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The imbalance between the GABA-mediated inhibition and the glutamate-mediated
excitation is the primary pathological mechanism of epilepsy. GABAergic and
glutamatergic neurotransmission have become the most important targets for
controlling epilepsy. Ginsenoside compound K (GCK) is a main metabolic production
of the ginsenoside Rb1, Rb2, and Rc in the intestinal microbiota. Previous studies show
that GCK promoted the release of GABA from the hippocampal neurons and enhanced
the activity of GABAA receptors. GCK is shown to reduce the expression of NMDAR and
to attenuate the function of the NMDA receptors in the brain. The anti-seizure effects
of GCK have not been reported so far. Therefore, this study aimed to investigate the
effects of GCK on epilepsy and its potential mechanism. The rat model of seizure
or status epilepticus (SE) was established with either Pentylenetetrazole or Lithium
chloride-pilocarpine. The Racine’s scale was used to evaluate seizure activity. The levels
of the amino acid neurotransmitters were detected in the pilocarpine-induced epileptic
rats. The expression levels of GABAARα1, NMDAR1, KCC2, and NKCC1 protein in the
hippocampus were determined via western blot or immunohistochemistry after SE. We
found that GCK had deceased seizure intensity and prolonged the latency of seizures.
GCK increased the contents of GABA, while the contents of glutamate remained
unchanged. GCK enhanced the expression of GABAARα1 in the brain and exhibited
a tendency to decrease the expression of NMDAR1 protein in the hippocampus. The
expression of KCC2 protein was elevated by the treatment of GCK after SE, while the
expression of NKCC1 protein was reversely down-regulated. These findings suggested
that GCK exerted anti-epileptic effects by promoting the hippocampal GABA release
and enhancing the GABAAR-mediated inhibitory synaptic transmission.

Keywords: ginsenoside compound K, epilepsy, neurotransmitters, GABAARα1, KCC2, NKCC1

Abbreviations: GABA, γ-aminobutyric acid; GABAARα1, GABAA receptor subunit α1; GCK, ginsenoside compound K;
KCC2, K-Cl cotransporter isoform 2; NKCC1, Na-K-2Cl cotransporter isoform 1; NMDAR, N-methyl-D-aspartate receptor;
SE, status epilepticus; TLE, temporal lobe epilepsy.
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INTRODUCTION

Epilepsy is a common chronic neurological disease, characterized
by the presence of spontaneous unprovoked recurrent seizures
(Hauser et al., 2017). It affects over 70 million people around
the world and approximately 2.4 million persons are diagnosed
with epilepsy each year (Yemadje et al., 2011; van Vliet et al.,
2017). Epilepsy appears from a variety of complex causes, such as
febrile seizures, head trauma, birth injuries, stroke, brain tumor,
infections, and genetics (Singh and Trevick, 2016). Epilepsy
comprises numerous seizure types and syndromes, where it
easily coexists with psychiatric and neurological comorbidities
(Kanner, 2016). A number of patients diagnosed with new
onset epilepsy obtain symptomatic remission with the use of
anti-epileptic drugs (Brodie et al., 2012). However, 20–30% of
patients are ineffective in the currently available anti-epileptic
drugs (Sillanpaa and Schmidt, 2006). Nearly half of patients will
suffer mild, moderate, or severe adverse reactions (Schmidt and
Schachter, 2014). There is an urgent need to develop a novel high
efficiency and low toxic anti-epileptic drug for the treatment of
intractable epilepsy.

The imbalance between excitatory and inhibitory
neurotransmission is known to be one of the most important
causes of seizures (Margineanu and Klitgaard, 2009; Amtul
and Aziz, 2017). Glutamate is the primary excitatory
neurotransmitter in the brain. Glutamate acts on its postsynaptic
receptors to mediate excitatory neurotransmission, which
is involved in neural development and synaptic plasticity
(Guerriero et al., 2015). However, large amounts of glutamate
are released from presynaptic neurons under pro-epileptogenic
stimuli, including status epilepticus (SE), stroke, and traumatic
brain injury (Wang et al., 2012). Excessive glutamate in the
synaptic cleft induces excitotoxicity by activating the NMDAR,
which promotes calcium influx that leads to neuronal death
(Wang and Qin, 2010). NMDAR activation also promotes limbic
epileptogenesis by enhancing the synaptic excitation (McNamara
et al., 2006). MK-801, a NMDA receptor antagonist, inhibits
seizure activity in the amygdala kindling model of epilepsy (Sato
et al., 1988). Suppressing the glutamate-NMDAR pathway could
inhibit the occurrence of epilepsy.

