both
Mycoplasma species and is characterized by high acetylation levels across all pathway groups. The remaining acetylomes are clustered in B and C.
Notably, high acetylation levels for the transcription pathway group can be observed.



clusters (clusters B and C) have lower overall acetylation levels for
the different pathway groups, with cluster B possessing on average
lower acetylation levels than group C. One interesting exception is
the ‘transcription’ pathway group. Here, extensive acetylation lev-
els can be seen for the majority of datasets contained in clusters
BandC.

Notably, the Pseudomonas datasets are all part of cluster B (red
arrows Fig. 7). However, datasets pertaining to the same species
were not always grouped together. For example, two M. tuberculo-
sis acetylomes were grouped in cluster C, while another belongs
to cluster B. This could be due to a myriad of factors, e.g. growth
phase, carbon source (Christensen et al. 2017, 2019, Greiner-Haas
et al. 2021), mass spectrometry search algorithms, or technologi-
cal improvements. The explanatory power of the parameters re-
garding the clustering pattern was investigated (Supplementary
Table S11). Notably, the majority of acetylomes measured during
the stationary phase are grouped in cluster B, whereas most acety-
lomes measured in either the exponential growth phase or a mix
of growth phases are grouped in cluster C. Nevertheless, a few
datasets measured during the exponential phase are also present
in group B and vice versa. As such, none of the factors were able
to fully explain the grouping. Hence, other or a combination of
factors must be at play.

Discussion

Over the past two decades, it has become more and more appar-
ent that PTMs in bacteria, including Ne-lysine acetylation, play a
vital role in responding to changes in the environment. Here, we
present a snapshot of one potential regulatory layer in P. aerugi-
nosa strain PAO1, the acetylome. We identified 1076 unique acety-
lated lysine positions in 508 proteins. A further enrichment anal-
ysis of the acetylated proteins revealed that many acetylated pro-
teins are involved in translation, and more specifically the ribo-
somes. In addition, GO and KEGG terms associated with the cen-
tral carbon metabolism (e.g. TCA cycle) were also identified. This
corresponds to findings in other acetylome studies (Ashburner et
al. 2000, Kanehisa and Goto 2000, Kanehisa et al. 2017, 2021, The
Gene Ontology Consortium et al. 2021). Several acetylation sites
in these pathways were shown to be widely conserved (Ouidir et
al. 2015, Nakayasu et al. 2017, Gaviard et al. 2018). Furthermore,
the functioning of multiple proteins involved in these pathways
[TCA (Venkat et al. 2017b, 2018, 2019, Komine-Abe et al. 2021) and
glycolysis (Xu et al. 2014, Fang et al. 2022)] has been shown to be
affected by acetylation, for example by modulation of enzymatic
activity. Similarly, potentially functional sites have been found in
aminoacyl-tRNA synthetases (Ye et al. 2017, Venkat et al. 2017a,
Umehara et al. 2018), an elongation factor (Zhang et al. 2020) and
ribosomal proteins (e.g. ribosomal protein S1 in E. coli) (Zhang et
al. 2020, Feid et al. 2022). In case of the latter, one study reported
that acetylation slowed down translation (elongation) (Zhang et
al. 2020), while another reported acetylation to influence subunit
association (Feid et al. 2022). Notably, several of these sites were
found to be acetylated in PAO1 homologs in our acetylome. Alto-
gether, this suggests that acetylation could play a functional and
even a regulatory role in P. aeruginosa PAO1 in the aforementioned
processes.

Nevertheless, the functionality of most of these identified sites
in PAO1 remains unknown. Interestingly, the monobactam biosyn-
thesis pathway was also identified using the enrichment analysis.
Six out of nine proteins that have been assigned to this pathway in
P. aeruginosa PAO1in the KEGG database were acetylated (Kanehisa
and Goto 2000, Kanehisa et al. 2017, 2021). Two of these genes, 4-
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hydroxy-tetrahydrodipicolinate synthase (Q9I4W3-EC 4.3.3.7) and
Aspartate-semialdehyde dehydrogenase (Q51344-EC 1.2.1.11), are
essential for P. aeruginosa growth and have been put forward as po-
tential drug targets (Moore et al. 2002, Kaur et al. 2011)

