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Since the seminal work of Nusslein-Volhard and Wieschaus 
(1980) on segmentation in Drosophila melanogaster, embryo
genesis has mostly been described as a top-down process 
whereby master regulators provided by the mother (the morpho-
gens; Wolpert, 1981) set a cascade of hierarchal events leading 
to precise pattern formation. Yet, this framework does not allow 
correction of potential downstream errors and is not sufficient 
to explain the robustness and the adaptability observed in liv-
ing organisms. There is indeed an increasing number of studies 
showing the great adaptability of developing tissues (Braendle 
and Félix, 2008; Domyan and Sun, 2011), among which cell 
competition is a striking example.

Cell competition was originally defined by the short-
range elimination of slow-dividing cells when confronted with 
a faster growing population (Morata and Ripoll, 1975; Simpson, 
1979; Simpson and Morata, 1981). Outcompeted cell elimina-
tion is a complex process involving local fitness comparison 
between “loser” cells and “winner” cells that eventually drives 
loser cell apoptosis (Moreno et al., 2002a; de la Cova et al., 
2004; Moreno and Basler, 2004; Li and Baker, 2007; Rhiner  
et al., 2010; Fig. 1 A). Thus, cell competition involves a con-
text-dependent regulation of growth, proliferation, and death 
that is based on local cell–cell interactions, in contrast to the 
classical top-down view of embryogenesis.

Since then, cell competition has led to the discovery of 
multiple cell selection processes based on local fitness com-
parison both in Drosophila and in mammals (Fig. 1, B and D). 
These phenomena have repercussions on a large variety of areas 
from cancer, growth regulation, and cell signaling. In this review, 
we will describe the different processes driving cell fitness modu-
lation and cell selection while trying to find potential common 
wiring for all of these phenomena. The analogous competitive 
interactions described in stem cell niche will not be described 
here, and a precise description of the phenomenon can be found 
elsewhere (Johnston, 2009; Zhao and Xi, 2010).

Historical definition of cell competition
Cell competition was originally characterized in Drosophila 
more than 30 years ago through the study of a class of dominant 
mutations called Minutes (Morata and Ripoll, 1975), encoding 
for ribosomal proteins (Kongsuwan et al., 1985). Heterozygous 
Minute+/ flies showed a general developmental time delay due 
to a cell-autonomous reduction of growth rate (Morata and  
Ripoll, 1975), but eventually reached normal body size without 
profound patterning defects. Interestingly, early induced Minute+/ 
clones in wild type (wt) background were not recovered in adult 
fly wings, suggesting a context dependent elimination of Minute+/ 
cells. This phenomenon was called cell competition and was 
subsequently better characterized by P. Simpson and colleagues 
(Simpson, 1979; Simpson and Morata, 1981). The recovery of 
Minute+/ clones increased when induced late or upon larvae 
starvation, which suggested that elimination required a differen-
tial growth rate. This was later confirmed by combining Minutes 
mutations with variable severity (Simpson and Morata, 1981), 
as the proportion of recovered clones was proportional to the 
relative differences in the growth rates of the two confronted 
cell populations. Interestingly, the final size of the wings and 
compartments was unaffected by competition, which suggests that 
wt cells grow at the expense of Minute+/ cells (Simpson and 
Morata, 1981). However, single wt clone expansion was re-
strained to well-defined and reproducible frontiers, and compe-
tition was ineffective across these borders, which outlined the 
existence of wing disc subdivision in nonmiscible cell populations, 

