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Abstract: Right ventricular failure (RVF) is the most important prognostic factor for morbidity and
mortality in pulmonary arterial hypertension (PAH) or pulmonary hypertension (PH) caused by
left heart diseases. However, right ventricle (RV) remodeling is understudied and not targeted by
specific therapies. This can be partly explained by the lack of basic knowledge of RV remodeling.
Since the physiology and hemodynamic function of the RV differ from those of the left ventricle (LV),
the mechanisms of LV dysfunction cannot be generalized to that of the RV, albeit a knowledge of
these being helpful to understanding RV remodeling and dysfunction. Store-operated Ca2+ entry
(SOCE) has recently emerged to participate in the LV cardiomyocyte Ca2+ homeostasis and as a
critical player in Ca2+ mishandling in a pathological context. In this paper, we highlight the current
knowledge on the SOCE contribution to the LV and RV dysfunctions, as SOCE molecules are present
in both compartments. he relative lack of studies on RV dysfunction indicates the necessity of further
investigations, a significant challenge over the coming years.

Keywords: SOCE; SOCs; TRPCs; Orai1/3; STIM1/2; calcium signaling; left and right hypertrophy;
left and right heart failure; pulmonary hypertension

1. Introduction

In pulmonary arterial hypertension (PAH), the elevated pulmonary vascular resistance
due to distal pulmonary artery obstruction ultimately induces right ventricular failure
(RVF) [1]. Heart failure (HF) describes the inability of a heart to maintain the workload
necessary to meet oxygen and nutriment needs. The purpose of the RV is to maintain a
sufficient blood flow through the lungs to achieve adequate left ventricular (LV) filling with
oxygenated blood. Hence, cardiac output of the right and left heart is closely linked, as a
decrease in pulmonary blood flow will decrease LV filling and, consequently, LV cardiac
output. As the pulmonary circulation works at a lower pressure than the systemic circula-
tion, the RV wall is much thinner and therefore less powerful, allowing better compliance
but poorer adaptation to overload [2]. Thus, any sudden increase in pulmonary vascular
resistance or blood volume may overcome the RV’s capacities, provoking a dilatation and
then a decrease in stroke volume and cardiac output. If the phenomenon is chronic, the
RV can, for a time, as with the LV, respond by progressive hypertrophy to improve its
contractility [1,3].
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Excessive RV dilatation triggers a tricuspid regurgitation favoring venous congestion,
quickly assessed by clinical signs (edema, jugular distension, anasarca, and so on), bio-
chemical markers (elevated NT-proBNP or BNP), and ultrasonography. It also eventually
leads to the protrusion of the interventricular septa toward the LV, impairing its filling
and contractility. These signs of RV dysfunction are critical predictors of poor prognosis,
suggesting an impending HF and a high risk of death by cardiogenic shock [4]. Because
pulmonary embolism [5] and pulmonary hypertension (PH) [6] increase RV afterload, they
are classic cases of fatal diseases that provoke acute or chronic RVF.

Currently, treatment of RV dysfunction is based on blood volume management, using
mainly diuretics to reduce RV overload while carefully avoiding systemic hypotension. In
the most severe cases, inotropes and vasopressors may be needed to maintain a sustainable
cardiac output [6]. None of these treatments are specific to the RV. Moreover, there is no
treatment targeting the RV remodeling during chronic failure, despite being a critical factor
in the severity of PH [7].

The RV is a crescent-shaped structure linked to the venous system from one side and
the pulmonary circulation from the other, through the tricuspid and the pulmonary valves,
respectively. Its free wall is thinner than the LV myocardium (3–5 mm versus around
1 cm) for a volume that is 10–15% greater and a mass one-third to one-sixth smaller [8,9].
Three cardiomyocyte layers are described in the LV, but only two in the RV, with myocytes
arranged circumferentially on the external layer and longitudinally in the internal layer.
This organization allows a peristalsis-like motion during contraction, whereas the LV
systole is torsion-shaped due to oblique myocardial fibers. Notably, the RV has smaller
cardiomyocytes at the histological level and contains 30% more collagen [10].

These anatomical features give the RV greater compliance, allowing the venous return
variations to absorb and provide a stable stroke volume toward the low-impedance pul-
monary circulation while using only one-fourth of the LV stroke work. Subsequently, the
RV is more vulnerable to significant increments in pulmonary arterial pressure.

The anatomical differences between the RV and LV are the result of a different em-
bryological origin, developed during the cardiac morphogenesis from the third to the
eighth week of gestation. The LV arises from the primitive heart tube, also named the first
cardiac field. In contrast, the RV is formed from the anterior part of the “second heart field”,
cardiac precursor cells migrating towards the extremities of the primitive heart tube [11].
In the foetus, pulmonary vascular resistance is high; therefore, the RV and LV have equal
thickness and power, producing 60% of the cardiac output [12]. This pulmonary pressure
normalizes at birth, and the compliance rises as the free wall slims down. The ventricle
adopts its final form within the first year.

The nourishing coronary blood flow, supplied by the right coronary artery in 80% of
the population, occurs in both diastole and systole (mainly during diastole in the LV) but is
more vulnerable to systemic hypotension and intracardiac pressure increase. Nevertheless,
the RV’s relative resistance to ischemia is partially explained by lower oxygen consumption
and higher oxygen extraction reserve at rest. Moreover, the expression of the anaerobic
glycolytic enzyme is higher in RV than in LV cardiomyocytes [13]. Potential gene and
protein expression differences between human LV and RV cardiomyocytes have been
little explored.

