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Glioblastoma is one of the most aggressive brain tumors and is associated with a very low

overall median survival despite the current treatment. The standard of care used in clinic

is the Stupp’s protocol which consists of a maximal resection of the tumor when possible,

followed by radio and chemotherapy using temozolomide. However, in most cases,

glioblastoma cells infiltrate healthy tissues and lead to fatal recurrences. There are a lot

of hurdles to overcome in the development of new therapeutic strategies such as tumor

heterogeneity, cell infiltration, alkylating agent resistance, physiological barriers, etc., and

few treatments are on the market today. One of them is particularly appealing because it

is a local therapy, which does not bring additional invasiveness since tumor resection is

included in the gold standard treatment. They are implants: the Gliadel® wafers, which

are deposited post-surgery. Nevertheless, in addition to presenting important undesirable

effects, it does not bring any major benefit in the therapy despite the strategy being

particularly attractive. The purpose of this review is to provide an overview of recent

advances in the development of innovative therapeutic strategies for glioblastoma using

an implant-type approach. The combination of this local strategy with effective targeting

of the tumor microenvironment as a whole, also developed in this review, may be of

interest to alleviate some of the obstacles encountered in the treatment of glioblastoma.
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INTRODUCTION

Glioblastoma (GBM) is the most common primary brain tumor in adults. It is characterized by
high infiltration into healthy brain tissue, rapid proliferation and important intra- and inter-tumor
heterogeneity leading to a global chemoresistance and a high aggressivity (1). This brain tumor
is classified as a grade IV glioma tumor by the World Health Organization (2). Despite a still
low incidence (3.23 per 100,000 population) and a glioblastoma primarily diagnosed at older ages
(65 years), the median survival for glioblastoma for all patients (regardless of treatment) was 8
months in the United States, with a one-, five- and ten-year survival rates of 42.8, 7.2 and 4.7
%, respectively, based on recent statistical analysis of the Central Brain Tumor Registry of the
United States (CBTRUS) (3, 4).

Approved FDA treatments against GBM are scarce primarily due to the difficulty of treating
brain pathologies because of the blood-brain barrier (BBB) that protects the central nervous
system (5). In systemic regimen, only a few therapeutic molecules have the capacity to cross the
barrier to reach the tumor areas to be treated. Lomustine (CCNU) approved in 1976 for oral
administration (80–110 mg/m2 every 6 weeks) and carmustin (BCNU) approved in 1977 for
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intravenous administration (150–200 mg/m2 every 6 weeks)
are non-specific alkylating agents that causes crosslinking of
DNA and RNA in dividing cells, triggering cell death (6,
7). There is no benefit for these treatments compared to
radiotherapy alone, and high adverse effects such as hematologic
toxicity for CCNU and bone marrow suppression, pulmonary
and ocular toxicities for BCNU. Another systemic treatment
approved in 2009 consists of a targeted therapeutic antibody:
Bevacizumab (intravenous administration, 10 mg/kg every 2
weeks) (8). With strong side effects such as hypertension,
thromboembolic events, gastrointestinal perforation, cerebral
bleeding, proteinuria, this treatment is used to treat symptomatic
edema and radiation necrosis.

The last systemic treatment approved in 2005 is temozolomide
(TMZ), another non-specific alkylating agent that causes
mismatch repair in DNA with the methylation of the O6 position
of guanine. This treatment is part of the standard of care of
GBM: the Stupp’s protocol, including maximal tumor resection
by neurosurgery, when accessible, followed by radiation therapy
[Total of 60Gy over 6 weeks: 2 Gy/day (5days/week)] and TMZ
(oral administration, 75 mg/m2 per day for 6 weeks (concomitant
to radiotherapy) followed by 120 mg/m2 the first 5 days of
each 4 weeks, with a total of 6 cycles). This treatment presents
also systemic toxicities: hematologic toxicity, thrombocytopenia,
leukopenia, neutropenia, but more moderated than the previous
ones (9). Among all concomitant and/or adjuvant approved
therapeutic agents, TMZ led to the best therapeutic efficacy in
clinic with a median survival of 14.6 months with a 5 year
survival rate of 10%, confirmed by a recent meta-analysis (10).
Nevertheless, this standard of care does not allow elimination of
GBM since tumor recurrence occurs in most cases and in the
vicinity of the tumor resection area (11). GBM is one of the most
expensive cancers to treat (12), which is even more irrational
since this tumor remains incurable to this day.

Because crossing the BBB is still a real challenge despite all
the efforts made such as the use of drug delivery nanosystems,
scientists have also explored other strategies to improve
therapeutic efficacy and three of them have been approved by
the FDA. The intraoperative imaging agent: 5-aminolevulinic
acid (5-ALA) recently approved in 2017, allows the better
visualization of GBM and other malignant glioma tissue during
surgery (13). A clinical trial in 2006 showed more complete
resections using fluorescence-guided surgery with 5-ALA in
comparison to conventional white light microsurgery (14). Better
surgical procedures combined with Stupp protocol can only be
beneficial to patients in order to limit tumor recurrence. Also, in
complement to the Stupp protocol, tumor treatment fields were
approved by the FDA in 2011 (15). It consists of the application
of an alternating electric field (low intensity: 1–3 V/cm and low
frequency: 200 kHz) using electrodes on patient scalps to disrupt
mitosis in tumor cells. Despite promising results in terms of
overall survival (16), this therapeutic strategy was not included
in the standard of care due to marginal benefits, expensive costs
and inconvenience for patients (17).

The final FDA approved therapeutic approach is the
Gliadel R© wafers. The development of post-operative
implants is particularly appealing in comparison to standard

chemotherapies. The use of implant in this case is minimally
invasive since surgery, when possible, is part of the standard of
care of patients. They make it possible to avoid the BBB crossing
(so all the chemotherapeutic agents could be considered) and
to have a reservoir of active molecules close to the pathology.
All the active molecules will have limited systemic toxicity
since they are locally administered. Nevertheless, as developed
below in this review, the Gliadel R© wafers have limitations that
make their use more and more limited, especially in Europe.
However, these limitations mainly due to the stiffness of the
wafers and the lack of specificity of the active molecule of
Gliadel R© wafers: BCNU, could be overcome combining new
types of implants for local delivery and active targeting. The
purpose of this review is to report the recent preclinical advances
that have been made on post-resection GBM implants and the
targeting strategies that could be used in combination with these
therapeutic implants.

THE CASE OF GLIADEL® WAFERS

Gliadel R© wafers are currently the only implantable medicine
to be granted with a marketing authorization (1998) and to
be indicated in the treatment of newly diagnosed or recurrent
glioblastoma. The implant consists of a slow degrading 1,3-
bis-(p-carboxyphenoxy)-propane copolymer and fast degrading
sebacic acid with a ratio of 20/80 (w/w) (Polifeprosan 20). This
copolymer associated with BCNU is developed as microspheres,
compressed into 1.4 cm wide and 1mm thick disks (18, 19). The
integration of Carmustin in an implant directly installed in the
tumor cavity avoids the crossing of the BBB and allows for higher
drug concentrations close to tumor cells.

