
On the Correlation between Reservoir Metrics and
Performance for Time Series Classification under the
Influence of Synaptic Plasticity
Joseph Chrol-Cannon, Yaochu Jin*

Department of Computing, University of Surrey, Guildford, United Kingdom

Abstract

Reservoir computing provides a simpler paradigm of training recurrent networks by initialising and adapting the recurrent
connections separately to a supervised linear readout. This creates a problem, though. As the recurrent weights and
topology are now separated from adapting to the task, there is a burden on the reservoir designer to construct an effective
network that happens to produce state vectors that can be mapped linearly into the desired outputs. Guidance in forming a
reservoir can be through the use of some established metrics which link a number of theoretical properties of the reservoir
computing paradigm to quantitative measures that can be used to evaluate the effectiveness of a given design. We provide
a comprehensive empirical study of four metrics; class separation, kernel quality, Lyapunov’s exponent and spectral radius.
These metrics are each compared over a number of repeated runs, for different reservoir computing set-ups that include
three types of network topology and three mechanisms of weight adaptation through synaptic plasticity. Each combination
of these methods is tested on two time-series classification problems. We find that the two metrics that correlate most
strongly with the classification performance are Lyapunov’s exponent and kernel quality. It is also evident in the
comparisons that these two metrics both measure a similar property of the reservoir dynamics. We also find that class
separation and spectral radius are both less reliable and less effective in predicting performance.
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Introduction

Reservoir computing has become a successfully applied

recurrent neural network paradigm [1,2]. It was initially intro-

duced from both biologically inspired [3] and signal processing [4]

groundings, and has since been applied successfully to real-world

time-series pattern recognition problems [5,6].

While the reservoir method has simplified the training of recurrent

networks, the visibility into the workings of the internal computation

remain largely opaque. In fact, we suggest that reservoir computing

is more of a black-box than traditional feed-forward networks,

because of the inability to trace clear paths from input features to

internal nodes due to the highly recurrent connections.

The difficulty in functionally analysing reservoir networks has

stifled attempts to improve the model parameters. Incorporating

synaptic plasticity to adapt reservoir weights has been attempted

[7,8] and sometimes lead to improvements in performance [5,6,9].

However, the principles by which plasticity improves the

parameters are not understood and reservoir adaptation is still

essentially a trial and error affair. A recent review of computa-

tional models of neural plasticity and its role in self-organization of

neural network models can be found in [10].

Some metrics for measuring reservoir characteristics have been

put forward. These tend to center around the concepts of

separation [11], edge-of-chaos criticality [12], and fading memory

[13].

In this study, we will compare a selection of reservoir metrics on

two time-series classification tasks, comparing the consistency

between them. The stability of each metric will be studied by

running each experiment over 10 random initialisations. A

comparison will also be made of how three widely used plasticity

rules and three initial connectivity structures affect each of the

metrics. Finally, we look at the correlation between the metrics

and classification accuracy to determine the extent that the metrics

can be used to indicate performance.

These empirical comparisons will provide experimental guid-

ance to complement the theoretical claims made for these

measures.

Results

The results are divided into two parts. The first part varies the

reservoir connectivity and adaptation mechanism to show the

effect this has on each of the metrics and classification

PLOS ONE | www.plosone.org 1 July 2014 | Volume 9 | Issue 7 | e101792

http://creativecommons.org/licenses/by/4.0/
http://minds.jacobs-university.de/sites/default/files/uploads/papers/hierarchicalesn_techrep10.pdf
http://minds.jacobs-university.de/sites/default/files/uploads/papers/hierarchicalesn_techrep10.pdf
https://archive.ics.uci.edu/ml/datasets/Japanese+owels
https://archive.ics.uci.edu/ml/datasets/Japanese+owels
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0101792&domain=pdf


performance. The second part shows how the metrics correlate

with performance by plotting the quantities against each other and

calculating Pearson’s correlation.

