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ABSTRACT
Effective choice of anticancer drugs is important problem of modern medicine. 

We developed a method termed OncoFinder for the analysis of new type of biomarkers 
reflecting activation of intracellular signaling and metabolic molecular pathways. 
These biomarkers may be linked with the sensitivity to anticancer drugs. In this study, 
we compared the experimental data obtained in our laboratory and in the Genomics 
of Drug Sensitivity in Cancer (GDS) project for testing response to anticancer drugs 
and transcriptomes of various human cell lines. The microarray-based profiling 
of transcriptomes was performed for the cell lines before the addition of drugs to 
the medium, and experimental growth inhibition curves were built for each drug, 
featuring characteristic IC50 values. We assayed here four target drugs - Pazopanib, 
Sorafenib, Sunitinib and Temsirolimus, and 238 different cell lines, of which 11 were 
profiled in our laboratory and 227 - in GDS project. Using the OncoFinder-processed 
transcriptomic data on ~600 molecular pathways, we identified pathways showing 
significant correlation between pathway activation strength (PAS) and IC50 values 
for these drugs. Correlations reflect relationships between response to drug and 
pathway activation features. We intersected the results and found molecular pathways 
significantly correlated in both our assay and GDS project. For most of these pathways, 
we generated molecular models of their interaction with known molecular target(s) of 
the respective drugs. For the first time, our study uncovered mechanisms underlying 
cancer cell response to drugs at the high-throughput molecular interactomic level.
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INTRODUCTION

Despite the current progress in the development of 
innovative anticancer therapeutics, the patient’s response 
to treatment remains largely individual, thus demanding 
identification of novel biomarkers predicting effectiveness 
of therapy for a patient. These markers may deal with 
specific genetic, epigenetic and gene expression features 
of cancer tissues [1]. Their identification was dramatically 
facilitated with the recent advancement of high-throughput 
molecular biology methods like enhanced proteomic 
technologies, microarray profiling of nucleic acids and 
next generation sequencing [2, 3]. Currently, a number 
of projects have been initiated to estimate the efficacy of 
therapeutic compounds on various cancer cell lines and 
link it to candidate genetic biomarkers. The first step in 
this field was made by National Cancer Institute (NCI) 
60 human tumor cell line anticancer drug discovery 
project (NCI-60), profiling approximately 20000 different 
compounds [4, 5]. More recently, other similar projects 
have been developed, including Cancer Cell Line 
Encyclopedia project (CCLE) [4], and the collaborative 
Wellcome Trust Sanger-Massachusetts General Hospital 
Genomics of Drug Sensitivity in Cancer (GDS) project 
[6]. However, compared to NCI-60 these projects have 
lower number of profiled drugs: 24 for CCLE and 140 for 
GDS. Greater number of cell lines enables more in-depth 
analysis of drug-induced responses and identification of 
regulatory signatures of rare cancer subtypes. Hence, 
for our analysis we took GDS dataset, as it has more 
cell lines than NCI-60 and profiles significantly more 
drugs than CCLE, featuring many of the routinely used 
target anticancer drugs. Cellular viability was measured 
and inhibition curves were built for the drugs, with the 
characteristic half maximal inhibitory concentration (IC50) 
value measured for each cell line and each component. 
Overall, IC50 inversely correlates with the activity of a 
drug to inhibit cellular viability [6]. Comparison of pre-
treatment gene expression patterns with the activities 
of certain components may be a useful tool for the 
identification of novel biomarkers predicting response to 
a therapeutic, at least at the level of cell.