A first phase II study on 21 patients with recurrent
glioblastomas has been conducted between 1987 and 1988 (18).
This study demonstrated that the effective dose of BCNU to
administrate to observe survival improvement is 7.7mg of drug
per implant and 8 implants maximum (representing a maximal
dose of 61.6mg locally administrated). A phase III study has
next been conducted between 1989 and 1992 (20). In total, 145
patients with recurrent glioblastoma have been recruited for this
study: 73 patients were treated with placebo implants and 72
with BCNU implants. Six months post-implantation, 56% of
patients treated with BCNU implants were alive compared to
36% of placebo-treated patients. Other studies were conducted
on patients with newly diagnosed glioblastoma (21, 22). Between
1997 and 1999, 101 patients were treated with BCNU implants
and 106 with placebo implants. Median survival was of 11.4
months for placebo-treated patients and 13.5 months for BCNU-
treated patients (22). Different treatment combinations were then
tested on newly diagnosed patients. A 1997 to 2006 study showed
that the median survival of patients treated with Gliadel R©

combined with Stupp’s protocol (33 patients) is higher (20.7
months) than the median survival of patients only treated with
Stupp’s protocol (14.7months) (45 patients). In addition, patients
treated with Gliadel R© combined with Stupp’s protocol and whose
age was inferior or equal to 70 years old (30 patients) have a
median survival of 21.3 months compared to 12.4 months for
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patients treated with Gliadel R© associated with radiotherapy (112
patients) (23).

However, after implantation several side effects have been
observed: seizures, intracranial hypertension, meningitis,
cerebral edemas, and poor wound healing (24, 25) (Food and
Drug Administration. Reference ID 3358686. Available at:
https://www.fda.gov/). Some of these complications could be
linked to the implant characteristics. Indeed, the rigid Gliadel R©

implant could induce micro-tears when moving after the
implantation (26). These micro-tears could alter junctions
between cells of the BBB leading to vasogenic edemas (27, 28).
Furthermore, the use of Gliadel R© implants must be limited to
areas not in direct contact with the ventricular system because
they could migrate and induce an obstructive hydrocephalus.
Finally, the implant content could release itself in a non-
continuous fashion depending on the intracranial conditions,
leaving degradation products behind. BCNU is supposed to be
released during approximately 3 weeks; however in vivo studies
have shown that 74% of the drug is released in the first 7 days
post-implantation (29). In addition, using preclinical models,
BCNU diffusion from the implant is limited to 3–12mm in the
surrounding tissues (24, 30, 31). In vitro, polifeprosan 20 showed
an approximate 60% degradation after 6 weeks but few studies
were carried on the total degradation of the implants in vivo
(19, 29). In patients, more than 70% of copolymer is degraded in
the 3 weeks following the implantation. However, reoperations
and autopsies showed that polymer can stay up to 232 days after
implantation (Food and Drug Administration. Reference ID
3358686. Available at: https://www.fda.gov/).

Even though Gliadel R© is a safer and a more effective
strategy than intravenous administration of BCNU (19, 32), and
numerous clinical trials proved the efficacy of the combination
of Gliadel R© and Stupp’s protocol against newly diagnosed
GBM (33), its clinical use remains controversial due to the
risk/benefit/cost balance (25, 27). This system is less and less used
in Europe and is not ideal for GBM therapy. Finally, a recently
published clinical trial has shown that surgical improvements
in GBM resection limit or even negate the benefits of Gliadel R©

wafers, without reducing its adverse effects. Median survival of
patients with or without Gliadel R© wafers following fluorescence
(5-ALA)-guided surgery did not differ significantly (14.2 and
14.3 months, respectively), and those who received the Gliadel R©

wafers tended to have more wound infection (incidence of 15.4
vs. 7.1%) (34).

Establishing a local treatment directly on the tumor site
remains a very promising solution to improve drug delivery.
A meta-analysis directed by Bastiancich et al. (35) proved that
the greater efficacy of the local administration than the systemic
one, regardless of the drugs, drug delivery systems and in vivo
preclinical models. Although not sufficient to eliminate all cancer
cells, resection of the tumor creates a cavity into which the
neurosurgeon can directly introduce an implant containing a
therapeutic drug. Unlike a liquid solution injected into the
cavity, the implant will allow a sustained release of the drug
to the remaining tumor cells. So the Gliadel R© wafers being the
only FDA approved implants can serve as a case study, and
its drawbacks must be overcome in order to improve local and

FIGURE 1 | Local delivery and glioblastoma: why not combining sustained

release and targeting for the design of innovative therapeutic strategies using

an implant-type approach. The synergy of the local strategy using hydrogels or

nanoparticles (liposomes, lipid nanocapsules or inorganic and polymeric

nanoparticles)-loaded hydrogels, with ligands specific to targets being

overexpressed in various elements of the GBM microenvironment as a whole

(glioblastoma cells, glioblastoma cancer stem cells, tumor-associated myeloid

cells and extracellular matrix) may be of interest to alleviate some of the

obstacles encountered in the treatment of glioblastoma.

safe delivery strategies. Among these weaknesses, the stiffness
of the implant can be reduced by using a hydrogel whose
viscoelastic properties can be adapted to the host tissue: the
brain. Moreover, the lack of specificity of the active molecules
can be reduced by using drug delivery systems able to specifically
target the GBM cells and their microenvironment as a whole
(Figure 1).

HYDROGELS AND
NANOPARTICLE-LOADED HYDROGELS

Hydrogels are three-dimensional structures formed by covalent
or non-covalent reticulations, i.e., chemical or physical ones,
respectively, of hydrophilic synthetic or natural polymers in
aqueous environment (36). The diversity of the nature of
polymers gives the hydrogels different properties such as bio-
adhesiveness, biocompatibility, biodegradability which makes
them excellent subjects for long-term use on biological tissues
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(37). In addition, the nature and distribution of the reticulations
in the hydrogels offer a wide variation in viscoelastic and stiffness
properties, some of which are compatible with administration
in the brain (38), as well as greater or lesser stabilities, allowing
modulation of drug release over time (39).