Effect of Plasticity and Connectivity on Metrics
Each of the figures in this section are box and whisker diagrams

in which each box represents 10 randomly initialised simulation

runs with a given parameter set indicated by the x-axis labels. The

metric/performance is indicated on the y-axis.

Performance. Figure 1 shows the results for performance,

specifically the classification accuracy for each time-series task. In

terms of reservoir adaptation, the Bienenstock, Cooper, Munro

(BCM) rule produces slightly better results on the benchmark task

while a static reservoir performs better on the speaker task. In both

cases, tri-phasic STDP performs worse and has more variable

results. For connectivity there is no significant trend, with uniform

random connection performing somewhat better than the other

two for the speaker task and somewhat worse for the benchmark.

Class separation. Figure 2 shows the results for the class

separation metric. Considering a higher class separation leads to

better chances of learning, in theory, the tri-phasic STDP plasticity

rule tends to give slightly better values for the metric. However,

this form of plasticity is also the least stable and sensitive to initial

connection/weight values, as can be seen by the significantly

larger box size. The separation results vary drastically between the

2 time-series tasks tested. The speaker recognition task has much

greater stability, indicated by smaller box size, apart from with the

tri-phasic rule. Also interesting to note is that the class separation is

higher on the speaker task than on the artificial benchmark data

even though it has 9 classes compared with 3.

Kernel quality. Figure 3 shows the results for kernel quality.

Kernel quality is also a measure to be maximised, with the greatest

value in both tasks being 135, the dimension of the reservoir. Bi-

phasic STDP and a static reservoir tend to give the best results for

this measure. Tri-phasic STDP gives significantly lower, the

opposite trend compared to class separation. Connectivity does

not have a large effect, except scale-free producing better results

for the benchmark task. The speaker recognition task again

benefits from better values for this metric.

Lyapunov’s exponent. Figure 4 shows the results for

Lyapunov’s exponent estimate. According to idea of desiring

self-organised criticality, a value approaching 1, that represents the

edge-of-chaos is ideal. Due to the dimension of the reservoir state,

the results have been scaled by 135. Therefore 135 is the target

value for these results. Strikingly, Lyapunov’s exponent results

follow kernel quality very closely. The relationship between them

is almost exactly the same for the different reservoir settings which

suggests that both play a similar role in estimating how rich the

dynamics are in terms of computational transformation of the

input.

Spectral radius. Figure 5 shows the results for the spectral

radius. Again, according to edge-of-chaos recurrent activity, this

value is ideally approaching 1, at least claimed when dealing with

non-spiking reservoirs [14]. Greater values than 1 will lead to

instability of a supervised readout, while low values will lead to low

computational power. The BCM rule consistently adapts the

weights to give spectral radius values less than, but approaching 1.

The other settings all lead to significantly higher values. Tri-phasic

STDP always leads to weight matrices that are invalid for use with

eigenvector detecting methods. This is also occasionally true with

other plasticity rules when using scale-free connectivity. The

numerical procedures to detect eigenvectors are approximate

methods and not guaranteed to work with any arbitrary matrix.

Metric Correlation to Performance
For all experimental simulation runs, the metric results are

plotted against performance in Figure 6. This gives a visual

indication of how strongly each metric can predict performance.

For class separation, in both tasks there is practically no correlated

pattern. Kernel quality and Lyapunov’s exponent both show

strong positive correlation for small values, but shortly level off and

the pattern breaks down for large values. This could be due to the

idea that it is only strictly necessary for the number of distinct

reservoir states to exceed the number of input classes that require

separation. This would explain why the 9-class speaker task has a

shallower initial gradient than the 3-class benchmark. The spectral

radius plots are distorted due to many failed calculations returning

zero for the metric. Otherwise, there is significant negative

correlation with the speaker task performance, but none for the

benchmark.

To determine numerically how well each metric can be used to

predict performance for a given reservoir, we look at Pearson’s

correlation results for each metric against both tasks, shown in

Table 1. For each task there is a total of 120 reservoir

initialisations from which the metric results are taken.