However, when considering cancer markers, then 
general physiological processes like uncontrolled cell 
division, lack of feedback signaling with the enclosing 
normal tissues and metabolic abnormalities [7], appear to 
be more powerful diagnostic tools rather than expression 
of certain individual genes. This phenomenon may be 
explained by the observation that most of individual genes 
involved in cancerogenesis act not separately, but rather 
as parts of larger molecular ensembles, like molecular 
signaling and metabolic pathways, responsible for certain 
elementary molecular events [8]. Aberrations in very 
different individual pathway members may have similar 
effects on the final output of a pathway. This means that 

intra-pathway variation may be high, whereas overall 
pathway activation signature may be stable. Our recent 
works fully support this theoretical consideration [9]. 
We created a bioinformatical method termed OncoFinder 
for the analysis of activation of intracellular molecular 
pathways basing on the large-scale gene expression data 
[10]. The output measure is a Pathway Activation Strength 
(PAS), which positively reflects the degree of a pathway 
activation. PAS value makes it possible to quantitatively 
estimate the extent of each pathway activation in a given 
sample relative to the control sample or a set of control 
samples [10, 11]. OncoFinder is, to our knowledge, a 
unique PAS calculating method, that provides output 
data with significantly reduced noise introduced by the 
experimental gene expression platforms [12]. We showed 
that for most cancer types, PAS values are significantly 
more stable biomarkers in comparison to expression of 
individual genes [9]. Since the method publication in 2014, 
OncoFinder was applied by us and others for molecular 
pathway analysis in different objects including leukemia 
and various solid cancers [9, 13–15], Hutchinson Gilford 
Disease [16] and Age-Related Macular Degeneration 
Disease [17].

In this study, we applied PAS values to identification 
of enhanced biomarkers of cell response to treatment with 
drugs. We took four target anticancer drugs currently 
routinely used for renal cancer therapy: Pazopanib, 
Sorafenib, Sunitinib and Temsirolimus. No specific 
indications exists so far for making a choice which drug 
will be of a greater benefit for an individual patient. Here, 
we aimed to identify molecular pathways that correlate 
with the cellular response to those drugs. To this end, 
we took gene expression information from GDS project 
and compared them with the cell growth inhibition data 
obtained for the above four drugs. We processed gene 
expression data through OncoFinder to profile activation 
of 272 signaling and 321 metabolic molecular pathways 
and correlated the resulting PAS signatures with the IC50 
values for the respective drug-cell line combinations. To 
validate the results, we performed similar assay in our 
laboratory on the experimental panel including 11 human 
cancer cell lines, for which we profiled transcriptomes on 
Illumina HT12 v4 bead arrays and established IC50 values 
for the same drugs. We intersected the results obtained 
with the GDS panel and in our experiments, and found 
a fraction of molecular pathways significantly correlated 
in both assays. For most of these pathways, we created 
molecular models of their implication with known 
molecular target(s) of the respective drugs. For the first 
time, our study uncovered mechanisms underlying cancer 
cell response to drugs at the high-throughput level of 
molecular interactions. The list of molecular pathways 
associated with drug response may be helpful for building 
prognostic tools predicting treatment option efficiencies 
for an individual patient in the future.
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RESULTS AND DISCUSSION

In this study, we for the first time compared 
molecular pathway activation features linked with the 
sensitivity of human cells to four target anticancer 
drugs routinely used for treatment of renal carcinoma 
and other cancers: Pazopanib, Sunitinib, Sorafenib 
and Temsirolimus. To this end, we compared pathway 
activation strength (PAS) signatures for experimental 
group of samples including eleven human cell lines grown 
and profiled in our laboratory, and for a database linked 
with “Genomics of Drug Sensitivity in Cancer” [6] project 
published on GDS website (http://www.cancerrxgene.
org/) and including transcriptomes of 227 different human 
cell lines. In both projects, the half maximal inhibitory 
concentration (IC50) was measured for the above four 
anticancer drugs, which is a measure of the effectiveness 
of these drugs in inhibiting cell growth, proliferation and 
viability. The IC50 features were further compared with 
the PAS signatures of both experimental and GDS cell 
lines, and lists of molecular pathways showing significant 
(p < 0.05) correlation between PAS profiles and IC50 were 
generated. We next overlapped these lists of characteristic 
experimental and GDS datasets, and identified a set of 
molecular pathways linked with sensitivity to drugs and 
common to both datasets. These pathways included both 
intracellular signaling and metabolic pathways, and in 
general had multiple direct and indirect connections 
with the molecular targets of the respective drugs, thus 
explaining their association with the drug efficiency. 
Outline of the experimental and bioinformatic procedures 
utilized in this study is shown on Figure 1.