Cell competition is the short-range elimination of slow-
dividing cells through apoptosis when confronted with a 
faster growing population. It is based on the comparison 
of relative cell fitness between neighboring cells and is a 
striking example of tissue adaptability that could play a 
central role in developmental error correction and can-
cer progression in both Drosophila melanogaster and 
mammals. Cell competition has led to the discovery of 
multiple pathways that affect cell fitness and drive cell 
elimination. The diversity of these pathways could re-
flect unrelated phenomena, yet recent evidence suggests 
some common wiring and the existence of a bona fide 
fitness comparison pathway.
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surrounding wt cells, similarly to the early stage of tumor pro-
gression (Abrams, 2002; Fig. 1 B). The proto-oncogene dmyc 
was the first candidate to fit this definition (de la Cova et al., 
2004; Moreno and Basler, 2004). Myc is a conserved transcrip-
tion factor regulating multiple downstream targets involved in 
cell growth and ribosome biogenesis (Johnston et al., 1999;  
de la Cova and Johnston, 2006). Clones expressing high levels 
of dmyc overgrew at the expense of the surrounding tissue until 
they filled the compartment (de la Cova et al., 2004; Moreno 
and Basler, 2004). Clone expansion required the elimination 
of the surrounding cells by apoptosis, which was induced 
through Dpp deprivation, JNK activation (Moreno and Basler, 
2004), and induction of the apoptotic activator Hid in the loser 
cells (de la Cova et al., 2004). On the contrary, down-regulation of 
Myc in clones led to their elimination, similar to Minute muta-
tions (Johnston et al., 1999; de la Cova et al., 2004; Moreno and 
Basler, 2004). dmyc competition could be genetically related 
to Minute, as the Minute mutation suppressed the supercom-
petitor phenotype of dmyc overexpression (Moreno and Basler, 
2004). Strikingly, cells with two additional copies of dmyc 
alternatively behaved as supercompetitors or losers when con-
fronted, respectively, with wt cells or cells with four copies 
of dmyc (Moreno and Basler, 2004), demonstrating that com-
petition is based on relative and not absolute levels of dmyc. 
Yet, supercompetition is not a general feature induced by any hyper
proliferative clones, as overexpression of the phosphoinositide3- 
kinase (PI3K) Dp110 (an effector of the insulin growth pathway; 
Böhni et al., 1999) or the cell cycle regulators CyclinD and Cdk4 
both generated large clones, but no elimination of the surrounding 
cells (de la Cova et al., 2004; Moreno and Basler, 2004).

the so-called compartment boundary (Garcia-Bellido et al., 
1973; Simpson and Morata, 1981).

Cell competition became a subject of interest again 20 years 
later when it was shown that Minute+/ clone elimination could 
also be observed in the wing imaginal disc and was apoptosis 
dependent. Loser clone elimination required an active induction 
of Minute+/ cell apoptosis by the surrounding wt cells (Abrams, 
2002; Milàn, 2002; Moreno et al., 2002a). The elimination of 
Minute clones was driven by a relative deficit of Dpp pathway 
activation (Decapentaplegic, the fly orthologue of BMP, an ex-
tracellular morphogen regulating growth and patterning) lead-
ing to ectopic up-regulation of its down-steam inhibited target 
Brinker (Fig. 2; Moreno et al., 2002a). This subsequently led to 
JNK (c-Jun N-terminal kinase) pathway activation and apopto-
sis induction (Moreno et al., 2002a). Based on these results, it 
was proposed that neighboring cells compete for the uptake of 
limiting survival factors (here the morphogen Dpp) so that any 
cell showing a relative fitness deficit could lead to the reduc-
tion of Dpp uptake and cell elimination. Thus, cell competition 
could build a quality control mechanism that maximizes tissue 
fitness by destroying suboptimal cells. Interestingly, mutation  
in a ribosomal protein (Rpl 24) also led to competitive inter
actions in mouse blastocysts (Oliver et al., 2004), which sug-
gests that the same phenomenon occurs in mammals.

Myc and supercompetitors
Cell competition gained further interest when it was related 
to cancer through the discovery of supercompetitors. Hypo-
thetical supercompetitor mutations should increase cell fitness 
and lead to the clonal invasion of tissue at the expense of the 

Figure 1.  Mutations and pathways involved 
in cell competition and intrinsic tumor suppres-
sion have a context-dependent phenotype.  
(A) In “classical” cell competition, mutant cells 
(light green) surrounded by cells with the same 
genotype survive (top), whereas they are elim-
inated when surrounded by wt cells (white 
cells, bottom). Subsequently, wt cells replen-
ish the tissue by compensatory proliferation. 
Green cells are the mutant cells, purple cells 
are the winners. (B) Mutation/pathways that 
induce a reduction of fitness leading to cell 
competition and intrinsic tumor suppression. 
(C) Supercompetitor cells (light purple) do not 
induce apoptosis when surrounded by cells 
with the same genotype (top), whereas they 
can grow at the expense of the surrounding 
wt cells (white) by inducing their death (bot-
tom). Winner cell growth is up-regulated by 
compensatory proliferation, through the secre
tion of Dpp, Wg, Hh, and Unpaired from  
dying cells (dark gray arrow), or the non–cell  
autonomous down-regulation of Hippo path-
way induced by dying cells (not depicted). 
Purple cells are the winner cells, green cells 
are the loser cells. (D) Mutation/pathways 
that induce an increase of fitness, thereby 
generating supercompetitors.
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Ziosi et al., 2010). Indeed, Myc down-regulation was sufficient 
to abolish the supercompetitive behavior of activated Yki clones 
(Neto-Silva et al., 2010; Ziosi et al., 2010). Yet, Myc does not 
fully recapitulate the features of Hippo-dependent competition, 
as dmyc overexpression was not sufficient to rescue Yki mu-
tant clones (Ziosi et al., 2010), which are probably eliminated 
through the down-regulation of the apoptosis inhibitor Diap1.