Figure 1. Classification accuracy results for 10 initialisations for each combination of plasticity rule, connectivity method and time-
series task.
doi:10.1371/journal.pone.0101792.g001
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The two metrics that can give the strongest indication of

performance in these tasks are Lyapunov’s exponent followed

closely by kernel quality. Their closeness in this aspect adds weight

to the idea that they are measuring a similar property of a

reservoir, in addition to the similar pattern of results in Figures 3

and 4. Figure 6 highlights the striking correlation between these

metrics in both tasks. When visualising the link between

Lyapunov’s exponent and performance, the correlated trend is

not as well defined. Although there is a significant correlation,

Figure 7 shows that the metric has a large effect on performance

only when it is within a small value range. As it increases, it seems

to have less effect in determining performance.

For the benchmark task, class separation and spectral radius

show no correlated pattern. Therefore, in this case, they do not

give any hint to the performance at all. In the speaker recognition

task, these metrics both show a significant negative correlation.

However, this is not as strong as the positive correlation shown for

Lyapunov’s exponent and kernel quality. Surprisingly, class

separation produces a negative correlation with performance

where we would expect the opposite.

Discussion

We have tested four of the most well established reservoir

computing metrics on 2 classification tasks and under a number of

different conditions. Out of these, 2 metrics have emerged as being

more stable under a variety of settings: Lyapunov’s exponent and

kernel quality. Furthermore, both of these show remarkable

similarity in the patterns they follow in their results. This leads to

the conclusion that they are very likely measuring the same

property of a reservoir. We suggest that this relates to the often

used, but ill-defined phrase ‘rich reservoir dynamics’. In addition

to their stability, it is these metrics that provide the best indication

of performance, with Lyapunov’s exponent coming out slightly

ahead.

The spectral radius has a sole dependence on the weight matrix

and is activity – and simulation – independent. Therefore, it would

be highly beneficial for this measure to be utilised effectively, as it

would indicate a reservoir’s success before any simulation need

commence. Unfortunately, in our case, the spectral radius does not

provide a reliable indication of performance in the tasks we tested.

Nor can it even be reliably computed, with tri-phasic STDP and

scale-free connectivity producing weight matrices that were invalid

for the metrics computational procedure.

Figure 2. Class separation results for 10 initialisations for each combination of plasticity rule, connectivity method and time-series
task.
doi:10.1371/journal.pone.0101792.g002

Figure 3. Kernel quality results for 10 initialisations for each combination of plasticity rule, connectivity method and time-series
task.
doi:10.1371/journal.pone.0101792.g003
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Generally, tri-phasic STDP and scale-free connectivity led to

worse values for each metric and a wider spread of results for each

set of random initialisations. There are a couple of exceptions to

this; 1) tri-phasic STDP produces higher class separation, 2) scale-

free connectivity leads to higher kernel quality and Lyapunov’s

exponent for the benchmark task.

Class separation also fared poorly in that most set-ups gave a

large spread within results for multiple initialisations. Also, it failed

to reliably predict performance, giving no correlation for the

benchmark task and fairly weak in the speech task.

Materials and Methods

Reservoir Network
The reservoir model that we use is illustrated in Figure 8. The

reservoir nodes, indicated by L are stimulated by the inputs

directly as injected current, I , into the membrane potential

modelled with Izhikevich’s simple model [15]. The real-valued

inputs are normalized between 0 and 1, which are multiplied by a

scaling factor of 20 before being injected as current into L. Input

connections number 0:2 � reservoirsize, projected randomly to

the reservoir nodes. The reservoir dynamics are then simulated for

150 ms. Then, the resulting spike trains produced by each of the

reservoir nodes is passed through a low-pass filter, f , to produce a

real valued vector used to train a linear readout.