Experimental profiling of cell transcriptomes 
and drug response peculiarities

In this study, we used eleven human established 
cell lines to profile gene expression and responses to 
anticancer drugs. The NT2/D1, Tera-1, NGP, HepG2, 
BT474, Skov-3, T3M4, HeLa, A549, Jurkat and MCF-
7 cells were grown to isolate RNA and to examine 
their viability in the presence of anticancer target drugs 
Pazopanib, Sunitinib, Sorafenib and Temsirolimus. 
Cellular viabilities were measured using MTT test at eight 
different concentrations of each drug in the medium, and 
dose response curves were generated for each couple drug-
cell line (Supplementary Dataset 1). Basing on these data, 
IC50 values were deduced for each combination. We found 
that for the same components, IC50 values differed greatly 
among the cell lines, showing up to 12 fold difference 
(Supplementary Dataset 2).

In parallel, aliquots of the respective eleven cell 
lines without addition of chemicals were subject to further 
gene expression assay. RNA was isolated, amplified 
and hybridized onto the bead arrays using the Illumina 

HT-12v4 Expression Chip (Illumina, USA). This gene 
expression platform contains >25,000 annotated genes 
and >48,000 probes derived from the National Center for 
Biotechnology Information RefSeq (build 36.2, release 
22) and the UniGene (build 199) databases. The primary 
gene expression data are available at GEO repository 
with the accession number GSE65314. To functionally 
annotate primary gene expression data, we applied our 
original algorithm termed OncoFinder [10]. It enables 
calculation of the Pathway Activation Strength (PAS), 
a value which serves as a qualitative measure of pathway 
activation. Greater PAS value corresponds to stronger 
activation of a pathway, and vice versa. PAS were 
shown to serve as better markers of cancer progression 
compared to individual genes [9] and were shown to 
diminish discrepancies in transcriptomic data introduced 
by the errors of different experimental platforms, thus 
increasing accuracy of analyses [12]. For this algorithm, 
at the initial step, the transcriptome under investigation 
should be compared with the control set of transcriptomes 
to identify differentially regulated genes [10]. Overall 
results of such analysis depend significantly on what 
sample or group of samples is taken as the control. To 
ensure the suboptimal control will not bias the results, 
we applied multiple simultaneous controls for calculating 
PAS scores in our experiments, and took separately eleven 
control gene expression datasets corresponding to different 
normal human tissues profiled on the same platform as 
the experimental sampling (Illumina HT-12 arrays), 
4–33 samples per dataset (Supplementary Dataset 3). 
These control transcriptomes were extracted from the 
Gene Expression Omnibus (GEO) database (http://www.
ncbi.nlm.nih.gov/geo/). The PAS scores were calculated 
independently for all the control datasets taken one by one. 
The results for 272 signaling and 321 metabolic pathways 
were obtained for each sample, being normalized 
separately on each of the eleven control datasets (listed in 
Supplementary Dataset 4 for the experimental data).

Analysis of cell transcriptomes and drug 
response information from the GDS project 
database

