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Abstract

Network neuroscience represents the brain as a collection of regions and inter-regional connec-

tions. Given its ability to formalize systems-level models, network neuroscience has generated

unique explanations of neural function and behavior. The mechanistic status of these explanations

and how they can contribute to and fit within the field of neuroscience as a whole has received

careful treatment from philosophers. However, these philosophical contributions have not yet

reached many neuroscientists. Here we complement formal philosophical efforts by providing an

applied perspective from and for neuroscientists. We discuss the mechanistic status of the explana-

tions offered by network neuroscience and how they contribute to, enhance, and interdigitate with

other types of explanations in neuroscience. In doing so, we rely on philosophical work
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concerning the role of causality, scale, and mechanisms in scientific explanations. In particular,

we make the distinction between an explanation and the evidence supporting that explanation, and

we argue for a scale-free nature of mechanistic explanations. In the course of these discussions,

we hope to provide a useful applied framework in which network neuroscience explanations can

be exercised across scales and combined with other fields of neuroscience to gain deeper insights

into the brain and behavior.

Keywords: Network neuroscience; Explanation; Causality; Mechanisms

1. Introduction

In contemporary scientific inquiry both within and beyond neuroscience, the term

mechanism is often used when referring to explanations of how the brain works beyond

mere description, history, or teleology. We can describe the brain’s white matter connec-

tions (description), how these connections have changed throughout evolution or morph

during development (history), and what these connections exist to do (teleology). But the

answers to these questions do not necessarily tell us how white matter works; a mechanis-

tic explanation involves explaining how white matter conducts, processes, and sends neu-

ral signals across the brain during a particular process. While a mechanistic

understanding of white matter involves mere description, history, and teleology, it also

goes far beyond them (Craver, 2007; Craver & Darden, 2013).

Fundamentally, neuroscientists seek mechanistic explanations of how the brain functions

to support cognition and behavior. Despite that shared goal, there remains broad disagree-

ment in the field about exactly what types of explanations are mechanistic. Such disagree-

ment tends to hamper cross-disciplinary work, thereby hindering scientific advances. It is

therefore timely to consider complementary perspectives. Here we review philosophical

work and empirical evidence suggesting that much of the disagreement over the nature of

mechanisms in neuroscience could be diffused by (a) separating the notion of “mechanism”

from that of “spatial scale” such that mechanisms can be identified at many different spatial

scales, and by (b) establishing how correlative evidence can support mechanistic explana-

tions. In discussing the former, we summarize a working definition of mechanism that is

independent of scale. By scale here, we mean the size of the system’s components. In dis-

cussing the latter, we review evidence that mechanistic explanations can be used to provide

predictions of a system’s structure or function, and we explain how such predictions can be

based on either correlative evidence or necessitative evidence (unfortunately often confused

with causal evidence). A definition of mechanism that is independent of both scale and the

type of evidence will together allow us to link neurons to regions, regions to whole brain

dynamics, dynamics to cognition, and cognition to behavior.

In working through these preliminaries, we seek to lay down a foundation for understand-

ing the specific contributions of the emerging field of network neuroscience to the broad

and general goals of neuroscientific inquiry. Network neuroscience stems from a thoughtful

integration of the mathematics of network science with the biological field of neuroscience
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in an effort to better understand the physical substrate and consequent function of the mind.

The underlying assumptions of the approach are that the brain can be meaningfully sepa-

rated into units (network nodes) with well-defined interactions (network edges), and that the

pattern of interunit interactions (network topology) enables the rich complex dynamics

observed in the brain to support cognitive function. Although we primarily focus on network

neuroscience at the macroscale where we the authors most frequently contribute, we also

consider the instantiation of network neuroscience across a range of spatial scales, and its

potential to offer both correlative and causal evidence. Based on this discussion, we consider

the types of mechanistic explanations that network neuroscience can offer. Before moving

forward, it is critical to note that this work is not a technical or philosophical analysis or a

reworking of scale, causality, or mechanism. Instead, we seek to elucidate how the explana-

tions of network neuroscience fit into a more explicit account of neuroscientists’ common

usage of the terms scale, causality, and mechanism by leveraging work on these topics from

the philosophy of science. Here, our main goal is to show how network neuroscience can

provide evidence for mechanistic explanations of the brain, going beyond mere description

of the brain’s connections and topology, primarily by clarifying the distinction between an

explanation and the evidence supporting that explanation.

2. What is network neuroscience?

Network neuroscience is an emerging field whose conceptual frameworks, mathematical

underpinnings, and applications would require a book (Sporns, 2010) or several books (Bas-

sett & Khambhati, 2017; Bianchi, 2012; Phillips & Garcia-Diaz, 1981) to describe compre-

hensively. Indeed, a full introduction to network neuroscience is beyond the scope here, and

it has been covered well elsewhere (Sporns, 2010). Here we provide a succinct and non-

comprehensive description that will allow a reader to understand the basics of the field and

to evaluate our later arguments and examples. Network neuroscience posits that the brain

can be usefully represented as a collection of two types of items: (a) nodes, which are typi-

cally regions of the brain, groups of neurons, or individual neurons, and (b) edges, which

can either be structural connections, typically in the form of white matter or axons, or statis-

tical dependencies, typically in the form of correlations in regional activity across time (Bas-

sett & Sporns, 2017; Newman, 2010). We can decompose this basic network into smaller

subnetworks that we call communities or modules; each module is composed of nodes that

are more tightly interconnected to one another than to nodes in other modules. The division

of nodes into modules allows us to measure the role that each node plays in the network

topology. One particularly interesting statistic is the participation coefficient, which measures

how evenly spread a node’s connections are across modules. A node with a high participa-

tion coefficient is called a connector hub (Fig. 1). Specific analyses of the participation coef-

ficient and other network statistics are necessarily descriptive in nature. However, as we will

go on to explain, the network model of the brain and how it varies across individuals can

be leveraged and combined with theory, computation, and other sources of data, such as

genetics, neurology, and behavior, to test mechanistic models of brain function.
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3. What is a mechanistic explanation in neuroscience?