Hydrogels can be used in different applications like tissue
engineering and wound reparation, cell culture and drug delivery
(37, 39, 40). Molecules like proteins, DNA, or hydrophilic
or slightly lipophilic active pharmaceutical compounds can be
inserted in the hydrogel matrix (41–43). For example, Adhikari
et al. (44) entrapped TMZ in an amphiphilic polylysine and
polyleucine (K180L20) diblock copolypeptide hydrogel. The
system gels at body temperature after the administration of the
solution of copolypeptide. No toxicity of hydrogel without TMZ
was observed in vitro on human astrocytes (NHA cell line)
and neurospheres of patient GBM cells (GBM001). In vivo, the
injection of hydrogels with or without TMZ did not induce
cellular death or important inflammatory responses. On a human
GBM orthotopic xenograft model (GBM001), an important
decrease of the tumor volume was observed when the tumors
were treated with the hydrogel combined with TMZ compared
to the hydrogel without TMZ and to TMZ without hydrogel.
This decrease was correlated to the increase of the median
survival: 38, 20 and 28 days, respectively. The increase of TMZ
effectiveness is supposed to be due to its sustained release, not
evaluated in this study. Schiaparelli et al. associated camptothecin
with an amphiphilic peptide (45). The amphiphilic peptide can
auto-associate in approximately 10 nm wide and few µm-long
filaments thanks to hydrophobic interactions and intramolecular
hydrogen bonds, and this fibrillary network formed the scaffold
of the hydrogel. After 30 days, only 17% of camptothecin
were released in vitro and no burst effect was observed. This
hydrogel showed its effectiveness on an orthotopic human GBM
xenograft model (GBM1A-GFP-LUC) by delaying the apparition
of tumor recurrence and increasing the median survival (64
days), compared to the hydrogel without camptothecin (median
survival of 36 days).

However, majority of hydrophobic cytotoxic agents cannot
be introduced in the hydrogel matrix due to the hydrophilic
character of the system. This constitutes the major limit to
their use in antitumor therapy. To overcome this problem,
hydrogels can be combined with nanosystems. During the
last decades, nanovectors have been thoroughly studied as
a therapeutic strategy against GBM (46, 47). Their size,
composition and surface characteristics can be adjusted to
deliver hydrophilic and/or lipophilic molecules to the brain
cancer cells. Furthermore, they can protect the drugs against
degradation, thus increasing their half-life while reducing toxic
effects (47). But even improved by nanosystems, the BBB crossing
is still too low after a systemic administration. The combination
between nanoparticles and hydrogels is therefore an interesting
strategy for the treatment of GBM. Indeed, these hybrid systems
allow a simultaneous administration of multiple hydrophilic
and/or lipophilic therapeutic active molecules in the tumor
with a sustained release (41, 42, 48). Regarding GBM, these
nanoparticle-loaded hydrogels can be injected in the tumor
or implanted directly after the surgical resection. The latter

is not well described in literature but constitutes a promising
administration route.

Liposome-Loaded Hydrogels and
Glioblastoma
Only one pre-clinical study concerns the use of liposome-
loaded hydrogels in the treatment of GBM. Indeed, Arai
et al. have combined a thermoreversible gelling polymer with
liposomes encapsulating doxorubicin (49). A sustained release of
doxorubicin was observed (9, 24, 64 and 94% after 8, 14, 30 and 54
days, respectively) compared to non-encapsulated doxorubicin
entrapped in the hydrogel (78, 94 and 100% after 2, 4 and 12 days,
respectively). Intratumorally injected in a subcutaneous human
GBMmurine model (U-87MG cell line), this hydrogel combined
with liposomes encapsulating doxorubicin inhibited tumor
growth up to 38 days after treatment, compared to 14 days with
the hydrogels containing the non-encapsulated drug, showing
promising avenue to have a long-term antitumor activity.

Inorganic Nanoparticle-Loaded Hydrogels
and Glioblastoma
Kim et al. studied the association between multifunctional
nanoparticles combining antitumor effect and a real-time
biodistribution tracking: CoFe2O4/SN-38 system, and a
poly (organophosphazene) hydrogel (50). Hydrophobic
interactions between the surface of the nanoparticles and the
poly (organophosphazene) ethoxy L-isoleucine allowed the
reticulation and the hydrogel formation at 37◦C. In vitro, the
release of CoFe2O4/SN-38 was observed over 59 days. On a
subcutaneous human GBM model (U-87MG cell line), no
tumor growth was observed when intratumorally treated with
the CoFe2O4/SN-38-loaded hydrogel (0.8 and 1.2 mg/mL)
compared to the non-treated group and the groups treated
with SN-38 alone, CoFe2O4 nanoparticle-loaded hydrogel
and CoFe2O4/SN-38-loaded hydrogel (0.4 mg/mL). Using an
orthotopic human GBM model (U-87MG cell line), the treated
zones were visible by MRI and the CoFe2O4/SN-38-loaded
hydrogels (3.6 mg/mL) demonstrated a higher therapeutic effect
compared to SN-38 in solution.

Meenach et al. (51) have developed iron oxide nanoparticles
dispersed in a paclitaxel impregnated hydrogel. When the
hydrogel is exposed to an external alternative magnetic field,
it emits heat (41–45◦C) very quickly and causes hyperthermia:
another strategy used to treat the tumor cells with inorganic
nanoparticles. This heat did not expand the hydrogel, suggesting
that it will not increase the intracranial pressure. Paclitaxel in
vitro release studies have shown a total release in 22 days. When
GBM cells (M059K cell line) were exposed to heat (43◦C) and
paclitaxel (10 and 50µM), the cell viability decreased. However,
no synergistic effect between both elements was observed.

Polymeric Nanoparticle-Loaded Hydrogels
and Glioblastoma
Zhao et al. have studied poly (lactic-co-glycolic acid)
nanoparticles encapsulating paclitaxel combined with a
hydrogel reticulated by photopolymerization (52). Adding the
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polymer nanoparticles in the initial solution did not prevent
the photopolymerization. Paclitaxel release from the hydrogel
in phosphate buffered saline (PBS) is fast up to 8 h (11 ±

2%) and lasts for at least 7 days (29 ± 4%). Total paclitaxel
release is supposed to happen after 4 weeks. In vivo short-term
(2 months) and long-term (4 months) studies showed that
non-loaded hydrogel did not induce apoptosis or increase
microglia activation. The activity of paclitaxel, loaded in the
polymeric nanoparticles themselves dispersed in the hydrogel,
has been evaluated on a human GBM (U-87MG cell line) murine
resection model. Fifty percent of mice treated with this hydrogel
are still alive 150 days after tumor cell inoculation whereas the
median survival for paclitaxel-loaded polymeric nanoparticles
alone (without hydrogel) or hydrogel alone (without paclitaxel-
loaded polymeric nanoparticle) treated mice was 72 or 63.5 days,
respectively. In another study, Zhao et al. added TMZ in the
matrix of the paclitaxel-loaded hydrogel (53). A synergic effect of
both drugs was observed in vitro. Using the same tumor resection
model, the median survival for mice treated with TMZ-loaded
hydrogel (without paclitaxel-loaded polymeric nanoparticle) or
paclitaxel-loaded hydrogel (without TMZ) was 75 or 90 days,
respectively, whereas the median survival of mice treated with
both TMZ and paclitaxel-loaded hydrogel was still not defined
after 110 days of experiment.