We analyzed GDS project gene expression data 
deposited at ArrayExpress database available at http://www.
ebi.ac.uk/arrayexpress/experiments/E-MTAB-783/. This 
database accumulates data on gene expression in 707 human 
cell lines along with the corresponding IC50 values measured 
for 140 chemical components, including Pazopanib, 
Sunitinib, Sorafenib and Temsirolimus. For further analysis, 
we used the enclosing data corresponding to 227 cell 
lines, for which the information for these four chemicals 
was present. IC50 data were extracted and catalogued 
(Supplementary Datasets 5–6). In our experiments, we used 
MTT test to assess cell viability, whereas GDS consortium 
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Figure 1: Outline of the procedures used to identify drug sensitivity-linked pathways. 
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utilized alternative approach for IC50 profiling. Following 
incubation with the chemical components, cells were fixed 
in formaldehyde for 30 minutes and then stained with 1 μM 
of the fluorescent nucleic acid stain Syto60 (Invitrogen) for 
1 hour. For suspension cell lines, cells were treated with 
compound immediately following plating, returned to the 
incubator for a 72 hour time point, then stained with 55 μg/
ml Resazurin (Sigma) prepared in Glutathione-free media 
for 4 hours. Quantitation of fluorescent signal intensity was 
performed using a fluorescent plate reader at excitation 
and emission wavelengths of 630/695 nM for Syto60, and 
535/595 nM for Resazurin (http://www.cancerrxgene.org/
help/#t_screening). Gene expression was measured using 
the HT-HGU133A Affymetrix Whole Genome Array 
platform, raw data available online at http://www.ebi.
ac.uk/arrayexpress/experiments/E-MTAB-783/protocols/. 
We next calculated PAS values for these transcriptomes, 
for the same set of signaling and metabolic pathways as 
for the experimental profiling. For the normalization of 
transcriptomes prior processing through the OncoFinder 
algorithm, we used three independent gene expression 
datasets taken from GEO database that were obtained using 
the same experimental platform, corresponding to three 
normal human tissues. Complete pathway activation data 
are given in Supplementary Dataset 7.

Links between PAS signatures and drug 
sensitivity for the experimental data and GDS 
results

To find out dependences between PAS and IC50 
signatures, we calculated correlation coefficient values, 
separately for the experimental and the GDS datasets, for all 
the normalization methods used (Supplementary Datasets 
8 and 9, respectively). The correlations were calculated 
according to Pearson’s product moment correlation 
coefficient. The statistical threshold (p < 0.05) was used 
to filter significant vs non-significant correlations. We 
identified a number of pathways showing significant positive 
or negative correlation between PAS and IC50 values for the 
above four anticancer drugs (Supplementary Datasets 10 
and 11 for either experimental or GDS data, respectively). 
A positive correlation between PAS and IC50 values means 
that the greater is the pathway activation score, the bigger 
is the half-inhibitory drug concentration, and the lower is 
the drug efficiency. Negative correlation, in contrast, means 
increase of the drug efficiency with the increase of PAS 
value. We next compared significantly correlated pathways 
from both datasets and found 13, 1, 5 and 7 overlapping 
molecular pathways for Pazopanib, Sunitinib, Sorafenib and 
Temsirolimus, respectively (Figure 2, Table 1).

Pazopanib

Pazopanib, also known as Votrient, is a tyrosine 
kinase inhibitor that targets proteins VEGFR-1, VEGFR-2, 
VEGFR-3, PDGFR-a/β and c-kit. For Pazopanib, there 

were identified 4 and 2 positively correlated, and 4 and 3 
negatively correlated signaling and metabolic pathways, 
respectively (Table 1). All negatively correlated signaling 
pathways represented brunches of Androgen receptor 
signalization, four positives were brunches of CD40, 
ATM, Circadian clock and SMAD pathways. Negative 
correlation of Androgen signaling means that its increase 
coincides with greater sensitivity to Pazopanib. This 
observation is in line with previously reported fail of 
clinical trials of Pazopanib in castrate-sensitive (androgen 
signaling-negative) prostate cancer patients [18]. For 
positively-correlated pathways, we found a recent 
literature report that Pazopanib most likely suppresses 
cell cycle progression in cancer cells by preventing 
inactivation of ATM checkpoint signaling [19]. Thus, 
enhanced activity of Pazopanib may be linked with 
dynamic trans-activation of ATM, which is originally 
suppressed in a cancer cell, in good agreement with the 
positive correlation discovered here. No previous reports 
were found for links between the activities of Pazopanib 
and CD40, Circadian clock and SMAD signaling, and for 
all metabolic pathways.