To contextualize this discussion, we note that the philosophical debate concerning

mechanisms is extremely robust. Here we simply summarize a working definition that we

view as having a broad consensus between and among philosophers and neuroscientists.

We restrict ourselves to features of a mechanistic explanation that are most immediately

relevant, but broader and deeper accounts of the topic are well established in the philoso-

phy of science (Craver, 2007). For further details, we point interested readers to relevant

Fig. 1. A network model of functional relationships between brain regions at the large scale in humans. Each

of the 400 brain regions is represented as a network node, which in turn is indicated in this figure by a col-

ored sphere. Each functional relationship between two brain regions is represented as a network edge, which

in turn is indicated in this figure by a colored line. (A) Here, color denotes the assignment of brain regions to

putative functional modules that support cognition. Anatomical locations of modules are represented by pro-

jecting the color of regions onto the cortical surface of the brain. (B) Here, color denotes the strength of the

participation coefficient, a measure of a node’s connectivity to many different modules. Nodes with high par-

ticipation coefficients are called connector hubs. In both of these layouts, nodes are treated as repelling mag-

nets connected by springs; in this physical representation, nodes that are tightly connected cluster together.

Note that connector hubs cluster together at the center of the network, indicative of their role in integration

and coordinating brain connectivity across modules.
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and important debates concerning computational mechanisms (Miłkowski, 2013), the

existence of mechanisms in dynamic complex systems (Chemero & Silberstein, 2008),

and the question of whether mechanisms are necessarily linked to scientific realism

(Colombo, Hartmann, van Iersel, Models, & Coherence, 2014; Fig. 2).

3.1. A neuroscientist’s working definition

To construct a mechanistic explanation of a system exhibiting a particular phe-

nomenon, one must decompose that system into its relevant parts and explain how they

are organized as well as how they interact to produce the phenomena (Colombo et al.,

2014; Craver & Bechtel, 2007; Machamer et al., 2000). A mechanistic model explains a

system’s phenomena in virtue of its parts, their operations, and their organization, which

can together produce the phenomena that is to be explained via a set of orchestrated

interactions (Bechtel & Abrahamsen, 2005). Such explanations offer a mechanism that

must do the work in a causal way (Craver, 2007, 2016), rather than arriving at the state

of “work done” via a set of correlative relations or temporal sequence of events. Finally,

this explanation must allow for an accurate manipulation of the system (Colombo et al.,

2014). Consider a dirt bike.1 Force is created by the combustion in the motor and enacted

upon the crankshaft, which is connected to a front sprocket; via a chain, the force is

transferred onto the rear sprocket, which is connected to a hub, which, via spokes, is con-

nected to a rim, which has a rubber tire mounted in it, which has knobs that grip dirt. In

this explanation, we describe the functional role of entities and causal mechanistic rela-

tions between them (e.g., force is transferred between the two sprockets via a chain),

rather than merely describing physical characteristics of the entities (i.e., the sprockets

are toothed aluminum wheels). We know what a dirt bike was built to do (its teleology:

traverse dirt) and how it does so. Moreover, we can determine which part is broken based

on particular behaviors; if the front sprocket is spinning but not the rear sprocket, the

chain is likely broken but the motor is likely intact.

Neuroscientists in practice tend to adopt these requirements while defining a mecha-

nism. Across spatial scales of inquiry, mechanistic explanations in neuroscience answer

the question “How does the brain work?” in a similar manner to how we would answer

the question “How does a dirt bike work?” We will consider two examples: one at the

large scale, and one at the small scale. The first example is that of word learning in cog-

nitive neuroscience. Wernicke’s area has been associated with the comprehension of

speech, whereas Broca’s area has been associated with the production of speech. Humans

require both areas to learn a new word and to employ it, and therefore the physical con-

nection that allows the two regions to communicate, the arcuate fasciculus, is crucial

(L�opez-Barroso, 2013). Macaques, who do not have the human capacity for spoken lan-

guage, have an arcuate fasciculus, but it is not left-lateralized, and it is smaller than it is

in humans (Eichert et al., 2019). Damage to this connection is followed by an inability to

learn new words, and specific word learning deficits can be traced to damage of Broca’s

area, Wernicke’s area, or the arcuate fasciculus, establishing that these areas are neces-
sary for the function. Moving beyond necessity to correlative evidence, recent studies

1276 M. A. Bertolero, D. S. Bassett / Topics in Cognitive Science 12 (2020)



have demonstrated that humans with more robust white matter tracts in the arcuate fasci-

culus exhibit better language learning abilities (Wong et al., 2011), and this pathway

strengthens during the development of language (Broce, Bernal, Altman, Tremblay, &

Dick, 2015). Together, these correlative and necessitative results are consistent with (but

do not prove) the casual mechanistic explanation that the arcuate fasciculus transfers

information during word learning.