The RV structure and function assessment are also more challenging than the LV.
Its retrosternal position and complex geometry complicate echocardiography evaluation.
Metabolic imaging is not yet feasible, as the free wall is too thin. Right-heart catheteriza-
tion is the most accurate tool to measure hemodynamic features, especially to calculate
pulmonary vascular resistance, but it is not a routine test. Compared to the LV, RV conduc-
tance studies are technically more challenging, partly because of the difficulty of obtaining
reliable ventricular volumes without magnetic resistance imaging [2].
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2. Ca2+ Signaling in the Left and Right Ventricles

The common pathophysiology of LVF and RVF is cellular remodeling, which is regu-
lated and coincides with the remodeling of the intracellular Ca2+ concentration ([Ca2+]i).
Ca2+ mishandling is a hallmark of left and right HF [14,15] and is a major cause of cardiac
contractile dysfunction. Indeed, Ca2+ is a universal signaling ion essential for most car-
diomyocyte functions, including excitation-contraction coupling (ECC) and regulation of
gene expression. In mammals, controlling [Ca2+]i is fundamental for almost all cellular pro-
cesses. In the cardiac compartment, the contraction of cardiomyocytes is mainly controlled
by the ECC. The depolarization during action potential (AP) activated the L-type Ca2+

channels (LTCC). The resulting small Ca2+ influx activates massive Ca2+ release from the
sarcoplasmic reticulum (SR) through the type 2 ryanodine receptor (RyR2): a Ca2+-induced
Ca2+ release (CICR) process that controls contractile myofilaments. Other processes could
also participate in cardiomyocyte Ca2+ homeostasis, notably the store-operated Ca2+ entry
(SOCE) as described herein.

3. Generality about the SOCE Machinery

This mechanism refers to the activation of the store-operated channels (SOCs) follow-
ing endoplasmic/sarcoplasmic reticulum (ER/SR) Ca2+ depletion, an important process
in modulating [Ca2+]i in most cell types, first described by Putney in 1989 [16]. The
transient receptor potential canonical (TRPC) channels were the first plasma membrane
channels suspected to contribute to SOCE. TRPC channels are constituted by seven isoforms
(TRPC1 to TRPC7, with TRPC2 being a pseudogene in humans), which can form homo-
or hetero-tetrameric channels like TRPC1/5, TRPC1/3, TRPC1/4, TRPC3/4, TRPC4/5,
and TRPC1/4/5 [17]. The inhibition of TRPC channels by pharmacological or knock-
down approaches indicates that TRPC1, C4, and C5 participate to SOCE in several cell
types [17–23].

As TRPC channels are non-selective cation (Ca2+, Na+, K+) channels, their electro-
physiological properties do not match with the highly selective Ca2+ current activated by
intracellular store depletion, called Ca2+ release-activated Ca2+ current (ICRAC) [24–26].
Under physiological conditions, the Ca2+ selectivity is 1000 times higher than the Na+

permeation. From 2005 to 2006, the two main molecular components of SOCE and the
ICRAC were identified by several teams: the STIM (stromal interaction molecule) protein,
which is an ER/SR Ca2+ sensor with its N-terminal EF-hand domain; and Orai (also named
CRACM), which is the highly Ca2+ selective for typical SOCs. Indeed, contrary to TRPC
channels, the electrophysiological properties of the Orai1 channel perfectly fit with the
native ICRAC, a sustained non-voltage-activated Ca2+ inward current with an inward recti-
fication. There are two homologous STIM proteins, called STIM1 and STIM2, each having
different variants that have been characterized since the discovery of the protein family.
STIM1 has two variants: STIM1 long (STIM1L), which is associated with rapid activation
of SOCE only in skeletal myotubes through permanent cluster formation at the plasma
membrane with Orai1 [27]; and STIM1B, a neuron-specific variant [28]. The STIM1 ho-
molog, STIM2, has also 2 variants: STIM2.1 (or STIM2β), which is known to have inhibitory
activity on SOCE; and the STIM2.2 (or STIM2α), a SOCE stimulator variant [29]. The Orai
family comprises three proteins encoded by independent genes: Orai1, Orai2, and Orai3. In
most cells studied so far, STIM1 and Orai1 constitute the core machinery of the ubiquitous
SOCE pathway.

Following the molecular identification, the SOCE activation mechanism was explained
by several studies mainly performed in non-excitable cells. A decrease in the ER/SR
Ca2+ concentration induces a conformational change that extends the STIM1 cytosolic tail,
which then promotes its oligomerization and exposes the CAD/SOAR (CRAC activation
domain/STIM-Orai activating region) domain and the lysine-rich tail of STIM1. At the
same time, the exposure of the CAD/SOAR domain allows STIM1 to trap Orai1 channels
via interactions with their C-terminal cytosolic domain [30–34].
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While STIM1/2 constitutes the main regulatory protein for Orai1, mechanisms leading
to TRPC channels’ activation are still being investigated. The activation of TRPC channels
predominantly occurs downstream of the GPCR-Gq-PLC and receptor tyrosine kinases,
coupled to PLCγ via IP3-dependent Ca2+ release from the ER or DAG production. Ca2+

itself, via calmodulin and other Ca2+-binding proteins or PIP2, are also important regulators
of TRPC channels. These multiple mechanisms of TRPC channels’ activation possibly
depend on their subunit composition or signaling complex environment. Nonetheless,
it has been also reported that STIM1 directly or indirectly interacts with TRPC channels
(all except TRPC7), conferring them a SOCE function [35,36]. Moreover, the group of
Ambudkar demonstrated that TRPC1 function could also depend on the Orai1-mediated
Ca2+ microdomain, which generates the recruitment of TRPC1 into the plasma membrane,
which is activated by STIM1.