Sunitinib

Sunitinib (Sutent), is a tyrosine kinase inhibitor that 
targets proteins FLT1, FLT3, FLT4, c-kit, PDGFR-a/β, 
and KDR. For this drug, we found a unique negatively 
correlated pathway representing a brunch of AKT 
signaling responsible for protein synthesis regulation 
(Table 1). Numerous studies indicate that Sunitinib acts 
by suppressing AKT signaling in many ways (e.g., [20–
23]). AKT signaling-positive cancer cells, therefore, may 
be good targets for treatment with Sunitinib, whereas 
the negative cells may be worse responding candidates, 
in good agreement with our findings. Moreover, co-
suppression of protein biosynthesis pathway by inhibiting 
mTOR using Rapamycin, showed a significant synergistic 
effect with Sunitinib against cell proliferation [24].

Sorafenib

Sorafenib (Nexavar), is a kinase inhibitor drug that 
targets proteins PDGFR-a/β, FLT3, RET, BRAF, KDR, 
FLT4, RAF1, FLT1, FGFR, and c-kit. For Sorafenib, 
we identified only five positively correlated pathways: 
4 signaling and 1 metabolic pathways, respectively 
(Table 1). Two signaling pathways represented brunches 
of AKT, one—of cAMP, and the last one—of Androgen 
receptor signalization. The only correlated metabolic 
pathway deals with the 3′-phosphoinositide biosynthesis.

AKT pathway extensions responsible for the 
inhibition of apoptosis and for the elevation of glucose 
uptake, appeared to be positively correlated with Sorafenib 
activity. This means that their upregulation interferes with 
the efficiency of Sorafenib treatment. The interference 
of AKT-induced glucose uptake with the activity of 
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Sorafenib was recently mentioned in the literature [25]. 
In turn, activation of AKT and consequent escape of 
apoptosis is the mechanism of resistance of hepatocellular 
carcinoma cells to Sorafenib [26]. Similarly, compensatory 
activation of AKT was identified as one of major reasons 
hampering Sorafenib activity also in urothelial cells 
[27]. In both cases, the authors noted that AKT signaling 
worked through the compensatory activation of the 
phosphatidylinositol-3-kinase (PI3K) pathway [26, 27]. 
In light of these findings, it is particularly interesting that 
the only metabolic pathway that was positively correlated 
with Sorafenib IC50 in our study appeared to be a pathway 
responsible for the 3′-phosphoinositide biosynthesis, 
which is tightly associated with the above PI3K signaling 
(Table 1). Androgen receptor-controlled suppression of 
apoptosis, along with the AKT pathway, are known as 
the major targets of Sorafenib in prostate cancer cells 
[28]. Finally, the mutually interfering effects of cAMP 
signaling promoting cell growth, enhanced metabolism 
and proliferation, and of Sorafenib, were documented 
previously for renal epithelial cells [29].

Temsirolimus

Temsirolimus is a small molecule that targets 
FRAP1 protein, also known as mTOR. For Temsirolimus, 
we identified 3 positively correlated metabolic pathways, 
and 3 and 1 negatively correlated signaling and metabolic 
pathways, respectively (Table 1). The activation of 
negatively correlated pathways largely coincides with 
the enhanced activity of Temsirolimus, and the contrary 
is true for the positively correlated pathways. The 
negatively correlated signaling pathways include RAS 
pathway, cAMP pathway-regulated Glycogen synthesis, 
and a terminal brunch of GSK3 pathway regulating gene 
expression. The only negatively correlated metabolic 
pathway was the pathway of Purine deoxyribonucleosides 
degradation, and the positively correlated meta
bolic pathways were pathways of D-myo-inositol 
1,4,5-trisphosphate degradation, Phytol degradation 
and Tryptophan degradation via tryptamine. For those 
pathways, we found no literature reports linking them with 
the activity of Temsirolimus.