Lipid Nanocapsule-Loaded Hydrogels and
Glioblastoma
A hydrogel without polymer, only based on lipid nanocapsules,
has been recently developed and used as a local treatment
against GBM (54–57). The hydrogel formation is only
due to the association of lipid nanocapsules in suspension
using an amphiphilic crosslinking agent: 4-(N)-lauroyl
gemcitabine (GemC12), located at the oil/water interface of
lipid nanocapsules, forming hydrogen bonds between the
gemcitabine moieties and so inter-nanoparticular interactions
(54). The advantage of this system is that hydrogel degradation
corresponds to the release of GemC12-loaded lipid nanocapsules
because no other component (natural or synthetic polymer,
gelling agents, etc.) is present in the hydrogel, compared
to conventional nanoparticle-loaded hydrogels (48). In
artificial cerebrospinal fluid, 56 ± 9% of GemC12-loaded
lipid nanocapsules are released in the first 48 h. The lipid
nanocapsule release is then slower and sustained for at least
a month (77 ± 8% after 30 days) (55). Another advantage
of this system is that once all lipid nanocapsules are released
corresponding to the complete dissolution of the hydrogel,
no implant residue remains at the implantation site. In vivo,
this hydrogel was well tolerated in the healthy mouse brain at
short and long-term (2 and 6 months, respectively) (55, 56).
In addition, when the hydrogel was injected in the resection
cavity right after the GBM (U-87MG cell line) resection, the
median survival of mice treated increased significantly compared
to the non-treated mice (62 and 35.5 days, respectively) and
the apparition of recurrences was delayed (56). This antitumor
activity was also observed on a rat GBM orthotopic resection
model (57).

Regarding the preclinical studies described above, there is no
doubt about the benefits that hydrogels and more particularly
nanoparticle-loaded hydrogels can provide for the local post-
resection therapy strategies against GBM. These systems can
be tailored using natural matrix for the hydrogels, controlling
their viscoelastic properties to be as close as possible to the
brain characteristics, and the large expertise of the scientists
makes nanoparticles more and more stable, better and better
tolerated and can be developed on a large scale. A wide
range of therapeutic molecules can thus be considered, and
the combination of intrinsic properties of nanoparticles and
drugs opens the way to new strategies. Nevertheless, the
second limitation of Gliadel R© wafers is the lack of specificity
of the treatment, and simple nanoparticle-loaded hydrogel
also have this disadvantage. A common strategy used in
nanovectorization is the combination of a targeting ligand
on the surface of nanoparticles. The combination of these
specific nanoparticles and the local administration inside a
hydrogel seem quite easy to achieve but not yet tested. It
is important here to review how or by which ligand to
target GBM.

GLIOBLASTOMA TARGETING

The aggressiveness of GBM is characterized by its strong ability
to proliferate and invade healthy tissues, properties due to the
high heterogeneity of the GBM. These characteristics, as well as
the intra- and inter-patient variabilities in GBM, make tumor
cells very difficult to target and eliminate completely without
affecting healthy surrounding cells (58). It is thus important to
propose therapeutic strategies that could improve the targeting of
different elements such as molecular biomarkers involved in the
development of GBM. This targeting would allow a better drug
delivery in the tumor and thus a decrease of side effects due to
the molecule cytotoxicity.

The tumor microenvironment is composed of several cell
types including cancer and cancer stem cells, endothelial cells,
fibroblasts, perivascular and inflammatory cells, surrounded by
extracellular matrix (ECM). These elements are involved in the
control of cell growth, homeostasis but also in the regulation
of the tumorigenic process (angiogenesis, lymphangiogenesis
and inflammation) (59, 60). Immune cells can promote the
development of cancer and associated disease processes. ECM is
also likely to influence the growth of malignant cells by releasing
proteins, growth factors, cytokines and enzymes that allow the
motility and adhesion of cancer cells (61, 62). To alleviate the
passive targeting limits, ligands can be added to the surface
of nanoparticles in order to increase their selective absorption
and accumulation in the targeted tissues. The benefit of this
approach is that some receptors are often overexpressed on the
surface of the cancer cell and other cells involved in the tumor
microenvironment, and/or not expressed on healthy cells. The
strategies described below have been used with intratumoral or
systemic administrations but could be easily associated with drug
delivery systems with drug sustained release profiles. Tables 1–
4 summarize the different strategies to target the GBM cells, the
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TABLE 1 | Selection of ligands for GBM cell targeting, with the corresponding receptors.

Liganda Receptorsa Nanoparticles Cellular modelb References

CTX CIC-3 Polymer In vitro (U87-MG and GI-1) (63)

CTX CIC-3 Biopolymer In vitro (U118-MG, SF767 and GBM6) (64)

CTX CIC-3 Iron oxide In vitro (T98G)

In vivo (Ectopic T98G / IV)

(65)

CTX CIC-3 Iron oxide In vitro (SF767)

In vivo (Orthotopic GBM6-luc / IT)

(66)

CTX CIC-3 / MMP-2 Iron oxide In vitro (U87-MG and T98G)

In vivo (Orthotopic T98G / IT)

(67)

CTX CIC-3 / MMP-2 Silver In vitro (U87-MG, A172 and T98G)

In vivo (Orthotopic U87-MG and U87-MG luc2 / IP)

(68)

CTX MMP-2 Silver In vitro (U87-MG)

In vivo (Ectopic U87-MG / IV)

(69)

HA CD44 Liposome In vitro (A172, U251, U87-MG) (70)

HA CD44 Lipid In vitro (T98G, U251 and U87-MG)

In vivo (Orthotopic U87-MG / IT)

(71)

Anti-EGFRvIII antibody EGFRvIII Polymer In vitro (DKMG/EGFRvIII and DKMGlow) (72)

Anti-EGFRvIII antibody EGFRvIII Iron oxide In vitro (U87-MG and U87wtEGFR)

In vivo (Orthotopic U87wtEGFR / IT)

(73)

Cetuximab EGFRvIII Iron oxide Ex vivo (primary tumor)

In vivo (Orthotopic primary tumor, U87wtEGFR and

LN229wtEGFR / IT)

(74)

Anti-EGFR and

anti-EGFRvIII antibodies

EGFR Iron oxide In vitro (U87-MG-EGFRvIII)

In vivo (Orthotopic U87-MG-EGFRvIII / IT)

(75)

Anti-EGFR antibody EGFR Solid lipid In vitro (U87-MG) (76)

Cetuximab EGFR Polymer In vitro (U87-MG and LN229)

In vivo (Orthotopic U87-MG / IV)

(77)

EGF / Tf EGFR Gold In vitro (U87-MG and LN229)

In vivo (Orthotopic U87-MG / IV)

(78)

EGFR-binding peptide EGFR Biopolymer In vitro (U87-MG)

In vivo (Orthotopic U87-MG / IV)

(79)

RGD peptide Integrin αvβ3

receptor

Biopolymer In vitro (U87-MG)

In vivo (Orthotopic U87-MG / IV)

(79)

RGD peptide Integrin αvβ3

receptor

Silica In vitro (U87-MG, U231 and C6) (80)

Gracilaria lemaneiformis

polysaccharide

Integrin αvβ3

receptor

Selenium In vitro (U87-MG and C6) (81)