It is important to note that this explanation glosses over, but depends on, smaller scale

mechanistic explanations of neural coding and communication. At this smaller scale, our

second example is that of navigation. Different types of cells in the medial entorhinal

cortex represent different aspects of navigation via the mechanism of feature detection of

the sensory cortices. Grid cells respond to the animal’s location in the environment, bor-

der cells express the animal’s proximity to geometric borders, speed cells reflect the run-

ning speed of the animal, and head direction cells indicate the orientation of the animal

relative to landmarks in the environment (Rowland et al., 2016). The mechanism here is

a neural mapping of the animal moving in the world.

Note that in the two examples of mechanistic explanations we just discussed, there

existed a notion of causality, even though necessity, not causality, is observed. Scientists

in general, including neuroscientists, typically emphasize causality in mechanistic expla-

nations (Salmon, 1984; Woodward, 2005). Similar to the manner in which a chain does

the work of transferring force, the arcuate fasciculus does the work of transmitting infor-

mation during word learning, and grid cells do the work of encoding location during nav-

igation. Yet despite the fact that notions of causality rightly accompany notions of

mechanism, what neuroscientists unfortunately often mean when they say causality is just

necessity. If a region of cortex is active during a cognitive process, and damage to that

region impairs that cognitive process, we know that that region is necessary for that cog-

nitive process; inaccurately, the region is also sometimes described as the cause of that

cognitive process. It is critical to acknowledge that the notion of necessity is independent

from the notion of causality, and a necessary component of a process need not be a

mechanism. For example, if the only evidence that the arcuate fasciculus transmits infor-

mation during word learning was that damage to it impairs word learning, we would not

have a mechanistic model, just a necessary relationship between the arcuate fasciculus

and word learning.

To have a mechanistic model, we need multiple lines of evidence, both from establish-

ing necessity and finding correlative evidence, as described earlier, because both lines

provide evidence for a causal mechanism, even though neither is identical with it. Return-

ing to the dirt bike, it is one thing to know that the chain is necessary for the rear wheel

to spin. But so is the engine, the throttle, et cetera. It is critical to know that the speed of

the chain correlates with the rotational speed of the rear wheel. We need both to have a

casual mechanism. Finally, it is important to realize that ofttimes descriptions are a key

component of a mechanism. It is not trivial to know that the front and rear sprockets are

connected via a chain, just as it is not trivial to know that Broca’s and Wernicke’s are

connected via the arcuate fasciculus.
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3.2. Where our difficulties arise

Despite our quest for mechanisms, we as neuroscientists do not often employ technical

definitions of them. We seem to operate on some common and unspoken knowledge about

what constitutes a mechanism. We know one when we see one; or, at least when we want

to. However, this approach tends to progenate misunderstanding, bias, and confusion. An

important antidote is to appreciate how mechanistic can be defined, and how that definition

might be distinct from notions of necessity and the spatial scale at which we each work.

Drawing on efforts in the philosophy of science as well as recent advances in network neu-

roscience, we summarize a notion of mechanism that is supported by both correlative and

necessitative evidence and allows us to link work across scales and methods.

3.2.1. Causality
We aim to distinguish a mechanistic explanation from the source of evidence for it. To

do so, we must first make the distinction between necessity and causality, which is a fea-

ture of a mechanistic explanation. Although we do not attempt to define causality pre-

cisely here, knowledge of necessity is certainly not knowledge of causality. And even

though causality is a required feature of a mechanistic explanation, a mechanistic expla-

nation (or model) can be supported by either correlative or necessitative evidence, or

both. In other words, a mechanistic explanation is a model that we posit to explain a sys-

tem, and then we seek to obtain evidence of various kinds to support that model and to

confirm its verity. The distinction between an explanation and the evidence supporting

that explanation is well-known to philosophers (Bechtel, 2008, 2012; Craver & Bechtel,

2007; Craver & Darden, 2013), but it is less broadly appreciated by neuroscientists. Of

course, as we outlined earlier, mechanistic explanations rely on necessary relationships,

and necessitative evidence is valuable. However, necessity, on its own, is not causality,

and correlative evidence can be just as valuable in supporting a mechanistic model.

In neuroscience, an emphasis on so-called causal evidence has motivated lesion and

ablation studies, as well as stimulation and optogenetics studies. While important, such

studies are less inherently valuable in and of themselves than they are when performed

explicitly to test a mechanistic explanation that has been formally constructed from dif-

ferent types of evidence. For example, consider a thought experiment in which we

destroy a particular brain region that functional neuroimaging has implicated in a particu-

lar cognitive process. Because the animal would no longer be able to engage in that cog-

nitive process, one might (wrongly) say that we have uncovered evidence that that region

causes that function. However, this is where neuroscientists equating necessity with

causality can lead to failure; it is entirely possible that that region is in fact upstream of

the region actually performing the relevant computation, and thus the lesion study pro-

vides some evidence but not sufficient evidence for a causal mechanistic explanation. In

the parlance of our dirt bike analogy: If a dirt bike chain breaks and the rear wheel stops

turning, we cannot with certainty infer that the chain is generating force. Nor should we.

One must measure the whole system to prevent inaccurate inferences, and network

approaches are one way to do exactly that.
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As an example, consider a model in which connector hubs integrate information and

maintain modular processing in the brain. One could perform a between-subjects analysis

to demonstrate that, when a network has strong connector hubs, the network is more

modular and cognitive performance is higher (Bertolero, Yeo, Bassett, & D’Esposito,

2018). Moreover, when connector hubs are damaged, modularity decreases (Gratton

et al., 2012) and cognitive deficits are widespread (Warren et al., 2014). Such correlative

evidence, particularly when potential confounds are modeled quasi-experimentally (Mari-

nescu, Lawlor, & Kording, 2018) and coupled with necessitative studies can strongly

serve to support a mechanistic explanation. While lesion analyses demonstrate necessity,

network analysis measures the entire system; both can provide evidence in support of a

mechanistic model, particularly when combined. In the final section, we describe how

this can occur in greater detail.