Polarity defects and intrinsic  
tumor suppression
Elimination of clones mutant for the central regulators of 
apico-basal polarity Lethal giant Larvae (Lgl), Disc large (Dlg), 
Scribble, and clones overexpressing the apical determinant 
Crumbs has also been related to cell competition. Yet, these 
phenomena differ from the original definition of cell competi-
tion, as homozygous mutant organisms were not viable and 
mutant cells were only eliminated after losing apico-basal po-
larity and showing profound morphological defects (Wodarz, 
2000; Grzeschik et al., 2010b). Moreover, elimination of lgl 
mutant cells did not require differential growth (Menéndez  
et al., 2010), as apoptosis was still observed in lgl mutant 
clones despite their high proliferation rate induced by Yki or 
Ras activation. Finally, lgl mutant clones were recognized and 
killed by circulating macrophages through the secretion of the 
JNK activator TNF/eiger by immune cells (Cordero et al., 
2010), whereas Minute+/ clone elimination did not require 
the presence of macrophages, which are only necessary for the 
removal of apoptotic corpses (Lolo et al., 2012). As such, these 
selections differ from the original definition of cell competition, 
and were referred to by others either as intrinsic tumor suppres-
sion (Igaki, 2009) or extrinsic tumor suppression (Vidal, 2010; 
Lolo et al., 2013).

Other Myc related pathways that induce 
cell competition
Since the discovery of Minute- and Myc-driven competition, the 
repertoire of pathway-inducing competitive interactions has been 
constantly growing. This includes the GTPase Ras1 (Prober 
and Edgar, 2000). Down-regulation of Ras in clones led to their 
elimination by competition. This phenotype was probably in-
duced by the down-regulation of Myc, as Ras1 can up-regulate 
Myc concentration by posttranscriptional regulation, and Myc 
expression is sufficient to rescue Ras1 mutant clones (Prober 
and Edgar, 2000). The Hippo pathway has also emerged as an 
important regulator of competition (Tyler et al., 2007; Froldi  
et al., 2010; Menéndez et al., 2010; Chen et al., 2012). The 
Hippo pathway is a central regulator of growth, cell death, 
and tissue homeostasis, and has been involved in a variety of 
cancers (Zhao et al., 2011; Staley and Irvine, 2012). It is com-
posed of the core kinases Hippo and Warts, and the adaptors 
Salvador and Mats, which prevent the nuclear accumulation  
of the transcriptional cofactor Yorkie (Yki; Yap in mammals). 
Upon Hippo pathway down-regulation, Yki accumulates in the  
nuclei and induces the transcription of multiple targets promot-
ing cell proliferation, and down-regulates apoptosis through  
Diap1 (Drosophila inhibitor of apoptosis 1) up-regulation (Staley 
and Irvine, 2012).

The involvement of the Hippo pathway in cell competition 
was initially identified in a screen for genes preventing Minute+/ 
clone elimination in fly adult eyes (Tyler et al., 2007). Simi-
lar to dmyc overexpression, mutations in the Hippo pathway 
components increased Dpp pathway activation and produced 
supercompetitive clones, which invaded a whole compartment. 
Hippo-dependent competition could be driven by the transcrip-
tional up-regulation of dmyc by Yki (Neto-Silva et al., 2010;  

Figure 2.  Cell competition and cell selection  
are multistep processes. Schematic of the mul
tiple layers of regulation involved in loser cell 
elimination. Colored rectangles separate each 
hypothetical layer of control. Cell selection is 
initiated by mutations/pathways leading to 
a gain or a loss of fitness (light purple). The 
modulation of fitness leads to the deficit/gain 
of some limiting factors for which cells are 
competing (bottleneck, dark green). This then 
activates cell fitness markers (Flower, Sparc;  
yellow). Eventually, loser cell elimination is  
induced by different cell autonomous signal 
(JNK, Hid; light green), and by signals emit-
ted by winner cells (dark purple). Hypothet
ical epistatic relationships are marked by 
broken lines.
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imaginal disc where apico-basal polarity was maintained  
(Grzeschik et al., 2010a), whereas it was down-regulated in lgl 
mutant clones in the wing pouch of the wing imaginal disc, 
where apico-basal polarity was lost (Froldi et al., 2010; Menéndez 
et al., 2010). In the absence of intrinsic tumor suppression and 
strong morphological defects, Yki up-regulation in scrib and lgl 
mutants was induced by an increased activity of the apical de-
terminant aPKC (atypical PKC; Leong et al., 2009; Grzeschik 
et al., 2010a,b; Doggett et al., 2011) or by the mislocalization of 
the Hippo regulator Expanded in Crumbs overexpressing cells 
(Grzeschik et al., 2010a). On the contrary, Yki could be down-
regulated in polarity-deficient/outcompeted mutant cells through 
the activation of the JNK pathway (Doggett et al., 2011; Chen 
et al., 2012). However, other downstream targets of polarity 
proteins could produce a fitness deficit. For instance, the Lgl  
interactor Mahjong was a key downstream target of Lgl respon-
sible for lgl mutant elimination in both mammalian cells and 
Drosophila imaginal disc (Tamori et al., 2010).