Our reservoir consists of 135 spiking neurons with the ratio of

excitatory to inhibitory as 4:1. Neurons are connected with static

synapses (delta impulse function), according to connectivity

described in the following subsection. weights are drawn from

two Gaussian distributions; N (6,0:5) for excitatory and

N ({5,0:5) for inhibitory. When plasticity adapts the reservoir

weights, wmax is clamped at 10 and wmin at -10. All parameters for

excitatory and inhibitory neuron membranes are taken from [15].

To generate an output, the spike train from each reservoir node

is low-pass filtered and a weight-and-sum readout is applied

according to the methods in [3]. This output is trained with the

iterative, stochastic gradient descent method: Least Mean Squares,

given in Equation 1.

wi/wizm(d{y)xi: ð1Þ

Figure 4. Lyapunov exponent estimate results for 10 initialisations for each combination of plasticity rule, connectivity method and
time-series task.
doi:10.1371/journal.pone.0101792.g004

Figure 5. Spectral radius results for 10 initialisations for each combination of plasticity rule, connectivity method and time-series
task.
doi:10.1371/journal.pone.0101792.g005
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Here, d is the desired output, y is the actual output, xi is the

input taken from a neuron’s filtered state, and m is a small learning

rate. The weight from xi to the output is wi.

Connectivity
The type of connectivity used determines the topology of the

recurrent network structure in the reservoir. As the synaptic

plasticity models used in this work only modify the weights, not the

topology, different connectivities will maintain their characteristic

structures throughout the simulations. The following connection

models are used to probabilistically connect reservoir nodes:

1. Uniform random: The probability for any two neurons to

be connected is a fixed value C. To add a new connection,

source and target neurons are both selected randomly with a

uniform distribution. This leads to an Erdős-Rényi type

network structure [16]. An illustration is provided in Figure 9.

2. Scale-free: In a network with the scale-free property, the

degree distribution – the number of connections for each node

– follows a power law: P(k)*Ck{c [17]. The probability P of

a node having k connections, is scaled by some constant C. For

a growth model when adding new connections, we use the

Barabasi-Albert model.

pi~C
kiP
j kj

ð2Þ

This leads to a structure with densely connected hubs. An

illustration is provided in Figure 9.

3. Distance based lattice: The original model for LSM

connectivity [3] arranged neurons in a 3D grid with the

probability of a connection between two nodes, inversely

proportional to the distance between them. The formula

defining the probability of a connection between two neurons is

as follows:

pab~C:exp
{D2(a,b)

l2

� �
ð3Þ

Where D(a,b) is the Euclidean distance between neurons a and

b. The parameter l controls both the average number of

connections and the average distance with which neurons are

connected by.

Plasticity
Three synaptic plasticity mechanisms are employed in this

study, each of them based on the Hebbian postulate [18] of

‘‘neurons that fire together, wire together’’. The BCM rule

regulates the spike rate of the post-synaptic neuron to match a

desired rate of spiking. Spike timing dependent plasticity (STDP) is

also utilised with two forms of learning window that have been

observed in biological experiments. Each mechanism is outlined as

follows:

1. BCM rule: The BCM rule [19] is a rate based Hebbian rule

that also regulates the post-neuron firing rate to a desired level.

It works on a temporal average of pre- and post-synaptic

activity. The BCM rule is given in Equation 4. The regulating

parameter is the dynamic threshold HM , which changes based

on the post-synaptic activity y and the desired level y0 in the

following relationship: E½y=y0�, where E½:� denotes a temporal

average. There is also a decay parameter Ewi for additional

Figure 6. Lyapunov’s exponent results plotted against kernel quality in both tasks to show the similarity between the metrics.
doi:10.1371/journal.pone.0101792.g006

Table 1. Pearson’s Correlation between Metrics and Performance.