Figure 2: Schematic representation of the statistics on molecular pathways correlated with the response to drug 
treatment. 
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Table 1: Molecular pathways correlating with drug response, overlapping for the experimental 
and GDS datasets
Drug Molecular pathways Number of normalization datasets Sign of correlation

GDS (out of 3) Experimental (out of 11)

Sorafenib 3-phosphoinositide_
biosynthesis

1 5 +

Sorafenib AKT_vPathway_
Apoptosis_Inhibition

2 1 +

Sorafenib AKT_Pathway_Elevation_
of_Glucose_Import

2 1 +

Sorafenib Androgen_receptor_
Pathway_Apoptosis

2 6 +

Sorafenib cAMP_Pathway_
Metabolic_Energy

1 6 +

Sunitinib AKT_Pathway_Protein_
Synthesis

1 1 −

Pazopanib
Androgen_receptor_
Pathway_Gonadotropin_
Regulation

1 2 −

Pazopanib
Androgen_receptor_
Pathway_Histone_
Modification

1 2 −

Pazopanib

Androgen_receptor_
Pathway_Prostate_
Differentiation_&_
Development

1 2 −

Pazopanib

Androgen_receptor_
Pathway_Sexual_
Differentiation_&_Sexual_
Maturation_at_Puberty

1 2 −

Pazopanib ATM_Pathway 3 3 +

Pazopanib zymosterol_biosynthesis 2 1 +

Pazopanib SMAD_m_Pathway_
Degradation

1 9 +

Pazopanib CD40_Pathway_Cell_
Survival

3 1 +

Pazopanib chondroitin_sulfate_
biosynthesis_late_stages

1 1 −

Pazopanib Circadian_Pathway 2 1 +

Pazopanib dermatan_sulfate_
biosynthesis_late_stages

3 1 −

Pazopanib SMAD_m_Pathway_
Degradation

1 9 +

Pazopanib spermidine_biosynthesis 1 3 −

Pazopanib triacylglycerol_
biosynthesis

1 1 +

(Continued )
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CONCLUSION

Importantly, the molecular pathways that overlapped 
between our cell culture assay and GDS data, were 
identified to be significantly linked with the response to 
drugs in two independent experimental cell viability tests 
performed in two different laboratories. For those pathways, 
we attempted to find out functional relationships between 
pathway members and known molecular targets of the 
above-mentioned respective drugs. To this end, we used 
Metacore knowledgebase (Thompson Reuters, USA) and 
identified 20 direct and 145 indirect molecular interactions 
that link the pathways with related drug targets, for all tested 
drugs (Supplementary Dataset 12). In most cases, these 
interactions explain the involvement of pathways identified 
in drug response. The outline depicting interactions of drugs 
with their targets for top molecular pathways is shown on 
Figure 3 for Pazopanib (Figure 3A), Sorafenib (Figure 3B), 
Sunitinib (Figure 3C) and Temsirolimus (Figure 3D). 
In our study, we identified several previously unknown 
connections between intracellular molecular signaling and 
drug efficiency. We note that links between cancer and 
metabolic pathways are still poorly understood relatively 
to those for the intracellular signalization pathways. The 
data obtained here may be valuable for design of novel 
therapeutic strategies supplementing treatment with the 
above anticancer drugs by the additional components 
targeting relevant molecular pathways. In the future, 
similar approach may be applied also for assessing the 
effects linked with resistance to radiation therapy [30]. 
Provided that activation of molecular pathways may serve 
as a superior biomarker relatively to expression of enclosing 
individual gene products, we conclude, that additional 
coordinated high-throughput studies are needed to 

explore the currently underinvestigated galaxy of 
pathway-drug interactions.

MATERIALS AND METHODS

Cell culture

In this study, we used eleven human cell lines to 
profile gene expression and responses to anticancer 
drugs. The NT2/D1, Tera-1, NGP, HepG2, BT474, 
Skov-3, T3M4, HeLa, A549, MCF-7 cells were cultured 
on Dulbecco’s modified Eagle’s medium (DMEM) 
(PanEco, Russia) supplemented with 10% fetal calf 
serum (HyClone, USA), 100 mcg/ml penicillin (Sigma, 
USA), 100 U/ml streptomycin (Sigma, USA) and 2mM 
L-glutamine (Sigma, USA) at 37°C and 5% CO2. Jurkat 
cells were maintained in RPMI-1640 medium (PanEco, 
Russia) with the same supplements. The cells were 
grown in 25 cm2 or 75 cm2 flask (Greiner, Germany) and 
passaged for every 72 hours.