In the second part of this study, we compared our PAO1 acety-
lome to the available PA14 acetylomes (Ouidir et al. 2015, Gaviard
et al. 2018). The initial comparisons at the level of acetylome size
and site per protein distribution showed extensive similarity be-
tween our PAO1 acetylome and the PA14 acetylome by Gaviard
et al. (2018). However, a more detailed analysis at the pathway
and especially specific protein and acetylation site levels, revealed
large differences. Indeed, the majority of the sites identified in
each P. aeruginosa acetylome (>63%) was unique to that acety-
lome. As mentioned in the introduction, this is consistent with the
study in A. baumannii, where only limited acetylome overlap was
found between an antibiotic resistant and sensitive strain (Ken-
tache et al. 2016). These interstrain differences likely contribute
to strain-specific attributes—similar to those found in E. coli, be-
tween an antibiotic sensitive and several resistant strains (Fang et
al. 2022). Nonetheless, despite their differences, our PAO1 acety-
lome resembled the Gaviard et al. (2018) PA14 acetylome as much
or even much more closely than the other PA14 acetylome (also at
the pathway level), depending on the perspective (e.g. fraction of
shared sites vs absolute number of overlapping sites) (Ouidir et al.
2015, Gaviard et al. 2018). However, one should be cautious with
the interpretation of these results, as the effect of strain-specific
factors could be masked by technical parameters that differ be-
tween the P. aeruginosa acetylome studies (e.g. type of antibodies
used for peptide enrichment, growth phase, growth medium, and
search engine) (Ouidir et al. 2015, Christensen et al. 2017, 2019,
Gaviard et al. 2018, Greiner-Haas et al. 2021). Moreover, this study
determined the acetylome during exponential growth in MMP
medium, whereas the Gaviard acetylome measured acetylation
sites after growth on four different media (citrate, glutamate, suc-
cinate, and glucose). This wider range of growth conditions may
have increased the overlap between the two acetylomes (Chris-
tensen et al. 2017, 2018, Gaviard et al. 2018, Greiner-Haas et al.
2021). Notwithstanding these limitations, our results suggest that
the overall acetylome patterns in P. aeruginosa are not primarily
driven by strain-specific factors.

Finally, we placed our P. aeruginosa PAO1 acetylome in a broader
context by comparing it to 30 other acetylomes from 22 different
bacterial species, extracted from literature. As such, comparison
between the different acetylomes proved more difficult, because
they were determined using different MS techniques for differ-
ent conditions. Further analysis was also confounded by the fact
that the versions of proteomes used during the peptide identi-
fying step in these publications were often not clearly specified
(led to the loss of some sites after extraction). Aware of these
restrictions, we critically compared the bacterial acetylomes. At
the pathway group level, the bacterial acetylomes split in three
clusters based on their acetylation patterns. Cluster A possessed
high acetylation levels for all pathways, in contrast to clusters B
and C. These two clusters displayed slightly lower acetylation lev-
els with the differences being the relatively higher acetylation lev-
els for cluster C in pathways related to carbohydrate metabolism,
energy metabolism, and the biosynthesis of secondary metabo-
lites. We attempted to explain this clustering taking into account
several parameters (mass spectrometry search algorithms, car-
bon source, growth phase, and technological improvements), but
none could fully explain it. Similar to the PAO1-PA14 compari-
son, other factors—such as the type of antibody used—could have
an impact. One potential limitation of this analysis is the heavy
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reliance on the pathway definitions provided by KEGG. These are
quite large compared to some other databases (e.g. EcoCyc) (Karp
et al. 2021). As a result, finer nuances in acetylation patterns
could be missed. Notably, high acetylation levels for transcription-
related proteins were shared between most acetylomes. The en-
richment in this pathway could be due to the high level of protein
abundance of proteins belonging to transcription and translation.
Several acetylation sites that can impact transcription—for ex-
ample via influencing transcription factors (Thao et al. 2010, Hu
et al. 2013, Qin et al. 2016, Ren et al. 2016, Bi et al. 2018, Koo et
al. 2020, Li et al. 2021, Singh et al. 2021), a sigma factor (Kim et
al. 2020), the RNA polymerase (Lima et al. 2011, 2012, 2016), or
histone-like and nucleoid-associated proteins (Ghosh et al. 2016,
Barlow and Tsai 2022, Luu et al. 2022)—have been identified in
bacterial species outside P. aeruginosa. However, most acetylation
sites remain understudied. The conservation of acetylated path-
ways, proteins and residues between strains and bacterial species,
can help prioritize the functional characterization of the tens of
thousands of acetylation sites.
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