In conclusion, polarity defects are also potent inducers of 
cell selection and fitness modulation. The close relationship be-
tween Hippo pathway and apico-basal polarity cues (for review 
see Genevet and Tapon, 2011) and the results of the various epi-
static experiments suggest that the Hippo pathway is a major in-
ducer of selection acting downstream of polarity defects, which 
could relate intrinsic tumor suppression to classical cell competi-
tion (Fig. 2). However, the partial rescue of mutant clones ob-
tained upon Yki activation (Menéndez et al., 2010) suggest that 
other downstream targets (such as Mahjong; Tamori et al., 2010) 
are required for cell selection.

Myc- and Minute-independent pathways 
inducing competition
So far, most of the fitness modulators have been related to differ-
ential expression of Myc and/or modification of the Hippo path-
way. Yet, several new cases of competition independent of Myc, 
Minute, or Hippo have been reported recently. This includes the 
differential activation of the Wnt–Wingless pathway and modi-
fication of JAK–STAT activation.

Similarly to Dpp, the morphogen Wingless (Wg; Drosophila 
orthologue of Wnt) is also involved in cell competition (Vincent 
et al., 2011). Wg is also a central regulator of growth, patterning, 
and cell survival (Clevers, 2006), which forms a gradient along 
the dorso-ventral axis in the wing imaginal disc (Baena-Lopez 
et al., 2012). Like Myc, local down-regulation of Wg signaling 
led to clone elimination, whereas local hyperactivation gener-
ated supercompetitors and apoptosis of neighboring wt cells. 
Elimination of Wg-deprived cells also involved both JNK ac-
tivation (Giraldez and Cohen, 2003) and Hid (Johnston and 
Sanders, 2003). Yet competitive interactions induced by Wg 
were independent of Myc, as Myc was unexpectedly down- 
regulated in Wg supercompetitor clones, and supercompetition 
was not abolished by down-regulation of Myc throughout the 
disc or up-regulation of Myc in the surrounding wt cells. Alter-
natively, Wg dependent supercompetition required the secre-
tion of notum, an inhibitor of Wg signaling that was activated 
downstream of Wg and secreted from Wg hyperactivated clones 
(Vincent et al., 2011).

In Drosophila, homozygous mutants for lgl, dlg, or scrib 
developed normally until the depletion of the maternal supplied 
pool. Subsequently, epithelial cells of the imaginal discs lost 
their polarity and proliferated massively until forming a mul-
tilayered and amorphous mass (Wodarz, 2000). As such, these  
genes were classified as neoplastic tumor suppressors. Simi-
larly, mutant clones of lgl, dlg, and scrib overproliferated in 
the eye imaginal disc, where apico-basal polarity was maintained 
(Brumby and Richardson, 2003; Grzeschik et al., 2007, 2010a,b; 
Doggett et al., 2011). However, early induced lgl/dlg/scrib 
mutant clones failed to proliferate in the wing imaginal disc, 
where mutant cells surrounded by wt cells were eliminated 
upon loss of apico-basal polarity through JNK-dependent apop-
tosis (Brumby and Richardson, 2003; Igaki et al., 2009; Froldi 
et al., 2010; Grzeschik et al., 2010b; Menéndez et al., 2010; 
Tamori et al., 2010; Ohsawa et al., 2011; Chen et al., 2012). 
Similarly, clones overexpressing the apical determinant crumbs  
were eliminated by apoptosis when surrounded by wt cells (Hafezi 
et al., 2012). Moreover, a disc compartment fully mutant for 
lgl or overexpressing crumbs grew indefinitely and was not  
affected by intrinsic tumor suppression (Menéndez et al., 2010; 
Hafezi et al., 2012), similar to Myc- and Minute-driven compe-
tition. On the contrary, crumbs mutant clones underwent massive 
proliferation and induced apoptosis of the wild-type surround-
ing cells, similar to Myc supercompetitors (Hafezi et al., 2012). 
Yet, Crumbs “supercompetition” differed from Myc in that it 
induced death across compartment boundaries. In mammalian 
epithelial cells, scrib mutants also underwent delamination  
and apoptosis when surrounded by wild-type cells (Norman  
et al., 2012), and lgl mutant cells were also eliminated through 
JNK activation when surrounded by wt cells (Tamori et al., 
2010). Thus, lgl/dlg/scrib mutants and crumbs overexpres-
sion recapitulate some features of cell competition, which sug-
gests the existence of common downstream events required for 
cell elimination.