IL-13 (Chimeric Antigen

Receptor T cells)

IL-13 receptor α2 Polymer In vitro (U87-MG luc)

In vivo (Orthotopic U87-MG luc / IV)

(82)

Pep-1 peptide IL-13 receptor α2 Polymer In vitro (U87-MG)

In vivo (Orthotopic U87-MG / IT)

(83)

ITEM4 antibody Fn14 Polymer In vitro (U87-MG luc)

In vivo (Orthotopic U87-MG luc / IT)

(84)

ITEM4 antibody Fn14 Polymer In vitro (KR158 and KR158 luc)

In vivo (Orthotopic KR158 luc / IT)

(85)

The nature of nanoparticles as well as the type of preclinical studies and the cellular models are also reported. aCTX, chlorotoxin; HA, hyaluronic acid; EGFR(vIII), epidermal growth factor

receptor (variant III); EGF, epidermal growth factor; Tf, transferrin; IL-13, interleukin 13; CIC-3, chloride channel; MMP-2, matrix metalloproteinase 2; CD44, transmembrane glycoprotein;

Fn14, fibroblast growth factor-inducible 14. b IV, intravenous; IT, intratumoral; IP, intraperitoneal.

GBM cancer stem cells, the tumor-associated myeloid cells and
the extracellular matrix, respectively.

Glioblastoma Cell Targeting
Several molecules are found overexpressed in GBM cells. Among
these molecules are the chloride channels, particularly CIC-3.
One of the most used molecules to target CIC-3 on the surface
of GBM cells is chlorotoxin (CTX), a highly specific scorpion

venom peptide. Surface functionalization of the nanoparticles
with CTX has been used to increase the efficacy of therapeutic
assets (63–65, 68, 69). For example, Yoo et al. (67) developed
iron oxide nanoparticles as a vector of O6-methylguanine-DNA
methyltransferase specific interfering RNA (siMGMT), one of
the molecules responsible for tumor cell resistance to TMZ.
These nanoparticles were functionalized on their surface with
CTX (CTX-NP-siMGMT), which increased in vitro nanoparticle
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TABLE 2 | Selection of ligands for GBM cancer stem cell targeting, with the corresponding receptors.

Liganda Receptorsa Nanoparticles Cellular modelb References

Anti-CD133 antibody CD133 Polymer

(dendrimer)

In vitro (SU2, GSC-derived U87-MG)

In vivo (Orthotopic SU2 / IT)

(86)

Anti-CD133 antibody CD133 Silica In vitro (GSC) (87)

Anti-Nestin antibody Nestin Iron oxide In vitro (GSC-derived U251-MG)

In vivo (Orthotopic GSC-derived U251-MG / IV)

(88)

Nestin-binding peptide Nestin Gold In vitro (X01) (89)

Nestin-binding peptide Nestin Gold In vitro (X01) (90)

The nature of nanoparticles as well as the type of preclinical studies and the cellular models are also reported. aCD133, transmembrane glycoprotein. b IV, intravenous; IT, intratumoral.

TABLE 3 | Selection of ligands for tumor-associated myeloid cell targeting, with the corresponding receptors.

Liganda Receptorsa Nanoparticles Cellular modelb References

Anti-PD-L1 antibody PD-L1 Liposome In vitro (GL261 and TAMs generated form CT2A and

GL261 culture medium)

Ex vivo (TAMs isolated from primary tumor or orthotopic

GL261)

In vivo (Orthotopic GL261 + TAMs / IT)

(91)

Cross-talk between macrophages

(carrier) and GBM cells (target)

Diamond In vitro (histiocytic lymphoma U937 cells)

In vivo (Orthotopic U87-MG and GL261 + allograft

mouse bone marrow-derived macrophages / IV)

(92)

(NOX-E36) CCL2 inhibitor CCL2 NOX-E36

(PEGylated active

agent)

In vitro (U87-MG/CCL2+ and LN18/CCL2+)

In vivo (Orthotopic U87-MG/ CCL2+ / IP)

(93)

The nature of nanoparticles as well as the type of preclinical studies and the cellular models are also reported. aPD-L1, programmed death protein 1; CCL2: chemokine ligand. bTAMs,

tumor-associated macrophages; IT, intratumoral; IV, intravenous; IP, intraperitoneal.

uptake by GBM cells (U-87MG and T98G cell lines), compared
to non-functionalized nanoparticles (NP-siMGMT). However,
this absorption has not been tested on healthy cells. The addition
of siMGMT promoted the suppression of expression and activity
of O6-methylguanine-DNA methyltransferase in GBM cells
(T98G cell line), leading to higher cell sensitization to TMZ.
These effects were also observed when mice with orthotopic
human GBM (T98G cell line) were intratumorally treated with
CTX-NP-siMGMT. The tumor size was also reduced when mice
were treated with CTX-NP, probably due to the anti-proliferative
activity of CTX. Indeed, when binding to the chloride channels,
CTX disturbs the chloride gradients essential for migration and
the invasive character of GBM cells. In the same vein, Stephen
et al. developed iron oxide nanoparticles functionalized with
CTX to deliver 6-O-benzylguanine, a O6-methylguanine-DNA
methyltransferase inhibitor, to GBM cells (after intratumoral
administration in GBM orthotopic model) (66).

CD44 is a receptor located on the surface of cell membranes
and is involved in cell-to-cell interactions (103). The expression
of this glycoprotein is greater in several cancers, including GBM,
compared to healthy tissues (104–107). In addition, studies have
shown that this receptor is involved in the invasion of tumor
cells (108, 109). Hyaluronic acid (HA), a major component
of extracellular matrix, is a natural ligand of CD44 used to
target cancer cells overexpressing the receptor thus improving its
specificity and efficacy (110–113). Hayward et al. (70) have shown

that surface-conjugated liposomes with HA specifically target
human GBM cells (A172 and U-87MG cell lines) compared
to primary astrocytes and rat microglia cells. In addition, this
system has improved the therapeutic efficacy of doxorubicin
encapsulated in liposomes, while decreasing its absorption by
astrocytes and microglia cells. Cohen et al. (71) also showed
that lipid nanoparticles functionalized with HA could bind to
GBM cells (U-87MG cell line) but also to neurospheres of GBM
cells from patients. These lipid nanoparticles charged with an
interfering RNA directed against Polo-Like Kinase 1 (siPLK1),
a kinase involved in cell cycle regulation, significantly reduced
the expression of PLK1 mRNA in U-87MG cells compared
to lipid nanoparticles charged with siPLK1 but without HA
on their surface. In addition, this expression decrease was
correlated with higher cell toxicity. Finally, in vivo studies using
an orthotopic human GBM model (U-87MG cell line) showed
that intratumoral treatment with lipid nanoparticles combined
with HA and siPLK1 increased the mouse median survival
compared to saline and lipid nanoparticles combined with HA
and siLuciferase (not determined after 95 days compared to 33
and 34.5 days, respectively).