Obtaining correlative evidence for mechanistic explanations remains critical for the

continued advancement of science and may play an increasingly important role in neuro-

science for two reasons. First, the types of data available have changed fundamentally in

their nature. Concerted efforts aligned with federal and international funding priorities

have culminated in enormous repositories of brain, behavior, and genetic data from thou-

sands of individuals (Okbay et al., 2016; Van Essen et al., 2013). Such data will be

invaluable in constructing descriptive explanations, and in providing correlative evidence

for mechanistic explanations. Indeed, cognitive scientists now frequently go beyond the

analysis of small datasets and well-controlled studies, instead analyzing large and com-

plex observational data (Griffiths, 2015). In meeting the opportunities that these new data

bring, it may prove useful to learn from our colleagues in astronomy and astrophysics

who generate large-scale observations from noisy data viewed from far away, and then

use those observations to inform smaller scale laboratory experiments (Griffiths, 2015).

Mechanistic models can be built from the large-scale observations and then confirmed in

laboratory experiments that exert greater control over the system (Craver, 2016; Zednik,

2019). We envision such integration between large-scale data analysis and small-scale

laboratory experiments to become increasingly prevalent and fruitful in neuroscience.

The second reason that correlative evidence for mechanistic explanations may play an

increasingly important role in neuroscience is that many phenomena—across all domains

of biology—appear to be driven by network-level processes (Alon, 2007; Zednik, 2019).

Understanding and manipulating causal structures in such networks is an important area

of ongoing research. Yet finding causality in any system is difficult, but defining causality

in networks, isolating causal relations in networks, and experimentally testing causal pro-

cesses via finding necessitative relationships in networks is extremely difficult (Noual,

2016). To offer a bit of intuition, one simple difficulty lies in the question of whether

specific edges or sets of edges within the network are the true driving force, or whether

the mechanism is in fact an emergent property of the network as a whole. Determining

the answer to this question might require a combinatorially large set of experiments,

which could be impractical. A second notable difficulty lies in the fact that many net-

works associated with biological phenomena are not simple tree-like structures, with lin-

ear paths along which a causal chain can be identified, but instead contain non-trivial
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clustering in addition to complex looped structures and cavities (Betzel & Bassett, 2018;

Betzel, Medaglia, & Bassett, 2018; Reimann, 2017; Sizemore, Koyejo, & Poldrack,

2018). While it remains important to posit causal mechanistic models of network interac-

tions, the predictions of those models can be best evaluated in large correlative analyses

of expansive datasets; distinct necessitative manipulations can instead be used to probe

highly specific and constrained aspects of the network at a single time, informed by the

large-scale correlative evidence.

Finally, some have questioned the value of network neuroscience models, and particu-

larly the correlative nature of models that describe the statistical dependency between

activity time courses of two regions (Craver, 2016). However, it has been well argued

that even though functional connectivity is not itself a mechanism, models of functional

connectivity can provide evidence for the mechanisms that cause those correlations (Zed-

nik, 2019). In other words, network neuroscience models of functional connectivity can

provide rough mechanistic approximations of the brain’s component parts and interactions

at a large scale (Zednik, 2019). A network edge defined by a correlation can do causal

mechanistic work; and a causal mechanism can predict the presence of a correlation,

which can then be observed in empirical data. Moreover, network neuroscience explana-

tions are most satisfying when they move beyond a static and mere description of the net-

work’s composition and organization. Ideally, such models test mechanistic explanations

of brain function by also levering simulation and dynamical models (Bertolero, Yeo, &

D’Esposito, 2015, 2017; Zednik, 2019), individual differences in network composition

(Bertolero et al., 2018; Shine, 2019), and lesion analyses of the network (Gratton et al.,

2012; Warren et al., 2014).

In summary, mechanistic models posit causal relationships between the organization of

the system and the phenomena to be explained. However, causality in the brain is quite

opaque, and we typically inaccurately conflate causality and necessity in neuroscience.

Moreover, correlative evidence from network models can certainly bear on the validity of

a mechanistic explanation that includes causal relationships, despite the fact that the mod-

el’s organization and interactions can be quantified from correlations. In particular, this

approach is fruitful when combined with necessitative analyses. Thus, the network per-

spective is increasingly critical to explaining brain function, as the global analyses that

can leverage large datasets can inform and constrain interpretations of more localized

causal manipulations.

3.2.2. Scale
When investigating a given system through the lens of science, we often either explic-

itly or implicitly choose the scale at which we think we can gain a mechanistic under-

standing. Ca2+ ions exist at a scale that might appear to be useful for gaining a

mechanistic understanding of how neurons fire and thereby release neurotransmitters

(Craver, 2007; Katz & Miledi, 1968). Yet this scale does not address the molecular com-

position and function of the active zone of a presynaptic nerve terminal, which allows for

the synaptic vesicle exocytosis that occurs when neurotransmitters are released (Shin,

2014; S€udhof, 2012). Similarly, this scale does not address the cognitive context that can
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explain why neurons fire in a particular spatiotemporal pattern. In fact, mechanistic expla-

nations exist at each of these scales separately; no scale is privileged in its potential to

offer a mechanistic explanation (Craver, 2007).