Interestingly, neoplastic growth of scrib mutant clones 
could be rescued by the activation of Ras and Notch (Brumby 
and Richardson, 2003) or by increasing Yki activity (Chen et al., 
2012). Similarly, lgl mutant clones could be partially rescued 
by dmyc expression (Froldi et al., 2010) and Hippo pathway 
down-regulation (Menéndez et al., 2010). Accordingly, Myc 
was down-regulated in lgl mutant clones (Froldi et al., 2010). 
Moreover, the Hippo pathway regulator Expanded was mislo-
calized in crumbs mutant, whereas the Hippo target Diap1 was 
up-regulated, as previously reported (Chen et al., 2010; Robinson 
et al., 2010), which suggests that the crumbs mutant supercom-
petitor phenotype is driven by Hippo pathway down-regulation. 
Thus, the Myc and/or Hippo pathway are core downstream tar-
gets required for elimination of polarity-deficient cells and 
Crumbs supercompetition. Surprisingly, the downstream regu-
lation of Myc and Hippo pathways by polarity proteins is con-
text dependent (Froldi et al., 2010; Grzeschik et al., 2010a,b; 
Doggett et al., 2011; Chen et al., 2012). scrib/lgl mutant clones 
surrounded by wt cells down-regulated Yki/Myc, whereas the 
same targets were up-regulated if the clones were surrounded 
by slow-growing cells (Froldi et al., 2010; Chen et al., 2012). 
Similarly, Yki was up-regulated in lgl mutant clones in the eye 
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It was previously suggested that differential growth between 
neighboring cells could induce mechanical stress and feed-
back on the rate of cell division and apoptosis (Shraiman, 
2005). In this model, the compression experienced by slow-
dividing cells neighboring fast-growing cells would drive 
apoptosis. More recently, random cell delamination due to cell 
crowding was described in the pupal notum of Drosophila 
(Marinari et al., 2012). However, only a minor proportion of 
delamination was apoptosis dependent, which suggests a pro-
cess different from cell competition. Yet, elimination of loser 
clones could also be partially induced by the mechanical con-
straints imposed by the vicinity of fast growing clones and cell 
crowding. This could explain the insulating role of compart-
ment boundaries on cell competition, which through the local 
up-regulation of cortical tension (Landsberg et al., 2009) could 
mitigate the communication of mechanical stress from one 
compartment to the other.

Induction of a loser fate and the Flower code
Cell competition has shed new light on multiple phenomena 
driving elimination of cells showing reduced fitness compared 
with their neighbors. Since then, identifying the potential mo-
lecular effectors allowing fitness comparison between cells has 
become a central question in the field. The transmembrane pro-
tein Flower could be this so-called fitness marker (Rhiner et al., 
2010). The flower gene was identified in a microarray for genes 
induced early in loser cells during Myc-dependent competition. 
The Flower locus encodes three different isoforms mostly dif-
fering in their extracellular domain. One isoform (flowerubi, “ubi” 
stands for ubiquitous) is normally expressed throughout the 
wing disc but down-regulated in loser cells during competition, 
whereas the two other isoforms (flowerloseA and flowerloseB) are 
only detected in loser cells during cell competition. Interest-
ingly, this pattern is observed downstream of multiple fitness 
modulators, including Myc, Minute, scrib mutant, and Dpp path-
way. flowerlose expression is required for loser elimination, as 
RNAi targeting the two lose isoforms was sufficient to rescue 
loser clone elimination. On the contrary, flowerlose expression in 
clones or in S2 cells was sufficient to drive their elimination 
when contacting wt cells or Minute mutants. Thus, a relative in-
crease of lose isoforms expression is necessary and sufficient to 
induce loser fate and cell elimination. Similarly, flowerubi knock-
down in a subset of cells also drove their elimination. More-
over, Flower differential expression was induced upstream of 
the JNK pathway and apoptosis induction, and was specific to 
cell competition. Thus, the “Flower code” is a central and com-
mon downstream regulator of cell selection, which would  
inform neighboring cells on their relative fitness status and sub-
sequently activates the elimination of loser cells.