Epidermal growth factor receptor (EGFR) is part of
the tyrosine kinase receptor family. This transmembrane
glycoprotein is found overexpressed in about 40% of primary
GBM (114, 115), and is involved in cell proliferation and survival
(116, 117). The most common mutation of the EGFR gene is
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TABLE 4 | Selection of ligands for extracellular matrix targeting, with the corresponding receptors.

Liganda Receptorsa Nanoparticles Cellular modelb References

CTX MMP-2 Polymer In vitro (U87-MG and GI-1) (63)

CTX MMP-2 Polymer In vitro (U87-MG, A172 and T98G)

In vivo (Orthotopic U87-MG / IP)

(68)

CTX MMP-2 Silver In vitro (U87-MG)

In vivo (Orthotopic U87-MG / IV)

(69)

MMP-cleavable peptide MMP-2 / MMP-9 Lipid In vitro (U87-MG and bEnd.3) (94)

Sulfatid Tenascin C Liposome In vitro (U118-MG)

In vivo (Ectopic U118-MG / IV)

(95)

FHK peptide Tenascin C Polymer In vitro (U87-MG) In vivo (Orthotopic U87-MG / IV) (96)

tLyp-1 peptide Neuropilin Polymer In vitro (C6)

In vivo (Orthotopic C6 / IV)

(97)

F3 peptide Neuropilin Polymer In vitro (C6)

In vivo (Orthotopic C6 / IV)

(98)

Lactoferrin Neuropilin Polymer In vitro (C6)

In vivo (Orthotopic C6 / IV)

(99)

PL3 peptide Tenascin C /

Neuropilin

Iron oxide / Silver In vitro (U87-MG and murine wt GBM)

In vivo (Orthotopic murine wt GBM / IV)

(100)

LinTT1 peptide Neuropilin / p32

protein

Iron oxide / Silver /

Biopolymer

In vitro (U87-MG, wt GBM and VEGF KO GBM)

In vivo (Ectopic U87-MG and orthotopic wt GBM and

VEGF KO GBM / IV)

(101)

CREKA peptide Fibrin-fibronectin

complex

Polymer
In vitro (U87-MG)

In vivo (Orthotopic U87-MG / IV)

(83)

CREKA peptide Fibrin-fibronectin

complex

Iron oxide (Murine myocardial ischemia / reperfusion model) (102)

The nature of nanoparticles as well as the type of preclinical studies and the cellular models are also reported. aCTX, chlorotoxin; MMP(-2/-9), matrix metalloproteinase (2/9). b IP,

intraperitoneal; IV, intravenous; wt, wildtype; VEGF KO, vascular endothelial growth factor knockout.

variant III (EGFRvIII), constitutively activated, and accounts
for up to 60% of EGFR amplifications in primary GBM (118).
This characteristic makes it a preferential target (119), and
many laboratories developed nanomedicines using anti-EGFR
and anti-EGFRvIII antibodies in combination with many types
of nanoparticles to preferentially target these receptors. For
example, Jamali et al. (72) conjugated a monoclonal antibody
anti-EGFRvIII to PLGA nanoparticles encapsulating curcumin
used as a photosensitizer for the development of photodynamic
therapy on GBM cells. Others also used cetuximab, an antibody
recognizing EGFR and EGFRvIII and inhibiting their action, or
other types of ligands, such as an EGF peptide, in combination
with iron oxide (73–75), gold (78), polymeric (77), solid lipid
(76) and human ferritin nanoparticles (79).

Other molecules are also found deregulated in GBM cells
such as the integrin αvβ3 receptor, the α2 receptor of IL-
13 or the fibroblast growth factor-inducible 14 (Fn14). The
integrin αvβ3 receptor is a cell adhesion molecule that plays a
role in cell propagation, migration, survival, proliferation, and
differentiation (120). It is found overexpressed in glioma cells
and newly formed vessels, thus also an interesting target for the
development of nanomedicines (121). The cyclic peptide RGD
was used in combination with several types of nanoparticles
(human ferritin ones or mesoporous silica) to target this receptor
in the treatment of GBM (79, 80). In another study, Jiang et al.

(81) functionalized selenium nanoparticles with polysaccharides
from the Gracilaria lemaneiformis alga which have a strong
affinity for the integrin αvβ3 receptor. Interleukin 13 (IL-13)
is a cytokine involved in the regulation of immune responses
and microenvironment. In most cells, IL-13 binds with low
affinity to the α1 receptor (IL-13Rα1) which then pairs to the α

receptor of interleukin 4 to form a heterodimer. This complex
then enables the activation of STAT6 signaling pathways. In
some healthy cells and in cancer cells, IL-13 can bind with
strong affinity to the α2 receptor (IL-13Rα2). IL-13Rα2 is a
decoy receptor that sequesters IL-13, allowing tumor cells to
escape apoptosis (122). This receptor is found overexpressed in
75% of GBM (123). Kim et al. (82) grafted doxorubicin-loaded
nanoparticles to the T lymphocyte surface with a mutant version
of IL-13. Wang et al. (83) functionalized the surface of PLGA
nanoparticles with the Pep-1 peptide, specifically recognizing IL-
13Rα2. Fn14 is a member of the tumor necrosis factor receptor
family. Its expression level in the healthy brain is low whereas it
is found more important in 70 to 85% of GBM (124). Moreover,
the overexpression of Fn14 was found in both primary tumor
and tumor cells infiltrated in healthy tissue (124, 125), whether
newly diagnosed or recurrent (126, 127). These data make Fn14
an optimal surface molecule for the development of targeting
therapy using nanoparticles associated with anti-Fn14 antibodies
for the treatment of GBM (84, 85).
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Glioblastoma Cancer Stem Cell Targeting
The GBM cancer stem cells (CSC), resistant to radio and
chemotherapy are tumor-initiating cells, also partly responsible
for the recurrences observed in patients after the implementation
of standard treatments (128). Therefore, the targeting and
eradication of CSC could lead to a better management of GBM.
GBM CSC can express biomarkers associated with neural stem
cells (129–132), and these biomarkers have been used as targets
in several studies to improve drug delivery (87–90).

Among the markers that can be associated with CSC, CD133
is one of the most studied in brain tumors (133). This membrane
glycoprotein plays a role in cell differentiation and the epithelial-
mesenchymal transition. In the 2000’s, studies have shown that
cells with the marker CD133, isolated from human brain tumors,
can reproduce the original tumor in immunocompromised mice
(134, 135). Furthermore, recurrences of GBM often have a higher
percentage of CD133-positive cells compared to tumor cells
before treatment. A large proportion of CD133-positive cells is
correlated with lower patient survival (136). These cells with
a high capacity to form tumors have therefore become targets
for the treatment of GBM (86, 87). However, not all GBM CSC
express CD133. Subsequent studies have shown that tumors can
successfully develop from GBM CSC without the CD133 marker
in xenograft models (137, 138). Therefore, the identification of
GBM CSC cannot be based solely on the expression of CD133.
CD133-positive cells often co-express nestin, a protein from one
of the cytoskeletal components (intermediate filaments). The
expression of nestin is found in neural and progenitor stem cells
but also in several types of cancer, including GBM (134, 135, 139–
141). Increased expression of nestin is associated with high-grade
gliomas and a low patient survival rate (132, 141).