Returning to the dirt bike analogy, force being transferred from the front sprocket to

the rear sprocket via the chain is a relatively high-level explanation that does not involve

the individual links of the chain or the number of teeth on the sprocket, which determine

how force is transferred, but it is also a lower level explanation than one addressing how

the chassis and engine work together to propel the bike across dirt. Despite differences in

scale, all three explanations can be mechanistic explanations. Similarly, an explanation of

brain function involving multiple brain regions communicating via white matter tracts

and coordinated activity would not necessarily be any less mechanistic than an explana-

tion involving multiple cortical neurons communicating via axons and synapses. For

example, consider explanations of various features of visual perception. At a microscale,

primary visual cortex—the earliest cortical area associated with the perceptual of visual

stimuli—contains neurons that temporally coordinate their activity patterns to encode the

orientation of a stimulus (Gray & Singer, 1989). At a macroscale, information travels

between the visual cortex and the posterior parietal cortex (Andersen, Snyder, Bradley, &

Xing, 1997), the latter mediating selective attention to motion by modulating the effective

connectivity from early visual cortex to the motion-sensitive areas in visual cortex (Fris-

ton & B€uchel, 2000). In both cases, the functional mechanism underlying the cognitive

process lies in neurons, or groups of neurons, communicating via axons and coordinated

activity.

The key differences are (a) the scale of the explanation, which does not inherently

make an explanation more or less mechanistic, and (b) the specific function that we wish

to explain (orientation tuning or motion detection), which can determine the scale of

explanation that is most appropriate. While this distinction has been noted by philoso-

phers (Craver, 2007), neuroscientists tend to favor the scale of their work as the scale

with strongest mechanistic explanations. This bias is in some sense quite rational; neuro-

scientists should work at the scale they believe is the most fruitful, and a good explana-

tion at one scale need not derive from a good explanation at another scale (Craver,

2007). However, a key problem with hegemony of a single scale is that good mechanistic

explanations in neuroscience can also integrate across all scales, interdigitating data

across various methods (Craver, 2007). Thus, we must be open to explaining the brain at

each scale mechanistically, and also deriving explanations of brain mechanisms that

bridge phenomena across two or more scales.

The notion that no specific scale of scientific investigation is privileged in terms of its

capacity to provide a mechanistic explanation is also broadly understood across a range

of disciplines. But perhaps the discipline that most cleanly discusses the notion—and has

the longest history of utilizing it to understand our world—is the field of physics

(Machta, Chachra, Transtrum, & Sethna, 2013). General relativity offers fundamental

laws that are required to provide mechanistic explanations on the cosmological scale.

Newtonian mechanics offers fundamental laws that are required to provide mechanistic

explanations on the scale of phenomena observable by the naked human eye. Quantum
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mechanics offers fundamental laws that are required to provide mechanistic explanations

on the atomic scale. But the specific form of the mechanism or explanation important for

one scale is irrelevant at other scales. Scales are related to one another and yet mechanis-

tic explanations at one scale can be independent of those at another scale; macroscopic

observables at a larger scale show weak dependence on microscopic details at any of the

scales below (Cardy, 1996).

This perspective is particularly useful when we consider the types of mechanistic

explanations that we can seek in neuroscience. Reduction and coarse-graining—which we

often use to move up scales from individual cells to brain regions—do not either increase

or decrease our potential to unearth mechanisms. Instead, they extend the spatial or tem-

poral extent over which the mechanistic explanation holds true, even if one does not

reduce to the other, similar to Newtonian and quantum mechanics. Take spatial naviga-

tion. As Craver puts it: “The influx of Ca2+ ions (atoms) through the NMDA receptor

(molecules) initiates the sequence of events leading to LTP (cells), which is part of the

mechanism for forming a spatial map in the CA1 region (organs). Map formation is part

of the explanation for how the mouse (whole organism) navigates through familiar envi-

ronments (ecosystems) and among conspecifics and predators (societies)” (Craver, 2007).

The microscale, mesoscale, and macroscale explanations differ in their content and sup-

porting evidence, but all remain mechanistic in their type, despite the fact that they do

not easily reduce to one another. Instead, they all constrain the ways in which we think

about the mechanisms underlying the behavior.

4. Network explanations at the largest scale

At the largest scale, network science models the brain as approximately 100–1,000
regions that are connected either physically by white matter tracts or statistically by

shared information between regional time series (Bassett & Sporns, 2017). It is therefore

particularly relevant to consider the question of how such large-scale network models can

offer high-level mechanistic explanations of how the brain works. This question has been

extensively covered by philosophers (Bechtel, 2017; Colombo & Weinberger, 2018 Jun;

Craver, 2016; Rathkopf, 2018). Thus, what we seek to do here is to offer a practical per-

spective, with recent and prominent examples from the field. We will constrain ourselves

to two broad questions: (a) why we should view network neuroscience as offering both

parsimonious mere descriptions and mechanistic explanations of brain function, and (b)

how can we decipher between the two, given the above definition of mechanism.

A particularly notable strength of large-scale network neuroscience lies in its ability to

study every region of the brain in a single cohesive model, providing intuitions for the

functions of complete circuits. A disadvantage is that much local information about the

processes that occur or the structures that exist within a node are largely hidden. Such

internal processes and structures are instead considered by models constructed at lower

scales, where—particularly in non-human species—one can measure individual neurons
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in a region, oblate neurons in that region, and genetically modify the organism to alter

the structure of that region to probe local functions.

To further appreciate the utility of network science, it is useful to contrast the types of

explanations it can offer with the types of explanations offered by other approaches and to

the assess which types of explanations neuroscientists find satisfying. Let us consider cogni-

tive neuroscientists as an example. Typically, they might seek answers to questions such

as: How does a brain region (or a set of brain regions) execute a particular cognitive pro-

cess? For example, how does the hippocampus store and represent spatial information?