The same microarray data identified Sparc, another gen-
eral marker of loser cells (Portela et al., 2010). Sparc is a secreted 
protein involved in extracellular matrix remodeling and has 
been related to cancer progression (Bradshaw, 2012). Sparc is 
also up-regulated in loser clones downstream of multiple selec-
tion phenomena. Yet, contrary to Flower, Sparc down-regulation 
accelerated loser elimination, whereas its overexpression de-
layed it. This protective effect is specific to cell competition and 

Modulation of JAK–STAT pathway activity also led to 
competitive interactions in the wing and eye imaginal discs of 
Drosophila (Rodrigues et al., 2012). The JAK–STAT pathway 
has been involved previously in the regulation of growth and 
tissue size (Arbouzova and Zeidler, 2006; Li, 2008). Similarly 
to Myc, down-regulation of JAK–STAT in a subset of cells led 
to their elimination by apoptosis. On the contrary, STAT hyper-
activation produced supercompetitors that grow at the expense 
of the surrounding cells. Yet, the competitive interactions in-
duced by JAK–STAT modulation were independent of Myc, 
Hippo pathway, Wg, and ribosome biogenesis. Moreover, JNK 
was not activated in StatE92 mutant clones, whereas elimina-
tion of wt cells by STAT hyperactivated cells required the 
apoptotic gene hid.

Finally, other pathways have been related to cell competi-
tion, notably through their context-dependent effect on epithe-
lial cell extrusion. Yet, these phenomena differ from classical 
cell competition, as they do not require induction of apoptosis. 
This includes activation of Ras (Hogan et al., 2009) and Src in 
MDCK cells (Kajita et al., 2010), and Drosophila clones mu-
tants for C-terminal Src kinase (Csk; Vidal et al., 2006).

What are the cells competing for?
The similar characteristics shared by the selection processes  
described so far suggest that they share some common ground. 
Part of this could be the downstream limiting factors for which 
cells are competing (Fig. 2, Bottleneck). This hypothesis was 
suggested early on, when Minute- and Myc-deficient clones 
were shown to compete for the uptake of the Dpp morpho-
gen (Moreno et al., 2002a; Moreno and Basler, 2004). The 
competition observed upon Wg perturbation (Vincent et al., 
2011) suggests that the same phenomena occur for multi-
ple morphogens and growth factor. Indeed, elimination of  
Wg-deficient cells still occurred when surrounded by slow-dividing  
cells (Giraldez and Cohen, 2003), which suggests that Wg also  
acts downstream of the metabolism deficit (Fig. 2). In this 
framework, any mutation leading to a relative fitness deficit 
will eventually lead to reduced survival/growth factor uptake, 
thereby inducing cell death. Death could then be induced by 
the inconformity of the morphogen readout in the loser cells 
compared with their neighbors, as previously characterized for 
Dpp (Adachi-Yamada et al., 1999; Milán et al., 2001; Adachi-
Yamada and O’Connor, 2002; Gibson and Perrimon, 2005; Shen 
and Dahmann, 2005). Dpp inconformity could be detected by 
the abnormal colocalization of Brinker and its interactor dNab, 
which are normally expressed in exclusive complementary pat-
terns (Ziv et al., 2009).