4. The SOCE in the Ventricles

Since Putney’s work, the existence of SOCE in non-excitable cells has been well
known [37]. In 2002, it was reported, for the first time, the presence of SOCE activated by
passive and active Ca2+ depletion in neonatal rat cardiomyocytes [38] and embryonic and
neonatal mice myocytes [39]. The SOCE was also shown, in neonatal rabbit cardiomyocytes,
to regulate the SR Ca2+ load [40]. The presence of this Ca2+ entry has been subsequently
repeatedly suggested to be a feature of an immature cardiac system.

In adult mouse cardiomyocytes, SOCE, measured by fluorimetry and patch-clamp,
is also detected following the passive SR Ca2+ depletion [41]. However, the huge SOCE
amplitude inducing hypercontracture in this report is highly questionable. More recently,
Wen and colleagues demonstrated that complete SR Ca2+ depletion is essential to opti-
mally activate moderated SOCE in adult mouse cardiomyocytes [42]. Indeed, it is now
widely accepted that the SOCE amplitude in adults is significantly lower than in embryonic
and neonatal cardiomyocytes and declines during development [39,43–51]. Moreover, it
has been repeatedly reported that only 20–70% of adult cardiomyocytes exhibit SOCE in
response to SR Ca2+ depletion [43,48,49,52]. Nonetheless, many reports did not use the
appropriate and optimal SR Ca2+ depletion protocol to induce sufficient Ca2+ emptying
to activate SOCs [43,44]. For example, Wu and colleagues show that only 20% of the cells
present SOCE, but with a protocol mobilizing only inositol trisphosphate receptors (IP3R)
and not the RyR2 [43]. In early studies, evidence of SOCE is also suggested using pharma-
cological inhibitors, such as 2-APB, SKF-96365, BTP2, or inorganic cations, such as Gd2+

and La3+, whose specificity is controversial. Lately, the existence of SOCE in the cardiac
tissue was confirmed by the detection of the different isoforms of TRPC1/C3-C7, Orai1–3
channels, and STIM1–2 proteins in the embryonic, neonatal, and adult cardiomyocytes
of rats, mice, cats, zebrafish, squirrels, and chickens, as well as in human left myocardial
tissue, with an expression that declines after birth [27,40,44,46,51,53–68].

5. The SOCE in the Adverse LV Remodeling
5.1. Role of STIM1

By manipulating their expression, several in vivo studies have demonstrated the active
participation of cardiac STIM1/Orai1-mediated SOCE during hypertrophy and HF.

For STIM1, the changes in its expression vary according to the experimental patho-
logical models (Table 1 and Figure 1). The first study by Ohba et al. in 2009 showed no
change in expression of STIM1 in a model of compensated hypertrophy by abdominal aortic
banding constriction (AAB model) over 4 weeks in rats [57]. Later, in the same experimental
model, upregulation of STIM1 with the doubling of SOC current (ISOC) is observed after
14 and 28 days of pressure overload [69]. A second current, independent of the SR Ca2+