Metric PCC of Benchmark Task PCC of Speech Task

Class Separation 20.04 20.2

Kernel Quality 0.22 0.29

Lyapunov’s Exponent 0.26 0.31

Spectral Radius 0.05 20.16

doi:10.1371/journal.pone.0101792.t001
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stability, that slowly reduces connection strength and so

provides a mechanism for uniform weight decay, irrespective

of the level of activity or correlation. A plot of the BCM weight

change is presented in Figure 10.

dwi

dt
~y(y{hM )xi{Ewi ð4Þ

2. Bi-phasic STDP: The STDP rule depends on the temporal

correlation between pre- and post-synaptic spikes. The synaptic

weight change is computed based on the delay between the

firing times of the pre- and post- neuron. This is described in a

fixed ‘learning window’ in which the y-axis is the level of weight

change and the x-axis is the time delay between a pre- and

post-synaptic spike occurrence. The bi-phasic STDP rule

consists of two decaying exponential curves [20], a positive

one to potentiate in-order spikes, and a negative one to depress

out-of-order spikes. This rule was derived from experimental

work carried out on populations of neurons in vitro [21] [22].

Bi-phasic STDP is given in Equation 5.

Dw(t)~
Az

:exp {Dt
tz

� �
if tw0

A{
:exp Dt

t{

� �
if tƒ0

ð5Þ

3. Tri-phasic STDP: A tri-phasic STDP learning window

consists of a narrow potentiating region for closely correlated

activity but depressing regions on either side: for recently

uncorrelated activity, and for correlated but late activity. This

learning window has been observed in vitro, most notably in the

hippocampi, between areas CA3 and CA1 [23]. The tri-phasic

STDP is given in Equation 6 from [24].

Dw(t)~Az
:exp

{(x{20)2

200

 !
{A{

:exp
{(x{20)2

2000

 !
ð6Þ

Both STDP learning windows are plotted in Figure 11.

Figure 7. Each of the metrics for all simulation results plotted against classification accuracy in both tasks. This indicates the extent
that each metric can be used to predict performance.
doi:10.1371/journal.pone.0101792.g007

Figure 8. Depiction of the elements of our reservoir computing
model. I is a multi-dimensional input signal, L nodes constitute the
recurrent reservoir, the x vector is the reservoir state, f is the filtering of
the spike trains and y is the output after weight and sum.
doi:10.1371/journal.pone.0101792.g008

Figure 9. Illustration of two types of connectivity model. A
uniform connection policy produces variable length chains of
connections with some groups of neurons disconnected from others.
A scale-free connection policy leads to a structure of a few highly
connected hubs and many sparsely connected leaves.
doi:10.1371/journal.pone.0101792.g009
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Reservoir Metrics
Class Separation. The class separation is a measure of the

comparative distance between the reservoir states corresponding

to different classes of stimuli. It was first introduced in [11] and

further expanded in [25] as a way to determine how well a

reservoir can distinguish one class of inputs from another based on

the geometric distance between the class centroids. The reservoir

states are taken to define the multi-dimensional coordinates of

each sample. Class separation is defined in Equations 8,9,7 as

follows:

Sepy(O(t))~
Cd (t)

Cv(t)z1
ð7Þ

Cd (t)~
Xn

l~1

Xn

m~1

Em(Ol(t)){m(Om(t))E2

n2
ð8Þ

Cv(t)~
1

n

Xn

l~1

r(Ol(t)) ð9Þ

The class separation Sep(:::), for a given reservoir y and set of

state vectors O(t), is defined in Equation 7. It is the inter-class

distance divided by the intra-class variance, with 1 added to the

denominator to prevent dividing by zero. Inter-class distance is

calculated according to Equation 8. The class centroids are

calculated as the mean state vector for a given class, denoted by

m(O(t)). There are n classes in total. Intra-class variance is

calculated according to Equation 9. The within-class variance is

given as r(O(t)). It is calculated by summing the geometric

distance between each state vector and its corresponding class

average, m(O(t)).
The rationale behind this class separation measure is that if the

distance between different classes of inputs is higher than the

distance within the classes, it will be easier for a linear readout to

learn a set of weights that distinguishes between the reservoir states

of different classes.
Kernel Quality. The kernel quality, introduced in [26], is a

class-agnostic measure of the reservoir’s ability to separate input

patterns, in so far as it is independent of the target output.