Alternatively, cell competition could occur because of 
limited space and mechanical constrains. It was suggested pre-
viously that Minute- and Myc-driven competitions were re-
lated to size control, as the final size of the wings and the 
compartments undergoing competition was unaffected and 
similar to control discs (Simpson, 1979; Simpson and Morata, 
1981; de la Cova et al., 2004). This result suggests that wing 
final size is a fixed parameter, which is not affected by the  
autonomous growth rate of clones. Growth in a limited space 
could be a key parameter required to drive cell competition. 
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and myoblast city [mbc]) in winner cells for the elimination of 
Minute and scrib mutant clones, and the presence of loser cell 
fragments in winner cell lysosomes. Interestingly, scrib mutant 
engulfment was induced by the activation of the JNK pathway 
in winner cells (Ohsawa et al., 2011), which suggests a differ-
ent outcome of JNK activation depending on the cell fitness 
status. JNK activation was induced by the upstream secreted 
activator TNF/Eiger (Igaki et al., 2002; Moreno et al., 2002b; 
Igaki et al., 2009) in both winner and loser, and led to induc-
tion of PVR (the fly orthologue of the PDGF/VEGF receptor, 
an engulfment factor) in the winner cells (Ohsawa et al., 2011). 
Yet, loser cell engulfment is probably not sufficient to explain 
the distribution of apoptotic cells at the periphery of clones. 
Indeed, blocking apoptosis by overexpressing the baculovirus 
protein p35 was sufficient to block engulfment, suggesting that 
it acts downstream of apoptosis (Li and Baker, 2007). More-
over, a recent study failed to reproduce the key experiments 
demonstrating the requirement of engulfment genes in winner 
cells (Lolo et al., 2012). Lolo and colleagues showed instead 
that engulfment was only required for the elimination of already 
delaminated cells and was mostly performed by macrophages, 
therefore reopening the question of which mechanism drives 
loser death at clone boundaries (Lolo et al., 2012, 2013; Fig. 3 B). 
This controversy could simply point to the existence of multiple 
mechanisms responsible for loser cell elimination. For instance, 
JAK–STAT signaling was also required in wt cells to eliminate 
scrib mutant clones independently of Hippo signaling (Schroeder 
et al., 2012). Alternatively, polarity-deficient cells could also be 
eliminated by the secretion of Eiger from circulating hemocytes 
(Cordero et al., 2010).

Another alternative hypothesis could lie in a short-range 
diffusible signal secreted by winner cells and required to induce 
loser cell elimination (Fig. 4 A, diffusible killing signal). In Myc 
and JAK–STAT supercompetition assays, wt cell elimination 
was observed several cell diameters away from winner clones 
(de la Cova et al., 2004; Rodrigues et al., 2012). This could be 

intrinsic tumor suppression, as Sparc overexpression did not 
prevent developmentally regulated apoptosis. Moreover, epi-
static experiments showed that Sparc was activated in parallel 
with Flower. Thus, Sparc is a self-protective signal induced in 
loser cells, which could prevent inappropriate elimination of 
cells experiencing a transient fitness deficit.

These results suggest that loser cell elimination is a very 
tightly regulated cell decision event that relies on the balance 
between pro-loser signals (e.g., flowerlose) and protective signals 
(e.g., Sparc). Moreover, the characterization of Flower and Sparc 
suggests the existence of a bona fide cell fitness comparison 
pathway acting downstream of several fitness modulators. Yet, 
Flower and Sparc expression patterns are not sufficient to fully 
comprehend loser cell elimination, as apoptosis occurs mostly 
at the periphery of loser clones, while they are both expressed 
homogenously throughout the clone. These observations reveal 
the existence of downstream events required for loser cell elim-
ination that are based on winner/loser interactions.

Downstream events leading  
to loser elimination
In the early descriptions of Minute-induced competition, inves-
tigators noticed that competition occurred only in cells directly 
contacting Minute+/+ cells (Simpson and Morata, 1981). Later 
on, it was confirmed that apoptosis was mostly observed at the 
periphery of loser clones (Li and Baker, 2007; Ohsawa et al., 
2011). Similarly, apoptosis was only observed at the periph-
ery of flowerlose-expressing cells (Rhiner et al., 2010). These 
observations suggest the existence a winner/loser contact– 
dependent induction of death that acts downstream of loser fate 
induction (here marked by flowerlose). One explanation could be 
the requirement of loser cell engulfment by winner cells (Li and 
Baker, 2007; Ohsawa et al., 2011; Fig. 3 A). This is supported by 
the requirement of engulfment-specific genes (the actin regula-
tors WASP and draper, phosphatidylserine receptor [PSR], and 
the phagocytosis genes engulfment and cell motility [ELMO], 