load and activated very rapidly, with an inward rectification reflecting an Orai1-mediated
current, is also observed under this hypertrophic stress condition. This suggests that STIM1
can activate Orai1 and non-selective cationic channels, like TRPC channels, in adult car-
diomyocytes. The rapid activation of this current can be also explained by the constitutive
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association between STIM1 or STIM1L and Orai1 at the membrane, as observed in sinoatrial
node cells [70]. Luo et al. also demonstrated an increase in STIM1L variant expression,
associated with increased SOCE after compensated hypertrophy induced by constriction
of the thoracic aorta for 3 weeks in mice, but they did not find any increase in the classic
STIM1 variant [46]. After 2 or 4 weeks of pressure overload in mice by the transverse
aorta constriction (TAC model), inducing compensated or decompensated hypertrophy,
an increase in STIM1 expression is found [61,71]. By contrast, we and others found no
changes in STIM1 expression after 2, 5 or 8 weeks of TAC in mice [72,73]. Correll et al.
chose to use a mouse model of cardiac specific STIM1 overexpression, thereby mimicking
its upregulation, to study its role in the pathology. Under basal conditions, the transgenic
STIM1 mice show sudden cardiac death at 6 weeks. The surviving mice develop severe HF,
associated with induction of the fetal gene program, histopathology, and mitochondrial
structural alterations, at 12 weeks of age [61]. More recently, adult young cats, with com-
pensated hypertrophy induced by ascending aorta banding for 4 months, show increased
protein expression of STIM1 [74]. Lastly, after neurohormonal stimulation by Angiotensin
II (AngII) over 4 weeks, STIM1 expression is also raised [75]. In human, STIM1 mRNA level
is also significantly increased in LVF [60]. The novel STIM2.1 variant is detected in both
healthy and failing human myocardium. In severe LVF, STIM2.1 expression is significantly
decreased. The lower ratio of STIM2.1/STIM2.2 ratio in failing hearts indicates a shift
from the SOCE-inhibiting STIM2.1 variant to the stimulatory one, STIM2.2, suggesting an
exacerbated SOCE in failing patients.
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At baseline, the cardiac specific deletion or overexpression of STIM1 in mice leads to a
deterioration of the cardiac function with age [68,76–78], demonstrating that the basal level
of STIM1 is critical for maintaining normal LV function. However, interestingly, STIM1
silencing appears to protect the animals subjected to pressure overload against the associ-
ated hypertrophic development. Indeed, in vivo STIM1 silencing by Ad-shRNA decreases
STIM1-dependent ISOC and protects the heart from pressure overload-induced hypertrophy
by reducing signaling pathway activation such as Calcineurin (CaN)/NFATc3 [69]. After in-
duction of compensated hypertrophy in mice by AAB for 4 weeks, in addition to STIM1 and
Orai1 upregulation, a decrease in the SARAF (SOCE-associated regulatory factor) protein
expression has also been reported, which inhibits STIM1-Orai1 interaction, whereas SARAF
overexpression prevents STIM1 and Orai1 upregulation and attenuates hypertrophic devel-
opment [79]. Stim1-KO mice, after 5 weeks of TAC, exhibit preserved left ventricular mass
and cardiac function associated with normal extracellular signal-regulated kinase 1 and 2
(ERK1/2) activity and CaN expression [77]. STIM1 silencing via AAV9 before induction
of pressure overload by TAC in mice promotes the transition from adaptive hypertrophy
to maladaptive hypertrophy with a dilated failing heart and the presence of significant
pulmonary edema [76]. When STIM1 extinction occurs 3 weeks after the establishment
of pressure overload-induced cardiac hypertrophy, mice also exhibit marked ventricular
dilatation associated with systolic dysfunction compared to WT mice, reflecting a more
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rapid transition to HF. STIM1 would, therefore, be a key element in the development and
the persistence of compensated cardiac hypertrophy to preserve the transition to HF. The
chronic treatment with the cholinesterase inhibitor, pyridostigmine, after AAB or TAC in
rats or mice, respectively, attenuates cardiac hypertrophy and improves cardiac contractile
performance and rhythmic activity by suppressing the interaction of Orai1/STIM1 [80]
or diminishing pathologically enhanced STIM1 expression and SOCE in hypertrophied
myocytes [71].

Finally, the cardiac STIM1 overexpressing mice subjected to pressure overload by
TAC or to chronic neurohormonal stimulation by infusion of AngII/Phenylephrine (PE) or
isoproterenol for 2 weeks demonstrated severe maladaptive hypertrophy, with a decrease
in systolic function and the appearance of pulmonary edema, demonstrating a deleterious
effect of STIM1 overexpression on cardiac function under chronic stress [61].

With regard to the various in vivo experimental models of cardiac hypertrophy, there
are differences as to whether or not STIM1 expression is increased. Regardless, altering
STIM1-dependent signaling in vivo is deleterious for cardiac function, supporting the
idea that preserving STIM1 expression and activity under physiological and pathological
conditions is instrumental. On the other hand, most of the studies have investigated the
role of STIM1 in the pathogenesis of compensated hypertrophy. It would be interesting to
explore its role at more severe stages, where systolic dysfunction is established.

5.2. Role of Orai Channels

In line with the previous observations, mRNA and protein levels of Orai1 are found to
be upregulated in mouse LV hypertrophy induced by pressure and volume overloads, such
as 4 days or 5 weeks after TAC, 4 weeks after AAB, 2 weeks after AngII infusion, 4 days
post-myocardial infarction, or after ischemia-reperfusion injury [64,72,79,81–83] (Table 1
and Figure 1). An increased expression of Orai3 is also found after compensated or decom-
pensated hypertrophy in mice and cats [72,74,81]. In the end-stage human LVF tissue, Orai1
expression is decreased by 30% only in males. Orai1 expression is unchanged in females
with LVF, suggesting the possible cardioprotective effects of estrogen by maintaining stable
Orai1 expression [62]. In contrast, enhanced Orai1 expression and increased SOCE are
found in fibroblasts from end-stage human LVF patients, associated with an enhanced
collagen secretion capacity [84]. No changes are detected for Orai2 and Orai3 in humans
(Table 1).

Interestingly, the effect of Orai1 invalidation at baseline varies between species. In
zebrafish, Orai1 deficient embryos spontaneously develop severe HF and bradycardia [64].
Similarly, heart-specific suppression of Orai1 in larvae and adult drosophila resulted in
reduced contractility that is consistent with dilated cardiomyopathy [84]. However, Orai1-
deficient or nonfunctional Orai1 mice have normal cardiac function, unlike those with a
STIM1 deficiency [72,73,81]. Later, in drosophila, it was found that heart-specific genetic
upregulation of constitutive active STIM1 and Orai1 proteins in larvae and adults resulted
in significant hypertrophy [85].

The Orai1-deficient mice (orai1+/−) subjected to pressure overload (TAC) for 8 weeks
have decreased survival, with faster cardiac functional loss and more significant ventricular
dilation when compared to WT mice [73]. This suggests that the loss of Orai1 accelerates
the pathology and results in the more raid development of dilated cardiomyopathy and
HF. Cardiac hypertrophy level is similar between groups. However, orai1+/− mice are no
longer able to compensate for the overload, leading to the development of more severe
systolic dysfunction. This can be explained by significant apoptosis without differences in
hypertrophic and fibrotic markers.