γ-aminobutyric acid (GABA) is the main inhibitory
neurotransmitter in the mammalian central nervous system.
GABA acts on the GABA-A receptor after being released
from the presynaptic vesicles, which promotes the opening
of the Cl− channels and causes hyperpolarization of the
postsynaptic cell (Guerriero et al., 2015). Emerging evidence
shows that GABAARα1 was reduced in pilocarpine-induced
epileptic rats (Raol et al., 2006b). The enhanced GABAARα1
expression could increase the seizure threshold and inhibit
the development of recurrent spontaneous seizures after SE,
suggesting that GABAARα1 plays a major role in inhibitory
function (Raol et al., 2006a). The GABAAR agonist diazepam
is a classical anti-seizure drug that is used for treating SE (Levi
et al., 2015), suggesting that the GABAAR-mediated inhibitory
neurotransmission is a therapeutic target for epilepsy. The
GABAA receptors subunit composition affects the function of
GABAergic inhibition, the intracellular Cl− concentration is a

critical determinant of postsynaptic inhibition. The expression
patterns, membrane trafficking, and protein degradation of
cation-chloride cotransporters control the Cl− levels in neurons
(Loscher et al., 2013). The NKCC1 promotes the Cl− influx while
the KCC2 extrudes Cl−. The dysfunction of NKCC1 and KCC2
enhances neuronal excitability and promotes susceptibility to
seizures. Restoring Cl− homeostasis could reduce the seizure
severity by the NKCC1 inhibitor bumetanide or optogenetic
removal of Cl− (Moore et al., 2017), suggesting that NKCC1 and
KCC2 are the key regulators of GABAergic inhibition which are
potential targets for the treatment of epilepsy.

Ginsenoside compound K (GCK), also known as M1 or IH901,
is a main metabolic product from Ginsenoside Rb1, Rb2, and
Rc in intestinal bacteria following oral administration of ginseng
(Lee et al., 2009). GCK has attracted a wide attention because
of its good bioavailability (Paek et al., 2006). Several studies
demonstrated that GCK exhibited multiple pharmacological
activities including anti-tumor, anti-diabetic, anti-inflammation
and hepatoprotective effects (Yang et al., 2015). GCK has not
been reported as a new drug that is approved to enter the
market. GCK has become a candidate drug for rheumatoid
arthritis therapy due to its strong anti-inflammatory effect. At
present, the GCK tablet was produced by Hisun Pharmaceutical
Co., Ltd., which is being tested as an anti-rheumatoid arthritis
drug in China. Our previous research has shown that GCK is
safe and well-tolerated for healthy Chinese volunteers, where
it exhibits a good pharmacokinetic profiles at a moderate dose
(Chen et al., 2018). Its pharmacokinetic properties are affected
by food and gender in humans (Chen et al., 2017). These
findings indicated that GCK has a promising druggability that
provides guidance for the development of CK. The research
regarding the role of GCK in the nervous system has gradually
increased. A previous study using quantitative autoradiography
found that GCK decreased the binding of [3H]MK-801 with
the NMDA receptor in the frontal cortex and hippocampus
and enhanced the binding of [3H]muscimol and the GABAA
receptor in the frontal cortex and cerebellum. This suggested
that GCK may suppress the activity of NMDA receptor and
increase the effect of GABA receptor agonist in brain which plays
an important role in neurological disorders (Jang et al., 2004).
GCK could also enhance the spontaneous GABA release into
the CA3 pyramidal neurons to induce inhibitory transmission
(Bae et al., 2010). A study reported that GCK inhibits glutamate-
induced cytotoxicity in hippocampal HT22 cells by regulating
the Nrf2-mediated induction of antioxidant enzymes (Seo
et al., 2016). GCK could also decrease the morphine-induced
NMDAR1 activation in cultured cortical neurons (Yayeh et al.,
2016). These findings suggest that GCK might reduce neuronal
hyperexcitability by correcting the neuronal excitation-inhibition
imbalance.

Since GCK may regulate the GABA receptor activity and
the NMDA receptor expression, we hypothesized that GCK
could have an anti-epileptic effect. Therefore, the purpose of
this study is to investigate the effects of GCK in epilepsy and
its potential mechanisms. Two classical epileptic animal models
were established to evaluate the anti-seizure activity of GCK.
We found that GCK exhibited a good anti-epileptic effect via
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enhancing the GABA-mediated inhibition in the hippocampus,
which may possess a promising future for development of a novel
anti-epileptic drug.

MATERIALS AND METHODS

Reagents
Ginsenoside compound K was provided from Zhejiang
Hisun Pharmaceutical Company Limited (China). Sodium
valproate was obtained from Hunan Xiangzhong Pharmaceutical
Company Limited (China). Pentylenetetrazole, Lithium chloride,
Pilocarpine and paraformaldehyde were purchased from Sigma
(United States).