However, it is not quite a task independent measure of a reservoir,

due to the dependence of the task-specific input patterns in

forming the reservoir states. Like class separation, kernel quality is

based on the complete set of n reservoir states produced by input

stimuli. Here, a matrix M is formed from all of the collected

reservoir state vectors, each of which forms one column of

dimension m. The rank r of M is then taken to be a measure of the

computational power of the reservoir, with the maximum rank,

and highest computational power to be r~m, assuming that the

number of state vectors is greater than the dimension, nwm.

When this is the case, each column in M cannot be computed

from a linear combination of any other column and therefore it is

possible for a linear readout to separate each one of the reservoir

states to produce different outputs.

This measure is also referred to as the linear separation property.

Lyapunov’s Exponent. Lyapunov’s exponent estimate is a

method of calculating the amount of chaos in the dynamics of the

reservoir activity. The principle is based on the assumption that

internal activity, xj(t), that is generated based on the input signal,

uj(t), should vary in accordance with that signal, in a system with

orderly dynamics. We use the calculation method defined in [27]

which was formulated based on theory described in [12]. This

method is defined in Equation 10. It is scaled by an undetermined

constant k and so can be taken as proportional to the Lyapunov

exponent. Therefore it can be compared only to other values using

this method, not to other studies, unless the constant k were

determined for both.

l(t)~k
XN

n~1

ln
Exj(t){xĵj(t)E
Euj(t){uĵj(t)E

 !
ð10Þ

Spectral Radius. The spectral radius [4] is a measure taken

directly on the weight matrix of the reservoir, rather than the

reservoir states as the others are. It is the largest absolute

eigenvalue of the weight matrix that indicates the scale of the

Figure 10. The Bienenstock-Cooper-Munro plasticity rule
illustrated with synaptic weight change on the y-scale and
post-synaptic activity on the x-scale. hM is the sliding modification
threshold that changes based on a temporal average of post-synaptic
activity.
doi:10.1371/journal.pone.0101792.g010

Figure 11. The two predominantly studied STDP learning windows.
doi:10.1371/journal.pone.0101792.g011
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weight values. Having a spectral radius less than 1 implies that

input driven activity will fade within the network over time. By

having a spectral radius exceeding 1, the reservoir dynamics would

reach an unstable regime where the activity continually perpet-

uates and interferes with future inputs. It is therefore suggested

that this value be kept below 1, while being a high as possible to

allow time-series samples to interact in sufficiently long time-scales.

However, the concept of spectral radius assumes that the node

activation has a unity output function. It is not clear what

implications this metric has with spiking neuron models with

connection delays.

Time Series Tasks

1. Tri-function generator: A synthetic benchmark is taken

from a study performed by Jaeger on ESNs [28]. The task is to

predict which of three signal generating functions is currently

active in producing a varying input signal. To generate a

sample of the signal at a given timestep, one of the three

following function types is used; 1) A sine function of a

randomly selected period, 2) A chaotic iterated tent map, 3) A

randomly chosen constant. The generator is given some low

probability, 0:05, of switching to another function at each time-

step. The full method of generating the data is described in

[28]. Part of the generated signal is presented in Figure 12.

2. Speaker recognition: A speaker recognition task is a

classification problem dealing with mapping time-series audio

input data to target speaker labels. We use a data set taken

from [29] which consists of utterances of 9 male Japanese

speakers pronouncing the vowel . The task is to correctly

discriminate each speaker based on the speech samples. Each

sample is comprised of a sequence of 12 feature audio frames.

The features of each frame are the LPC cepstrum coefficients.

The sample sequence ranges between 7-29 frames. The dataset

is divided into training and testing sets of 270 and 370 samples

each, respectively. Note that unlike the benchmark data used in

this report, the samples are not in a time-series, yet each sample

consists of a time-series of audio frames.
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