In a model of HF with preserved ejection fraction by AngII infusion for 2 weeks in
mice, the cardiomyocyte-specific and temporally inducible Orai1 knockout mouse line
(Orai1CM-KO) show a slight decrease in systolic function with increased fibrosis compared
to WT mice, suggesting a worsening of the pathology and a transition towards maladaptive
hypertrophy. However, given the experimental echocardiographic data, these conclu-
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sions seem hasty [81]. In contrast, we recently demonstrated that, after chronic pressure
overload (5 weeks post-TAC), cardiomyocyte-specific dominant negative (dn)Orai1R91W

(loss of function Orai1 mutation) or in vivo pharmacological selective inhibition of Orai1
protects mice against LV systolic dysfunction and fibrosis, without a change in LV hy-
pertrophy. The protection against LV dysfunction is associated with a normalization
of SOCE, [Ca2+]i transients amplitude, SR Ca2+ load, cardiomyocyte contractility, and
sarco/endoplasmic reticulum Ca2+-ATPase (SERCA2a) expression, in which the protein
tyrosine kinase (Pyk2)/mitogen-activated protein kinase (MEK)/ERK cascade is, in part,
involved [72].

Saliba et al. showed the involvement of the Orai3 isoform during compensated
cardiac hypertrophy induced by pressure overload in rats (4 weeks after AAB) [63]. In
hypertrophied rats, the authors observed an increase in the interaction of Orai3 with
STIM1/Orai1, leading to an increased rate of Orai3-mediated Ca2+ entry. This voltage-
independent Ca2+ entry is not involved in the cardiac ECC, since the amplitude and
the relaxation constant of the Ca2+ transients are not modified in hypertrophied rats in
the presence of siRNAs directed against Orai3 or Orai1. Moreover, during pathology,
arachidonic acid current (IARC) mediated by Orai3 is increased [63]. However, the authors
did not address the functional significance of this enhanced Orai3-mediated Ca2+ entry in
the pathological states [63]. Using constitutive and inducible cardiomyocyte-specific Orai3
knockout (KO) (Orai3cKO) mice, Gammons et al. found that cardiac Orai3 deficiency lead to
LV dysfunction progressing to dilated cardiomyopathy and LVF. Cardiomyocytes isolated
from Orai3cKO mice exhibit profoundly altered myocardial Ca2+ cycling and mitochondrial
morphology. A more dramatic cardiac phenotype emerged when Orai3 is removed in
adult mice using a tamoxifen-inducible Orai3cKO mouse, indicating that the loss of cardiac
Orai3 is critical for LV function. In a pathological state, Orai3cKO mice subjected to pressure
overload (2 weeks post-TAC) developed a fulminant dilated cardiomyopathy with rapid
HF, characterized by interstitial fibrosis and apoptosis [86]. This has also been confirmed
in vivo in two models of adaptive hypertrophy by infusion of isoproterenol for 15 days or
by AAB for 28 days in rats. By intramyocardial injection of siRNA directed against Orai3, a
rapid transition to maladaptive hypertrophy is demonstrated, showing a deleterious effect
of knockdown Orai3 during adaptive hypertrophy [87].

In contrast to Orai3, the studies carried out in vivo on the role of Orai1 in hypertrophy
and HF remains, to date, quite contradictory, probably due to the different experimental
pathological models. Despite these discrepancies, all studies support the idea of a significant
role of Orai1-mediated SOCE in the development of hypertrophy and HF.

5.3. Role of TRPC Channels

Under physiological conditions, all TRPCs-deficient mice presented no cardiac ab-
normality compared with WT mice [82], indicating that TRPC channels are not crucial
for maintaining normal LV function. However, evidence suggested that TRPC channels
contribute to the pathogenesis of LV hypertrophy or failure.

Almost all TRPC isoforms are differentially expressed in left ventricular tissue and
cells isolated from experimental animal models of LV remodeling and dysfunction, and
in myocardial biopsies from failing human hearts (Table 1 and Figure 1). Indeed, in
different in vivo experimental rodent models of hypertrophy and HF induced by pressure
or volume overload (abdominal, ascending or transverse aortic constriction, Dahl salt-
sensitive, spontaneously hypertensive (SHR), myocardial infraction, ischemia-reperfusion
injury) or by neurohormonal stress (PE, Endothelin-1 (ET-1), AngII, Isoproterenol), an
increased expression of TRPC1 [54,57,59,65,82,88–92], TRPC2 [90], TRPC3 [59,90,93–96],
TRPC4 [59,81,97], TRPC5 [83] and TRPC6 [59,72,81,90,94–96,98–104] has been reported.
Additionally, increased TRPC1 and TRPC5 expression in failing human hearts [93,105,106],
increased TRPC6 mRNA in human LV with dilated cardiomyopathy [100], and decreased
expression of TRPC4 in isolated LV myocytes from patients with ischemic cardiomyopathy
and severe HF have been shown [105,107] (Table 1).
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Table 1. SOCE Molecules Expression after Hypertrophic Stresses of the Left Ventricle. ↑: increase;↔: no change: ↓ decrease; ND: not determined.