Cell viability assay

We evaluated cell viability by using MTT 
(3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium 
bromide) test [31]. Adherent cells were dissociated from 
plastic vessel using trypsin-EDTA solution (PanEco, 
Russia), then cells were washed twice with DMEM/RPMI-
1640. Aliquots of cells were counted in hemocytometer. 
Cells were inoculated in 96-well plates (Greiner, 
Germany), ~2.000–10.000 cells per well, depending on 
the cell line used. The plates were pre-incubated for 18 hr 
before the addition of testing components. The following 
drugs were tested (purchased at Selleckchem, USA): 

Drug Molecular pathways Number of normalization datasets Sign of correlation

GDS (out of 3) Experimental (out of 11)

Temsirolimus
purine_
deoxyribonucleosides_
degradation

3 1 −

Temsirolimus RAS_Pathway 1 1 −

Temsirolimus GSK3_Pathway_Gene_
Expression 2 11 −

Temsirolimus phytol_degradation 1 2 +

Temsirolimus
tryptophan_degradation_ 
mammalian_via_
tryptamine

2 7 +

Temsirolimus cAMP_Pathway_
Glycogen_Synthesis 2 1 −

Temsirolimus
D-imyoi-inositol_1, 
4, 5-trisphosphate_
degradation

2 6 +
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Pazopanib, Sunitinib, Sorafenib and Temsirolimus. For 
every cell line, the drugs were tested in the following 
concentrations: 0, 0.8, 1.56, 3.1, 6.25, 12.5, 25 and 50 
μM. The chemicals were added to the culture medium 
in DMSO solution. All the experiments were made in 
quadruplicate. After addition of the testing components, 
the plates were incubated for 72 hr and then centrifuged at 
300 g for 10 min using plate centrifuge (Biosan, Latvia), 
followed by the removal of supernatant. 30 μl of 0.5 mg/
ml solution of MTT (Sigma, USA)was added to each well, 
and the plates were incubated for 2–4 hr, depending on 
the cell line used, then 100 μl of DMSO was added to 
each well and mixed by pipetting until all blue formazan 
crystals were dissolved. The optical densities (OD) of 
each well were measured using a plate reader Multiscan 
FC (ThermoScientific, USA) at 540 nm wavelength. 
Cell viability was calculated using the formulae: (OD 
treated well – OD blank)/(mean OD control well – OD 
blank) × 100%, where OD blank means OD in control 
wells containing no cells. IC50 values were deduced from 
Dose-response curves using SigmaPlot software (Systat 
Software Inc ., USA). Dose-response curves are given in 

Supplementary Dataset 1. The experimentally measured 
IC50 values are shown on Supplementary Dataset 2.

Experimental gene expression analysis

Approx. 0.5 million cell aliquots of the respective 
eleven cell lines without addition of chemicals were subject 
to further gene expression assay. RNA was isolated using 
TRIzol Reagent (Life Technologies, USA) following the 
manufacturer’s protocol. Purified RNA was dissolved in 
RNase-free water and stored at −80°C. RNA was then reverse-
transcribed to cDNA and cRNA using the Ambion TotalPrep 
cRNA Amplification Kit (Invitrogen, USA). The cRNA 
concentration was quantified and adjusted to 150 ng/ml using 
an ND-1000 Spectrophotometer (NanoDrop Technologies, 
USA). A total 750 ng of each RNA library was hybridized onto 
the bead arrays. Gene expression experiments were performed 
by Genoanalytica (Moscow, Russia) using the Illumina 
HumanHT-12v4 Expression BeadChip (Illumina, Inc.). This 
gene expression platform contains more than 25,000 annotated 
genes and more than 48,000 probes derived from the National 
Center for Biotechnology Information RefSeq (build 36.2, 

Figure 3: Schematic representation of the respective drug targets in the overall architecture of molecular interactions for the top pathways 
correlating with response to Pazopanib A. Sorafenib B. Sunitinib C. and Temsirolimus D. Protein targets of the respective drugs are shown 
in orange, intermediate molecules between pathway members and drug targets (in grey) and pathway members (in blue).
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release 22) and the UniGene (build 199) databases. The 
primary gene expression data are available through GEO 
repository with the accession number GSE65314.