To compensate for this low survival, several teams were
interested in the treatment of GBM CSC. For example, Prabhu
et al. (88) developed TMZ-charged iron oxide nanoparticles
functionalized with an anti-nestin antibody to fight GBM CSC
while sparing healthy tissue. In addition, Gonçalves et al.
(89, 90) developed gold nanorods (AuNR) combined with a
peptide specifically recognizing nestin (NesPEG-AuNR). These
AuNR generate heat when irradiated by a laser emitting in
the near infrared and cause localized cellular damage. In vitro
internalization studies using cells expressing or not nestin,
cultured in single layer (2D culture) or spheroids (3D culture)
showed that NesPEG-AuNR were mainly internalized by nestin-
positive cells and not by nestin-negative cells. Internalization
of AuNR involves energy-dependent mechanisms, including
endocytosis mediated by caveolin. Photothermal treatments
of NesPEG-AuNR resulted in selective elimination of nestin-
positive cells by cell apoptosis, while nestin-negative cells
remained viable. The results also indicated that in the presence
of AuNR, nestin-positive cells as spheroids are more resistant
to photothermal treatments than when they are cultured in a
monolayer, indicating that the 3D model is closer to in vivo
models than the 2D model.

Tumor-Associated Myeloid Cell Targeting
Tumor-associated myeloid cells (TAMCs) are a heterogeneous
population of myeloid cells from hematopoietic precursors. They

include tumor-associated macrophages (TAMs) and myeloid-
derived suppressor cells (MDSCs). TAMCs are massively
recruited at the GBM level, reaching 30 to 50% of the
tumor mass (142–144). These cells are the main cause of
immunosuppression in GBM (60, 145, 146). They can strongly
inhibit innate and adaptive immunity (147–149). They suppress
effective immune cell function by several pathways, especially
by depriving lymphocytes from their essential nutriments,
generating oxidative stress and triggering the recruitment of
regulatory T cells (147). As a result, TAMCs have recently
been recognized as an attractive therapeutic target to decrease
immunosuppression in GBM in the hope of maximizing the
effectiveness of anti-tumor therapies.

TAMCs have recently been shown to express the programmed
death-ligand 1 (PD-L1) more strongly than other immune cells
or tumor cells (150, 151). This advantage was used by Zhang
et al. (91) to develop surface functionalized lipid nanoparticles
with anti-PD-L1 antibody. Ex vivo, the nanoparticles combined
with the antibody were able to target TAMCs, to be internalized
and to accumulate at the level of lysosomes. These functionalized
nanoparticles encapsulating dinaciclib, a cyclin-5-dependent
kinase inhibitor, reduced the viability of TAMCs in a dose-
dependent manner. In addition, they reduced the recycling of
PD-L1 on the surface of TAMCs by directing the ligand to
the lysosome. In an orthotopic in vivo model of murine GBM
(GL261 cell line), 24 h after injection at different locations in
the brain, the nanoparticles functionalized with the anti-PD-L1
antibody encapsulating dinaciclib were retained in the tumor
and more particularly, co-located with TAMCs. In addition,
the median survival was significantly higher in mice treated
with radiotherapy combined with these nanoparticles compared
to mice treated with saline solution, radiotherapy alone and
nanoparticles alone. These results were also observed when mice
were intranasally treated. Finally, these nanoparticles were able
to target TAMCs from GBM patients, validating the relevance of
this approach on a human model.

Monocytes recruited in cancer tissues differentiate into
macrophages that can be activated into two different phenotypes
(type 1 or 2) in response to signals from their microenvironment.
Type 1 macrophages (M1) coordinate the development of an
adverse inflammatory microenvironment for cancer cells and
play a central role in initiating and maintaining antitumoral
immunity. On the contrary, type 2 macrophages (M2) suppress
anti-tumor immunity and coordinate the remodeling of the
microenvironment, making it favorable to survival, growth
and tumor progression. Many studies suggest that TAMs are
primarily M2-type in GBM (152, 153). Strategies to reduce the
number of TAMs in the tumor or modulate their phenotype have
shown strong potential for the treatment of GBM (154, 155).

Li et al. used the intertwined relationships between TAMs and
GBM cells to modify the M2 phenotype of TAMs (92). TAMs
with an M2 phenotype, loaded with nanodiamonds combined
with doxorubicin (Nano-DOX) were able to deliver the Nano-
DOX to GBM cells in vitro and in vivo, causing damage to
these cells. The altered GBM cells emitted molecular patterns
associated with this damage, modifying the M2 phenotype of
the TAMs to a M1 phenotype and thus reducing the tumor
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size of a human orthotopic GBM model (U-87MG cell line).
Chemokine ligand 2 (CCL2) is involved in differentiation and
survival of TAMs. Cho et al. used a CCL2 inhibitor (NOX-E36)
to suppress their recruitment and study the effect of combined
therapy with bevacizumab, an antibody directed against the
vascular endothelium growth factor (93). Inhibition of CCL2
blocked macrophage recruitment and angiogenesis, resulting in
decreased tumor and blood volumes in an orthotopic human
GBM model (U-87MG cell line) expressing CCL2. In addition,
the median survival of mice treated with NOX-E36 combined
with bevacizumab is greater than that of mice treated with
bevacizumab alone (32 and 22 days, respectively). This study
shows that CCL2 inhibition can play an important role in
increasing the effectiveness of anti-angiogenic treatment in GBM
by inhibiting the recruitment of TAMs.

The Extracellular Matrix Targeting
The extracellular matrix (ECM) consists of a complex network
of fibronectins, collagens, chondroitins, laminins, glycoproteins,
heparin sulfate, tenascins and proteoglycans (156). These
molecules play a role in migration, differentiation and
inflammation but they also participate in the process of
invasion and metastasis of malignant cells in the host tissue
(157). Some of these molecules are found at high levels in ECM
of tumor tissue. This feature has been used to target and improve
drug delivery in the GBM. In this next section, only the most
studied proteins for the treatment of GBM in combination with
NP have been described.