SOCE Molecules Expression Level SOCE Function Species Induction of the LV Remodeling References

STIM1L ↑ (mRNA/Protein)
↑ SOCE Mouse Thoracic aortic banding (3 weeks) [46]STIM1 ↔ (Protein)

STIM2 ↔ (mRNA)

TRPC6 ↑ (mRNA)
ND

Mouse Thoracic aortic banding (3 weeks)/Calcineurin
Tg mouse

[100]Human Dilated cardiomyopathy

TRPC1, TRPC3, TRPC4 ↔ (mRNA) Mouse Calcineurin Tg mouse

TRPC3 ↑ (Protein) ND

Rat

Isoproterenol (4 mg/kg/day, 4 days)

[93]

Spontaneous hypertensive heart failure (SHHR,
19 months)

Mouse
Thoracic aortic banding (7 days)

Calcineurin Tg mouse (2 months)

TRPC5 ↑ (mRNA/Protein)
ND Human Idiopathic dilated cardiomyopathy

TRPC1, TRPC4, TRPC6 ↔ (mRNA/Protein)

STIM1 ↑ (mRNA)

ND Human Severe LV heart failure (NYHA III-IV class) [60]Orai1 ↔ (mRNA in female)
↓ (mRNA in male)

STIM2, Orai2, Orai3 ↔ (mRNA)

TRPC4 ↓ (mRNA) ND Human Ischemic cardiomyopathy [107]

TRPC1 ↑ (mRNA) ND Human Hypertrophic cardiomyopathy, Heart failure [106]

TRPC1, TRPC5 ↑ (mRNA)

ND Human End-stage heart failure (NYHA III-IV class) [105]TRPC3, TRPC6 ↔ (mRNA)

TRPC4 ↓ (mRNA)

Orai1, TRPC5 ↑ (mRNA/Protein) ↑ SOCE Rat Ischemia (45 min)/Reperfusion (1 week) injury [83]

STIM1, Orai1, TRPC1 ↑ (mRNA/Protein) ND Mouse Ischemia (30 min)/Reperfusion (24 h) injury [82]

STIM1, Orai1 ↑ (mRNA/Protein) ND Mouse Abdominal aortic banding (4 weeks) [79]

TRPC1 ↑ (mRNA/Protein)

ND Rat Abdominal aortic banding (4 weeks) [57]STIM1 ↔ (mRNA/Protein)

TRPC5, TRPC6 ↔ (Protein)

TRPC1 ↑ (mRNA/Protein)
ND Rat Abdominal aortic banding (4 weeks) [92]

TRPC3, TRPC5, TRPC6 ↔ (mRNA/Protein)
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Table 1. Cont.

SOCE Molecules Expression Level SOCE Function Species Induction of the LV Remodeling References

STIM1 ↑ (Protein) ↑ ISOC and ICRAC Rat Abdominal aortic banding (14 days and 28 days) [69]

STIM1 ↑ (mRNA/Protein)

ND Cat Ascending aorta banding (4 months) [74]Orai3 ↑ (mRNA)

Orai1, STIM2 ↔ (mRNA/Protein)

TRPC6 ↑ (Protein)
ND Mouse Ascending aortic banding (6 weeks) [103]

TRPC1 ↔ (Protein)

Orai1 ↑ (mRNA/Protein) ND Mouse Transverse aortic banding (4 days) Myocardial
infarction (4 days) [64]

STIM1 ↑ (Protein) ND Mouse Transverse aortic banding (2 weeks) [61]

STIM1, Orai1, Orai3 ↑ interaction between Orai3 and
STIM1/Orai1 (Protein) ↑ Orai3-mediated Ca2+ entry

and ↑ IARC
Rat Transverse aortic banding (4 weeks) [63]

STIM1, Orai1, Orai3 ↔ (Protein)

TRPC3, TRPC6 ↑ (mRNA)

ND Mouse Transverse aortic banding (7 days) [94]TRPC6 ↑ (Protein)

TRPC1 ↔ (mRNA)

TRPC6 ↑ (mRNA) ND Mouse Transverse aortic banding (8 weeks) [104]

TRPC1 ↑ (Protein)
ND Mouse Transverse aortic banding (4 weeks) [65]

TRPC3, TRPC4, TRPC6, STIM2 ↔ (Protein)

Orai1, Orai3, TRPC6, STIM2 ↑ (mRNA/Protein)
↑ SOCE Mouse Transverse aortic banding (5 weeks) [72]TRPC1, TRPC3, TRPC4, TRPC5,

STIM1, Orai2 ↔ (mRNA/Protein)

TRPC1 ↑ (Protein)
↑ ISOC Mouse Transverse aortic banding (4, 8 weeks) [54]

TRPC3, TRPC6 ↔ (Protein)

STIM1 ↑ (Protein) ND Mouse Transverse aortic banding (28 days) [71]

TRPC4α, TRPC4β ↑ (Protein) ND Mouse Transverse aortic banding (8 weeks) [97]

Orai1, Orai2, Orai3, STIM1,
TRPC4, TRPC6 ↑ (mRNA)

ND Mouse Angiontensin II infusion (3 mg/kg/day, 2 weeks) [81]
TRPC1, TRPC3, STIM2 ↔ (mRNA)

STIM1 ↑ (mRNA/Protein) ND Mouse Angiontensin II infusion (400 ng/kg/min, 4 weeks) [75]
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Table 1. Cont.