How does the orbital frontal cortex represent value? Now imagine that—for every cognitive

process—we have obtained a satisfactory mechanistic explanation. When someone asks us

how the brain works, do we simply hand them this list of so-called explanations? Such a

list would be a valuable start, but a set of independent mechanistic explanations in different

conceptual languages of disjoint processes cannot fully explain how the brain, as a whole,

works. Ideally, we wish to have a language in which to comprehend the function of the

entire brain, and this is explicitly what network science has the potential to offer.

Before explaining how network neuroscience can provide mechanistic explanations of

the brain, it is important to note that network models at the large scale can offer simpli-

fied mere descriptions of the above brain–behavior relationships. A particularly notable

simplification is in a study that reports a significant link between the presence of a pattern

of whole brain connectivity within each individual to many behavioral (working memory

capacity, spatial reasoning) and demographic (education, income, IQ, life-satisfaction)

measures in those individuals using canonical correlation analysis (Smith et al., 2015).

Measures that were correlated with the presence of the connectivity pattern tended to be

positive personal qualities or indicators (e.g., high performance on memory and cognitive

tests, life satisfaction, years of education, income). Measures that were anticorrelated with

the presence of this pattern tended to be negative personal qualities or indicators (e.g.,

those related to substance use, rule breaking behavior, anger). This set of findings sug-

gests that there may be a general pattern of healthy brain function associated with a

specific pattern of network-level connectivity. In the same vein, network neuroscience

models have the ability to reduce the complexity of descriptions of how mental illnesses

emanate from the brain, and to discover dimensions of mental illnesses that neither regio-

nal studies nor behavioral analyses can uncover (Xia, 2018). Network approaches have

proven useful in discovering biotypes that cannot be differentiated solely on the basis of

clinical features, but that are associated with differing profiles of clinical symptoms or

treatment response (Downar et al., 2014; Drysdale et al., 2016). Here, the strength of a

network model lies in the fact that it can describe connectivity patterns that map in a

non-trivial but still simple way to all behaviors. Such models provide striking descrip-

tions, but not explanations, of brain function (Hommel, 2019). To move from description

to explanation requires that the description offer evidence for a mechanistic model; for

example, if the model predicted the above correlations, then the correlations would be

evidence in favor of the model.

In addition to offering parsimonious descriptions, network models at the large scale

can be used to generate and test macro-level mechanisms of how the brain works. Note
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here that much of the evidence involves correlations in empirical data or the results of

numerical simulations. However, unlike the studies described in the previous sections,

what we empirically or in silico observe about human brain networks is tested against a

mechanistic model, not presented in isolation as a mere description. Consider a candidate

mechanistic explanation of global brain function, which posits that some regions are

informationally encapsulated, whereas other regions are informationally integrated (Fodor,

1983). Let us suppose that the function of a given module (A) is largely independent of

other modules. Then, we would expect to observe that the activity of module A would

not increase when other modules were active. If instead we were to observe that the

activity of module A increases in proportion to the number of other modules active, we

would conclude that information from these other modules is relevant to module A, caus-
ing an increase in computational complexity and thus activity. In this case, we would

infer that information processing in module A is unlikely to be encapsulated (Fodor,

1983). In our model, regions whose activity scales with the number of modules engaged

in a task are likely to be executing computations that are more complex, requiring the

integration of information across modules or the tuning of connectivity across modules.

Recently, we explicitly tested this model in empirical fMRI data from 10,000 experi-

ments and 83 different cognitive tasks ranging from simple finger tapping to working

memory. A network is constructed in which brain regions are represented as nodes and

correlations in regional activity are represented as network edges. Modules are defined as

groups of brain regions with dense interconnectivity. We determined how activity within

each module varied with the number of modules engaged in each task. We report that

modules composed of primary regions implicated in vision, sensation, and motion do not

increase in activity in proportion to the number of modules involved across the 83 tasks.

In light of our model, this behavior suggests that those modules are informationally

encapsulated (Bertolero, Yeo, & D’Esposito, 2015). In contrast, frontoparietal and atten-

tion modules, which is where most connector hubs are located, do increase in activity in

proportion to the number of modules involved across the 83 tasks. In light of our model,

this behavior suggests that these modules are not informationally encapsulated but instead

perform computationally demanding functions when more modules are engaged in a task.

The data support the notion that modules with many connector hubs integrate information

or tune whole brain connectivity (Bertolero et al., 2015).

In this example, empirical evidence and a network model are used to test one of the

most debated hypotheses in neuroscience and philosophy of mind (Colombo, 2013;

Fodor, 1983). The network represents correlations in regional activity. Moreover, the

mechanistic model makes a correlative prediction: that the level of activity in frontopari-

etal and attention modules is positively correlated with the number of modules engaged

in the task, whereas the level of activity in sensorimotor modules is not correlated with

the number of modules engaged in the task. Despite the fact that both data and model

involve correlations, the explanation of how the network functions is mechanistic, with

connector hubs doing the mechanistic work of integrating information and tuning whole

brain connectivity, which allows other modules to remain relatively independent.
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A potential mechanistic explanation that is more local but still quite global seeks to

address the function of the unencapsulated connector hubs. Connections from such

regions are relatively evenly spread across all modules, making them ideally located to

tune connectivity between and among other modules (Guimer�a et al., 2006). In a series

of cross-subject analyses, including a quasi-experimental structural equation model (Mari-

nescu et al., 2018), a recent study we conducted offered evidence that these nodes do

indeed tune (borrowing the term from its common use at the neuronal scale; Sakai, Naya,