Figure 3.  Different scenarios regarding 
the requirement of loser cell engulfment.  
(A) Engulfment of loser cells (green) by win-
ner cells (purple) is required for their elimina-
tion. Engulfment is induced by JNK activation 
in winner cells, which in turn activates the  
engulfment-specific gene PVR. Engulfment also 
requires the presence of WASP, Draper, PSR, 
ELMO, and Mbc. Winner cell lysosomes con-
tain fragments of loser cells (green particles). 
(B) Alternatively, engulfment is not required 
for loser cell elimination, but only for the 
clearance of already delaminated apoptotic 
corpses. This is achieved by macrophages 
(blue) through Draper activation and, poten-
tially, WASP.
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could be activated in the winner cells by the recognition of 
Flowerlose and/or the absence of Flowerubi in the neighboring 
loser cells (Fig. 4 B). In this framework, the probability of 
eliminating loser cells would be set by the surface of contact 
shared with winner cells. Interestingly, this hypothesis could 
nicely explain the effect of compartment boundaries, which 
through increased cell tension (Landsberg et al., 2009) mitigate 
the surface of contact shared with the cells across the bound-
ary, and could reduce the probability of inducing apoptosis. In 
that respect, the abnormal shape of loser clones (high number 
of involuting cells) and the high frequency of clone fragmenta-
tion (Simpson, 1979) could accelerate loser clone elimination. 
The high degree of cell mixing could be explained by the re-
orientation of winner cell division toward dying cells (Li et al., 
2009). Alternatively, winner/loser interactions could induce 
an active cell mixing process based on adhesion regulation or 
subcellular regulation of tension machinery (Lecuit and Lenne, 
2007). A better assessment of clone shape and the relationship 
between cell topology and apoptosis could shed new light on 
the process of loser clone elimination.

Finally, loser elimination could involve a combination of 
these two models. Winner/loser contact could be required first to 
read the fitness status of the neighboring cell (through Flower), 

explained by the existence of a diffusible killing signal produced 
by winner cells (Senoo-Matsuda and Johnston, 2007). This hy-
pothesis is supported by experiments performed in S2 cells. 
Cells overexpressing dmyc induced wt cell elimination across a 
porous barrier, preventing cell contact but allowing protein dif-
fusion (Senoo-Matsuda and Johnston, 2007). Moreover, a cul-
ture medium where cells had previously undergone competition 
was sufficient to induce death on a homogenous population of 
control cells, whereas it increased proliferation of dmyc-expressing 
cells. Thus, some diffusible factors inform cells about their fit-
ness status and can induce loser cell elimination. Yet the diffusible 
killing signal hypothesis can hardly explain some early observa-
tions, including the insulation effect of compartment boundaries, 
which do not prevent protein diffusion (Zhou et al., 2012), and 
the strict requirement of contact for Minute/+ and flowerlose 
clone elimination (Simpson and Morata, 1981; Li and Baker, 
2007; Rhiner et al., 2010; Ohsawa et al., 2011). The killing sig-
nal must diffuse on very short distances and its diffusion must be 
blocked at compartment boundaries by some unknown mecha-
nisms in order to fit with these observations.

Alternatively, loser elimination could also be controlled 
by direct winner/loser interaction through unknown transmem-
brane receptors (Fig. 4 B). A contact-dependent killing response 

Figure 4.  The diffusible killing signal and the transmembrane receptor–dependent hypothesis. (A) Loser cell death is induced by an unknown short-range 
diffusing signal produced by winner cells. The killing signal (orange dots) diffuses on short range and activates apoptosis two to three cell diameters away 
from winner cells, whereas cells located farther survive (“survival”). Only cells with a fitness deficit respond to the signal (here, depicted by the presence 
of a green receptor on loser cells). The winners are in purple and the losers in green. (B) Loser cell elimination is induced by a direct contact with winner 
cells. An uncharacterized receptor in the winner cells (purple transmembrane protein) recognizes Flowerlose (Fwelose, green transmembrane protein) or the  
absence of Flowerubi and activates a contact-dependent killing signal (interaction between brown ligand and dark green receptor). The winners are in 
purple and the losers in green. (C) Combined model where winner/loser contact is required for fitness comparison (through Flower code), which then 
induces the production of a diffusible killing signal in the contacting winners. Only cells with a fitness deficit (green receptor) are sensitive to the killing 
signal. The winners are in purple and the losers in green.
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could mitigate the appearance of the fast-growing clonal popu-
lation and the expansion of a precancerous field. On the other 
hand, supercompetitive interactions could be exploited by the 
early tumor in order to kill neighboring cells and accelerate its 
expansion. This is supported by the pattern of expression of the 
loser-specific marker Sparc in the wt tissue neighboring human 
tumor (Petrova et al., 2011). Moreover, Flower knockout mice 
had a lower probability of developing skin papilloma (Petrova 
et al., 2012). These results suggest that the pro-tumor growth  
effect of cell competition is dominant, raising the question of the 
conservation of a detrimental signaling pathway. Yet, this late 
detrimental effect could be balanced by an early beneficial role 
of cell competition during development, which would help to 
build proper body plan by eliminating suboptimal cells through 
a fine-tuned error control system. Characterization of fitness 
comparison pathways in a larger set of organism would open 
exciting evolutionary prospective studies related to cell–cell 
cooperation and the onset of multicellularity.
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