SOCE Molecules Expression Level SOCE Function Species Induction of the LV Remodeling References

TRPC1, TRPC3, TRPC4, TRPC6 ↑ (mRNA)
↑ SOCE Mouse Myocardial infarction (1, 2, 6 weeks) [59]

TRPC2, TRPC5 ↔ (mRNA)

TRPC6 ↑ (mRNA/Protein) ND Rat Myocardial infarction (1 month) [95]

TRPC3, TRPC6 ↑ (Protein) ND Rat Myocardial infarction (1, 6, 24 h) [96]

TRPC1 ↑ (Protein)
↑ Strech-activated Ca2+ entry Rat Isoproterenol (5 mg/kg/5 days, 5 weeks) [88]

TRPC3, TRPC6 ↔ (Protein)

TRPC6 ↑ (mRNA) ↑ ISOC Mouse Isoproterenol (2 mg/kg/day, 10 days) [101]

TRPC1 ↑ (mRNA/Protein) ND Rat Spontaneously hypertensive rat (SHR) [89]

TRPC6 ↔ (mRNA)
↑ (Protein) ND Rat Spontaneously hypertensive rat (SHR) [102]

TRPC1 ↑ (Protein) ↑ Strech-activated Ca2+ entry Mouse mdx with dilated cardiomyopathy (9–12 months) [91]

TRPC1, TRPC6 ↑ (mRNA/Protein)
ND Mouse Tg dn-NRSF (neuron-restrictive silencer factor,

12–16 weeks) [90]TRPC2 ↑ (mRNA)

TRPC3 ↓ (mRNA), ↑ (Protein)
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This TRPCs upregulation leads to exacerbated and cumulative SOCE and/or receptor-
operated Ca2+ entry (ROCE) that activate signaling pathways, such as CaN/
NFAT [43,44,89,94,98,101,103,108,109] and/or Calmoduline Kinase II [59,110], but also
the NF-κB pathway [106], cascades involved in the process of hypertrophic remodeling,
in particular, in the re-expression of fetal genes (MYH7, ACTA) and the induction of
pro-hypertrophic genes (NPPA, NPPB, MEF2a, etc.).

The use of KO mouse models or models harboring dominant-negative TRPC channels
mutations and pharmacological tools has confirmed their importance in hypertrophic
development. Indeed, KO mice for trpc1 [54,92], double trpc1/trpc4 KOs [111,112], trpc3
KO [113–115], trpc6 KO [116], double trpc3/trpc6 KOs [117], dn-TRPC3, dn-TRPC4 and dn-
TRPC6 [43,54,111] are protected from adaptive and maladaptive hypertrophy induced
by mechanical stress or neurohormonal stimulation by decreasing the activity of the
CaN/NFAT pathway [43,111,118], and/or interstitial fibrosis [43,111,113], or the expres-
sion of the Cav1.2 [115] or by alleviating cardiac mitochondrial dysfunction [114]. These
findings highlight the cardio-protective effect of TRPCs’ downregulation against cardiac
hypertrophy and failure.

On the other hand, the specific TRPC3 inhibitor, Pyr3, attenuates the adaptive hyper-
trophy induced by pressure overload in mice, once again supporting the significant role of
TRPC3 in cardiac hypertrophy [119]. The combined pharmacological inhibition of TRPC3
and TRPC6 by selective antagonists GSK2332255B and GSK2833503A in vitro and in vivo is
also cardioprotective, but with a limited effect in vivo [117]. Finally, selective in vivo inhibi-
tion of TRPC6 by BI749327 also improves cardiac function and prevents fibrosis deposition
in mice subjected to pressure overload [104]. All the studies mentioned above show the
significant role of TRPC channels in the development and progression of hypertrophy and
HF. TRPCs-mediated SOCE/ROCE inhibition appears to be beneficial during the pathology.
However, an individual modulation of the TRPC channels’ activity does not exist and is
still challenging to achieve, because of the complexity of the TRPCs hetero-tetramerization.

5.4. The SOCE in the Adverse RV Remodeling

Contrary to the LV, the SOCE machinery expression in the RV is not yet studied and
the physiological role of TRPC/Orai1/STIM1 proteins in adult RV cardiomyocytes is poorly
investigated. In the RV, only a few pioneer studies demonstrated the contribution of SOCs
in RV remodeling and dysfunction. Benoist et al. showed that Trpc1 mRNA expression
is decreased and Trpc6 mRNA expression is increased in RVF induced by monocrotaline
(MCT) exposure in rats (Table 2). This dysregulation could contribute to arrhythmias in
this experimental model [120]. In maladaptive RV hypertrophy, induced by MCT exposure
in rats, we found an increased expression of the glycosylated form of Orai1, as well as
upregulation of TRPC1/TRPC4 expression and of the long STIM1 (STIM1L), associated
with a decrease in the classic STIM1 protein in hypertrophied RV cardiomyocytes. This is
correlated with an increased ISOC current that is responsible for higher SR Ca2+ content
and Ca2+ cycling, suggesting their contribution to the RV remodeling during hypertrophic
stress [121].

Table 2. SOCE molecules expression after hypertrophic stresses of the Right Ventricle. ↑: increase;
↔: no change ↓ decrease; ND: not determined.