ECM is characterized by the presence of matrix
metalloproteinases (MMP), enzymes part of the gelatinase
family, which play a key role in tumor progression and
metastasis. In GBM, MMP-2 and MMP-9 are overexpressed.
They degrade ECM and contribute to the angiogenic and
invasive potential of glioma cells. These characteristics make
the MMP attractive targets for the development of GBM
therapy (63, 158). Agarwal et al. (63) developed morusin
(MOR)-loaded PLGA nanoparticles, a naturally occurring
chemotherapy active ingredient, and surface-conjugated with
CTX (PLGA-MOR-CTX). The anti-cancer potential of PLGA-
MOR-CTX nanoparticles was evaluated in vitro in human
GBM cells (U-87MG and GI-1 cell lines). PLGA-MOR-CTX
nanoparticle treatment resulted in nanoparticle accumulation
in GBM cells, mediated by MMP-2 targeting. In addition,
important cytotoxicity parameters such as reactive oxygen
species generation, increased caspase activity, cytoskeletal
destabilization, and inhibition of MMP-2 activity were observed
in GBM cells following treatment with PLGA–MOR–CTX
nanoparticles. These results, combined with the non-toxicity of
healthy human neuronal cells (HCN-1A cell line), highlight the
specific therapeutic potential of this strategy for the treatment
of GBM. Other teams have also targeted MMP-2 to deliver
therapeutic nanoparticles in GBM (68). For example, Locatelli
et al. (69) formulated multifunctional nanocomposites consisting
of polymeric nanoparticle containing two cytotoxic agents:
alisertib, an inhibitor of Aurora A kinase, and silver nanoparticles
conjugated with CTX. In addition, Bruun et al. (94) used lipid
nanoparticles loaded with a siRNA and functionalized with

angiopep-2 and a lipopeptide capable of targeting MMP to
target ECM.

Tenascin C (TNC) is a glycoprotein of ECM overexpressed
during normal tissue repair and in many malignant tumors.
It plays an important role in tumor progression including
angiogenesis, proliferation and cell migration, making it an
attractive target for GBM therapy (159–161). Doxorubicin-
loaded liposomes, modified with sulfatid known to bind to TNC,
have been used to improve efficacy and reduce the side effects of
free doxorubicin (95). Biodistribution, therapeutic efficacy and
systemic toxicity of the liposomes were evaluated in an in vivo
human GBM xenograft model (U-118MG cell line). The median
survival was greater in GBM-bearingmice treated with liposomes
compared to free doxorubicin and saline (93, 61 and 45 days,
respectively). Kang et al. adopted a different strategy by targeting
both TNC and neuropilin-1 (NRP-1), a transmembrane protein
overexpressed in newly formed tumor cells and blood vessels
(96). The FHK peptide targeting TNC was coupled with the
tLyp-1 peptide known to increase penetration of nanosystems
into tumor cells via NRP-1 (97–99). PLA nanoparticles loaded
with paclitaxel were functionalized with this FHK/tLyp-1 peptide
(FHK/tLyp-1-NP-PTX). In vitro, the functionalization of the
nanoparticles allowed their internalization in U-87MG and
HUVEC cells (two-dimensional culture), but also their deep
penetration into GBM spheroids. In addition, in vivo, real-time
imagery showed an accumulation of functionalized nanoparticles
in GBM using an orthotopic mouse model (U-87MG cell line).
It has been shown that this accumulation is mediated by TNC
and that transport through cancer cells is governed by NRP-1.
Finally, the median survival of the mice was greater when treated
with FHK/tLyp-1-NP-PTX compared to FHK-NP-PTX, tLyp-1-
NP-PTX, NP-PTX and PTX (59 compared to 37.5, 33.5, 25.5 and
16 days, respectively). These results suggest that the combination
of the two peptides provides an interesting tool both to target
GBM and to treat it using a synergistic mechanism. The targeting
of TNC or one of its isoforms in combination or not with other
molecules to improve drug delivery was also explored (100, 101).

Fibronectin (FN) is a glycoprotein that plays a role in cell
adhesion, migration, growth and differentiation. This protein can
bind to several molecules including fibrin. Fibrin-FN complexes
play a role in coagulation (162). The significant presence of fibrin-
FN complexes is found in many invasive tumors, including GBM
(163). These complexes play an important role in survival, the
proliferation and invasion of cancer cells, making it another
attractive target for the treatment of GBM (164). Wang et al.
(83) functionalized PLGA nanoparticle surface with the Pep-1
and CREKA peptides (Pep-1/CREKA-NP). Pep-1 peptide can
pass through the BBB and penetrate GBM cells by targeting
the IL-13Rα2, overexpressed on the plasma membrane of GBM
cells (123). CREKA peptide works as an anchor by binding
to fibrin-FN complexes in the ECM of tumor cells (102). The
functionalization of the nanoparticles with both CREKA and
Pep-1 increased the nanoparticle retention in the GBM tissue
(U-87MG cell line) and the distribution of the therapeutic
agent in cancer cells. In fact, Pep-1/CREKA-NP penetrated
deeper into GBM compared to nanoparticles combined with
any of the peptides (Pep-1-NP or CREKA-NP). In addition,
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the median survival of mice with orthotopic human GBM (U-
87MG cell line) treated with Pep-1/CREKA-NP was higher
than those treated with Pep-1-NP, CREKA-NP, NP-PTX, PTX
and a saline solution (61 compared to 53, 55, 47, 43 and 36
days, respectively).

CONCLUSION

GBM represents 240,000 new cases per year worldwide and
its standard of care has not evolved for too many years. As
previously reported, GBM is one of the most expensive cancers
to treat, which is all the more paradoxical since these treatments
are not curative. After initial surgical resection, poor prognosis
(median survival of 14 months, 5 year survival< 10%) is ascribed
to frequent recurrences in proximity of the original tumor. Thus,
there is an unmet medical need for better treatments. On societal
and economic levels, improved survival and increased efficacy
of costly treatments could positively impact public health and
social security. Better control over the growth of GBM could also
improve the quality of life of patients and it will promote social
and professional reinsertion and reduce indirect costs associated
with the disease. Nevertheless, surgery is still essential when
possible, ensuring a prolongation of the patient life expectancy.
Thus, it is interesting to take advantage of this surgical act to
develop post-resection implants, and to bridge the treatment
gap between surgical resection and initiation of conventional
radio- and chemotherapy, and possibly lowering the risks of
recurrences. For patients, a pro-active strategy might be better
accepted than the current period of non-treatment, a “wait-
and-see” approach consisting of waiting for the Stupp protocol
within a post-surgical period which can vary according to the
patient. Regarding the design of the implants, the nanoparticle-
loaded hydrogels are a promising strategy because (i) their
rigidity can be adjusted to the brain elasticity reducing the side

effect, and (ii) the sustained release of the nanoparticles, loaded
with anticancer agents, will provide a continuous treatment. In
addition, the use of nanoparticles will offer the possibility of
active tumor targeting through ligands at their surface. Due to
GBM complexity, the possibility of multi-targeting, with ligands
specific to different elements of the tumor microenvironment
as a whole, could provide a synergy of treatments. However,
it should be kept in mind that despite improvements in
neurosurgical techniques, not all diagnosed GBMs are necessarily
operable. So, the implant-based GBM therapy is not an option
for these patients. Other strategies such as crossing or by-
passing the BBB or the blood-cerebrospinal fluid barriers, must
be concomitantly implemented. This combination of local,
sustained and targeting drug delivery remains to be explored and
could also be considered for other pathologies requiring such a
therapeutic scheme.
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