& Miyashita, 1994) the connectivity of other networks, thereby maintaining the network’s

modular structure (Bertolero et al., 2018). Critically, the more connector hubs were able

to tune the network to be modular, the better the subject performed on a range of 50 dis-

tinct cognitively demanding tasks. We then gathered merely descriptive experimental evi-

dence suggesting that connector hubs are densely interconnected to each other, forming a

diverse club (Bertolero, Yeo, & D’Esposito, 2017). Moreover, when connector hubs are

damaged, modularity decreases (Gratton et al., 2012) and cognitive deficits are wide-

spread (Warren et al., 2014). Then, in a series of numerical experiments, we simulated

evolutionary algorithms to obtain evidence that this club is only naturally selected if the

cost function balances modularity and efficient integration (Bertolero et al., 2017). This

result evidences the previously discussed mechanistic explanation that these connector

hub nodes coordinate connectivity between modules to maintain the modular structure of

the brain while also supporting integration. Note here that machine learning in the form

of a deep neural network was used to relate connector hub function to cognitive perfor-

mance across individuals. But such machine learning algorithms do not constitute mecha-

nisms on their own; to reach toward mechanism, we must posit and test a mechanistic

model. This work posited a mechanistic model that predicted the ability of connector hub

function to predict cognition, which was confirmed via machine learning. In sum, we

gathered correlative, necessitative, and description evidence to support a mechanistic

model.

The tuning function of connector hubs can be contextualized as a network science lan-

guage explanation of known mechanisms of cognitive control, which is a capacity

observed mostly in frontoparietal connector hubs to exert top-down influence over other

areas of cortex. Recent evidence supports this putative mechanism by demonstrating that

motor skill learning induces a growing autonomy of sensorimotor systems accompanied

by a decrease in the activation of cognitive control hubs. Early in learning, the visual and

motor subnetworks are highly interconnected, and the connector hubs in cognitive control

areas are highly active, potentially tuning and parsing connectivity between modules.

Later in learning, the hubs are no longer required and the modules become disconnected

and more autonomous. The faster this occurs, the faster the individual learns. Several

recent studies across many different laboratories now provide additional evidence associ-

ating non-primary regions (especially but not solely in frontoparietal cortex) with both

network reconfiguration and behavior on tasks demanding higher order cognitive function

(Alavash, Hilgetag, Thiel, & Giessing, 2015; Braun et al., 2015; Gerraty & B€uchel, 2018;
Pedersen et al., 2018; Shine et al., 2016). The capacity for frontoparietal regions to enact

this network-level control has been posited to stem from the specific pattern of white

M. A. Bertolero, D. S. Bassett / Topics in Cognitive Science 12 (2020) 1285



matter connections emanating from those regions to the rest of the brain (Gu, 2015).

Specifically, using network control theory (Kim et al., 2018; Tang & Bassett, 2018), the

regions of the brain predicted by their pattern of white matter connections to most easily

induce difficult state transitions in system function are located in frontoparietal areas. In

further support of this hypothesis, individuals whose brains have greater network control-

lability (as calculated from the theory parameterized by their unique white matter connec-

tivity) also have greater cognitive performance in general (Tang & Bassett, 2017) and

cognitive control in particular (Cornblath et al., 2018; Cui et al., 2018). Collectively,

these studies support the notion that network control, instantiated on human white matter

connectivity, provides a mechanistic explanation for cognitive control, and its associated

influence on the activity and connectivity of other areas.

5. Bridging scales with networks

Finally, it is critical to note that networks form a single and natural mathematical lan-

guage with which to frame questions within and across multiple scales of neural function.

The benefit of framing mechanistic questions with this math is that the units involved are

clearly specified, the edges between units within a scale are the channels along which

work can be done, and the edges between scales allow the units in one scale to do work

on the units in other scales. In other words, multiscale networks provide a scaffold on

which causal interscale dynamics can occur, allowing us to generate parsimonious multi-

scale descriptions and mechanistic explanations.

Take vision as an example: One can explain much—but not all—of vision by what

occurs in visual cortex. While artificial neural networks can reproduce some functions of

cells in visual cortex (Kriegeskorte, 2015), those functions also depend on the activity

and function of other parts of cortex. For example, vision cannot be completely explained

without also including a model of attentional inputs from frontal cortex. Yet the computa-

tional language that we use to explain the cellular functions of vision (convolutional neu-

ral networks) is not the same computational language that we use to explain the regional

functions of attention (top-down control and gating theories). The lack of a common lan-

guage in which to frame explanations across scales and functions holds the field back; we

can construct a list of such disjoint explanations, but at the end of the day they remain

just that, a list. What we would instead like to have is a set of interdigitated explanations

from which we can deduce the mechanisms by which scales and functions causally

impact one another.

Network science provides a common language with which to interdigitate explanations.

By encoding the brain as a network, we can reason about vision processes in occipital

cortex and attentional processes in frontal cortex using the same language. Moreover, we

can reason about how the regional network underpinning attentional processes in frontal

cortex can causally impact the cellular network underpinning visual processes in occipital

cortex, largely because network science has specific tools for multi-layers networks that

involve links between the layers. These interscale, interfunction connections in a
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multilayer network encoding of the brain can comprise the conduits along which work

can be done. We can model how macroscale network interactions, like connector hub tun-

ing, influence microscale interactions, like neural tuning in V1, in a single model. If,

however, the two phenomena were not translated into the same language (such as the lan-

guage of network science), this knowledge would remain out of reach.