SOCE Molecules Expression Level SOCE Function Species Induction of the RV Remodeling References

TRPC1 ↓ (mRNA)
ND Rat Monocrotaline (60–80 mg/kg, 3–5 weeks) [120]

TRPC6 ↑ (mRNA)

TRPC1, TRPC4,
glycosylated Orai1,

STIM1L
↑ (Protein)

↑ ISOC Rat Monocrotaline (60 mg/kg, 3 weeks) [121]
STIM2, Orai3, TRPC3,

TRPC6 ↔ (Protein)

TRPC5, STIM1 ↓ (Protein)
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5.5. Available Pharmacological Tools to Target SOCE in Heart Failure

Since the identification of Orai1 as the SOCs archetype, Orai1 is identified as a
key player in several pathological contexts. That is why the arsenal of pharmacologi-
cal Orai1 inhibitors has significantly increased over the last decade. Indeed, there is a
well-described family of pyrazole derivatives, with the commonly used BTP2 (N-{4-[3,5-
bis(Trifluoromethyl)-1 H-pyrazol-1-yl]phenyl}-4-methyl-1,2,3-thiadiazole-5-carboxamide
or YM-58483) [122–125] and GSK compounds (GSK7975A and GSK-5503A) [126], the BTP2-
derivative Synta-66, which binds directly Orai1 [127–129] and its suitable in vivo and more
selective analog JPIII that we have developed [72,130]. The less-used AnCoA4 [131] and
5J4 (N-[[(6-Hydroxy-1-naphthalenyl)amino]thioxomethyl]-2-furancarboxamide) [132] also
exist. All these compounds have never been tested in humans. However, some Orai1
blockers (RP318, PRCL02, CM2489, Auxora) have already been tested in clinical trials
(phase I/IIa) for severe plaque psoriasis, acute or chronic pancreatitis, and COVID-19
pneumonia [133–136], where all are well tolerated in patients [136].

We have demonstrated that Orai1 function contributes to human pulmonary arterial
hypertension (PAH) and to several preclinical models of pulmonary hypertension (PH).
We have showed that Orai1 inhibition, by BTP2, 5J4, or JPIII, corrects in vitro the aberrant
phenotypes of human pulmonary artery smooth muscles cells and attenuates in vivo PH
in rat models, suggesting that Orai1 inhibition should be considered a relevant therapy in
PAH [130]. We have also demonstrated that, after chronic pressure overload, JPIII markedly
improves the left ventricular systolic function and Ca2+ handling by preventing the Ca2+

cycling mishandling, SERCA2a downregulation and fibrosis, without causing adverse effect.
Our findings suggest that Orai1 inhibition has a potential favorable hemodynamic value
to protect the heart from maladaptive hypertrophy and might represent a new inotropic
support to help to relieve systolic dysfunction [72]. Taken together, Orai1-mediated SOCE
may be a novel therapeutic target to consider in PAH and HF. It would be interesting to
test the Orai1 inhibitors used in clinical trials in PAH and HF, especially since good safety
in humans has already been demonstrated in several clinical trials.

Contrary to Orai1 blockers, existing TRPC channel inhibitors are not selective of
all TRPC channel isoforms. For example, the xanthine-based inhibitors inhibit TRPC1,
TRPC5, and TRPC6 at nanomolar concentrations [137,138]. The HC-608 compound, also
called Pico145, is described as one of the most potent inhibitors of TRPC1, TRPC4, and
TRPC5 [139], while HC-070 is described as an inhibitor of TRPC4 and TRPC5 [140]. The
ML-204 (4-Methyl-2-(1-piperidinyl)quinoline) compound is reported as a selective TRPC4
inhibitor [138], and AC1903 (C19H17N3O) as a selective TRPC5 inhibitor [141], but they
are also described to inhibit TRPC4 and TRPC5. Alternatively, GFB-8438, a derivate of
pyridazinone 1 (Pyr1), is a potent TRPC4 and TRPC4/C5 inhibitor [142,143], while Pyr3 and
Pyr10 are recognized as TRPC3 inhibitors [119]. The GSK2833503 compound is also a potent
inhibitor of TRPC3 and TRPC6 [117,144]. Several compounds, including BI749327, SAR7334
SH045, and AM-1473, are developed to specifically inhibit TRPC6 [104,144–146]. Finally,
the TRPC5 channel inhibitor, GFB887, is currently the only molecule tested in clinical Phase
I on healthy volunteers and now in Phase II for patients with diabetic nephropathy or with
focal segmental glomerulosclerosis [147].

Some of them can discriminate each TRPC isoform in vitro by using specific con-
centrations, but their use in vivo is challenging, due to their lack of selectivity at higher
concentrations. Moreover, some compounds are not stable in vivo, which prevents their
use in preclinical or clinical research. The development of selective TRPC channel inhibitors
is needed and should be accelerated by recent cryo-EM structure discovery [148,149]. De-
veloping more selective pharmacological tools to selectively inhibit each TRPC isoform
could facilitate the emergence of innovative therapies for multiple diseases, such as LVF
and RVF.
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6. Conclusions and Future Directions

RVF is the most common cause of death in patients with PH, as the RV rapidly switches
from adaptive to maladaptive hypertrophy in contrast to the LV. Although stopping or
slowing down the progression of the RV disease appears necessary to avoid double trans-
plantation, no treatment explicitly addresses RV dysfunction. As summarized in this review,
SOCs are crucial for Ca2+ mishandling in LV dysfunction and could also be involved in RV
dysfunction. Nevertheless, few studies have investigated the role of SOCs in the develop-
ment of RV dysfunction. Additionally, the existing studies were performed in small animal
models of RV dysfunction caused by pulmonary vessel remodeling. Further basic research
studies are needed to decrypt the contribution of SOCE in RV remodeling in a large animal
model or pulmonary arterial banding animals, and to investigate SOCs as novel potential
therapeutic options during RV dysfunction.
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