Database gene expression data

We analyzed gene expression datasets deposited 
in ArrayExpress database available at http://www.ebi 
.ac.uk/arrayexpress/experiments/E-MTAB-783/. This 
database accumulates data on gene expression in 707 
human cell lines along with the corresponding IC50 
values, deposited in The Genomics of Drug Sensitivity 
in Cancer (GDS) database, available at http://www.
cancerrxgene.org/downloads/ , measured for 140 chemical 
components, including Pazopanib, Sunitinib, Sorafenib 
and Temsirolimus. In the GDS project database, we 
found matching transcriptomic and IC50 information, 
corresponding to the above four drugs, for 227 cell lines. 
In GDS project, gene expression was measured using HT-
HGU133A Affymetrix Whole Genome Array platform.

Pathway activation analysis

For the functional annotation of the primary gene 
expression data, we applied our original algorithm termed 
OncoFinder [6, 8, 9]. It enables calculation of the Pathway 
Activation Strength (PAS), a value which serves as a 
qualitative measure of pathway activation. Briefly, the 
enclosing algorithm utilizes the following formula to 
evaluate pathway activation:

PAS ARR BTIF CNR = lg ( )p np n
n

n∑ ⋅ ⋅

Here the case-to-normal ratio, CNRn, is the ratio 
of expression levels for a gene n in the sample under 
investigation to the same average value for the control group 
of samples. The Boolean flag of BTIF (beyond tolerance 
interval flag) equals to zero when the CNR value has passed 
simultaneously the two criteria that demark the significantly 
perturbed expression level from essentially normal: first, 
the expression level for the sample lies within the tolerance 
interval, where p > 0.05, and second, the value of CNR 
differs from 1 considerably, CNR 0.66 or CNR 1.5. The 
discrete value of ARR (activator / repressor role) reflects 
the functional role of a gene product n in the pathway [8, 
9]. For quantile normalization of gene expression in our 
experimental data (eleven cell lines), we used separately 
another eleven gene expression datasets corresponding to 
sets of different normal human tissues profiled on Illumina 
HT-12v3-4 platforms, 4–33 samples per each dataset 
(Supplementary Dataset 3). For quantile normalization 
of the GDS data, we used three gene expression datasets 
obtained using the platform Affymetrix HT-HGU133A 
whole genome array, corresponding to three normal human 
tissues, 2–10 samples per each dataset (Supplementary 
Dataset 7). The results for 272 signaling and 321 metabolic 

pathways were obtained for each sample (details shown on 
Supplementary Dataset 4 for our original experimental data 
and on Supplementary Dataset 7 for the GDS data).

Statistical tests

The correlations between PAS and IC50 values 
were calculated according to Pearson’s product 
moment correlation coefficient. The statistical threshold 
(p < 0.05) was used to filter significant vs non-significant 
correlations. We used test for association between paired 
samples and function cor.test (https://stat.ethz.ch/R-manual/
R-patched/library/stats/html/cor.test. html) in R (http://
www.r-project.org/) to return correlation coefficients. The 
full data on correlations between pathway activation and IC50 
values, for both experimental and GDS datasets, are shown, 
respectively, on Supplementary Datasets  8 and 9.

Analysis of the interactome databases

In this study, we did literature search of the NCBI 
PubMed database in order to manually examine pathways 
connected with drug response. To identify additional 
targets for pathway-linked regulation, we used a manually 
curated commercial database GeneGo (MetaCore package, 
Thomson Reuters, USA), and the MetaCore pathway 
analysis tool to visualize molecular interactions between 
the proteins. The manually curated functional molecular 
links between the top pathways and IC50 values are shown 
on Supplementary Dataset 12.
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