A notable secondary benefit of the shared language is that we can begin to deduce gen-

eral principles of brain function shared across scales and functions. Perhaps cellular-level

tuning functions in visual cortex share similar mechanisms with regional-level tuning

functions that connector hubs may enact to control brain-wide connectivity. As we

described earlier, we can use the language of network science to formalize the notion that

connector hubs have the capacity to tune connectivity for integration in a modular net-

work, and this notion provides a possible mechanism for the commonly studied process

of top-down attentional control. We can speculate that neural tuning, both within visual

cortex and across the cortex, is a general principle of brain function: primary regions tune

for sensory, association, or motor information, whereas transmodal regions (here, connec-

tor hubs) tune for connectivity patterns that allow for that information to be integrated

across modular processors. By articulating explanations across scales in the same network

language, we can begin to test such speculations with the goal of discovering general

principles of brain function that exist across scales, and distinguishing them from princi-

ples that exist at only a single scale.

Fig. 2. A multiscale network model of relationships within and between scales. Multiscale networks are a

natural language in which to simultaneously model networks that exist at different scales in the brain. Here,

edges within a scale indicate interactions between those two nodes within a scale, whereas edges between

two scales indicate an interaction between those two nodes across scales. In this example, regional brain con-

nectivity exists at the macroscale, visual cortex connectivity at the mesoscale, and V1 neuronal connectivity

at the microscale. Here, the connectivity of a node at the macroscale could impact the connectivity of a node

at the mesoscale, which could impact the connectivity of a node at the microscale.
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The reasonableness and biological plausibility of interdigitated explanations are partic-

ularly salient when one considers evolution. The processes of natural selection did not

drive the evolution of single regions independently, but instead led to the formation of

the entire brain simultaneously. While visual cortex exists so that organisms can see, the

brain exists so that organisms can create offspring who have a high probability of repro-

ducing themselves. Moreover, visual cortex develops alongside and dependent on cas-

cades of neurodevelopmental processes that span the entire brain. In other words, both

visual cortex and other areas of cortex experience some of the same evolutionary pres-

sures, impacting cellular and regional scales, which could drive similar patterns of con-

nectivity across scales and across regions. The notion that shared causes can drive shared

patterns of connectivity can also provide insight as we consider neural systems across

species. As described earlier, modular connectivity patterns with a diverse club of tightly

interlinked connector hubs have been identified in the cellular network of neurons in C.
elegans as well as the regional network of areas in the human brain; it may be that this

architecture is nature’s solution to integration in a modular network.

Of course, it is important to admit that network science is not the only mathematical

language with which to describe the brain. Yet network science has marked advantages

over other options in part because of its authenticity; no metaphors are needed to link the

physical organ of the brain to the mathematics of network science. The brain is a net-

work, across species, and across scales. But perhaps it is worth also acknowledging that

brains are extremely complicated networks. It requires a formal theoretical apparatus like

network science to represent the brain in a way that is intelligible to us and in a way that

allows us to link network features to one another and to behavior, compare brains across

species, and simulate the evolution of networks to better understand the reasons for their

architecture.

6. Conclusion

In conclusion, the strength of network neuroscience is that it can take complex net-

works and reduce this complexity by describing the network succinctly. Network concepts

help us to turn the messy reality of the brain into quantitative variables that make the

search for correlations that confirm mechanistic models tractable. Correlational analyses

in network neuroscience can provide evidence in support of causal mechanisms, particu-

larly when combined with analyses that demonstrate necessity. Efforts to test mechanistic

models via diverse types of analyses can provide diverse types of evidence. Critically,

because the mechanistic explanations in human network neuroscience are framed in a lan-

guage that we can also use to study how neurons work at the smaller scales of visual cor-

tex or simpler organisms, it is possible to obtain general principles of brain function that

are true across scales.

More generally, it is of fundamental importance to understand and articulate the nature

of explanations that are accessible to distinct areas of science and their associated experi-

mental, computational, or theoretical approaches. Here we have attempted to clarify the
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distinctions between an explanation and the evidence supporting that explanation. More-

over, we have sought to distinguish between a mechanism and the scale at which that

mechanism exists. Drawing on extensive work in the field of philosophy, we have framed

our discussion largely within the context of emerging approaches from network science

that are proving particularly interesting and satisfying for many neuroscientists (Bassett &

Zurn, 2018). In the future, we envision increasing clarity on the network mechanisms that

are pertinent to brain function at large scales, intermediate scales, and small scales, and a

broadly held positive valuation of mechanisms irrespective of scale. We also envision

increasing clarity on how mechanisms at one scale interdigitate with mechanisms at the

scale above and the scale below, fostered by network analyses that formalize the scales

in the same language and provide a language to link scales to one another. Another way

we see neuroscience progressing in the coming years is that our macroscale findings can

guide microscale analyses that involve necessitative evidence or manipulations. Finally,

we hope that this work serves as an example of how precise language and distinctions

from the philosophy of science can be combined with recent advances in neuroscience to

propel the field forward.
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Note

1. We note that the dirt bike analogy differs from the brain in two key aspects: The

dirt bike is linear while the brain is nonlinear, and the dirt bike is composed of sin-

gle-function components while the brain is composed of multi-function compo-

nents; while these differences are intimately connected with reasons that network

tools are useful in neuroscience, we keep the analogy simple to ensure that our

basic arguments are accessible to a broad readership. Moreover, one of the authors

(we leave it to the reader to deduce which) races dirt bikes, and thus the analogy is

particularly apropos.
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