Animal Allocation and Drug
Administration
Adult male Sprague–Dawley rats (6–8 weeks old, 180–200 g body
weight) were purchased from Hunan SJA Laboratory Animal Co.
Ltd. (China). Rats were housed in clear cages, 3 per cage. The
experimental room was maintained in 22–23◦C with humidity of
10–55%, it was kept on 12 h light or dark cycles. All rats access
to food and water throughout the experiment. All experimental
protocols were approved by the Ethics Committee of Drug safety
evaluation research center of Hunan province and performed in
accordance with the National Institute of Health Guide for the
Care and Use of Laboratory Animals. All efforts were made to
minimize the animal’s suffering.

After a week of acclimatization, 60 rats were randomly
grouped into control, model, the positive control (Sodium
valproate, 400 mg/kg), the GCK low (80 mg/kg), the middle
(160 mg/kg), or the high dose (320 mg/kg) with 10 rats per
group. The GCK suspension was prepared with the solution of
sodium carboxymethyl cellulose (0.5% CMC-Na solution) prior
to administration. Rats in the experimental group were given the
corresponding drug via gavage twice a day in dosing intervals
every 12 h for 5 days while the other rats were treated with
the same dose of physicological saline. Rats were treated with
pentylenetetrazole or lithium chloride-pilocarpine to initiate an
epilepsy model 1 h after the last administration of GCK or
Sodium valproate.

Pentylenetetrazole-Induced Seizures
Pentylenetetrazole (PTZ) is a GABAA receptor antagonist that
is commonly used to establish tonic-clonic seizures and screen
anti-seizure drugs. We choose this animal model to examine
the anti-seizure activity of GCK. The seizure rat model was
induced by injecting 60 mg/kg of PTZ. The seizure activity was
immediately evaluated within 30 min after PTZ administration
according to the modified Racine scale (Sadek et al., 2016): stage
0, inactive; stage 1, ear and facial twitching; stage 2, convulsive
wave through the body; stage 3, myoclonic jerks and rearing;
stage 4, turn over into side position and stage 5, turn over into
back position, generalized clonic-tonic seizures. The time from
injecting PTZ to the first appearance of convulsive wave through
the body was measured for each animal and was referred to as

the seizure latency. The total duration of the behavioral seizure
activity was measured for each animal.

Lithium Chloride-Pilocarpine-Induced
Status Epilepticus (SE)
Pilocarpine is an M-receptor agonist, used as a convulsant to
induce SE or TLE in animal models. Lithium chloride potentiates
the epileptogenic action of pilocarpine and reduces mortality
rates. Here we built a rat model of SE with Lithium chloride-
pilocarpine. Rats were treated with intraperitoneal injection
of pilocarpine (30 mg/kg, i.p.) 18–20 h after the lithium
chloride (127 mg/kg, i.p.) injection. Scopolamine methyl bromide
(1 mg/kg, i.p.) was administered to reduce peripheral adverse
reactions. Rats were continuously observed 2 h following the
injection of pilocarpine. The evoked seizures were assessed
according to Racine scale (Inoue et al., 2009): 0, no abnormality;
1, mouth and facial movements; 2, head nodding; 3, forelimb
clonus; 4, rearing and bilateral forelimb clonus; 5, rearing, falling
and jumping. The time from the pilocarpine injection to the first
appearance of the forelimb clonus was measured for each animal
and was referred to as the seizure latency. Rats were euthanized
by being anesthetized with 3 ml/kg of chloral hydrate. The
entire brain post-SE 24 h was collected for immunohistochemical
analysis. The dissociated hippocampus post-SE 3 h was used to
determine the neurotransmitters. The hippocampus post-SE 24 h
was obtained for western-blot analysis.

Quantitative Analysis for Glutamate and
GABA
To determine glutamate and GABA in the hippocampus, the
hippocampus tissue was homogenized in an ice-cold PBS buffer
and centrifuged at 10,000 rpm for 10 min at 37◦C. The
supernatant was used in the following assays.

The concentration of glutamate in the hippocampus was
tested via the ultraviolet colorimetry method according to the
instructions in the Glutamic acid measurement kit (Nanjing
Jiancheng Bioengineering Institute, China).

The content of GABA was measured with the ELISA Kit for
Gamma-Aminobutyric Acid (Cloud-Clone Corp., United States)
in accordance with the manufacturer’s instructions. The sample
was added into the prepared Detection Reagent A and incubated
for 1 h at 37◦C. The unbound conjugate was washed off,
each microplate well was added to the prepared Detection
Reagent B, and subsequently incubated for 30 min at 37◦C.
The substrate solution and the stop solution were used for
color development reaction and termination. The absorbance
was measured at 450 nm with a microplate reader (Beckman
Coulter, United States). Each experiment was repeated in
triplicate.

Western-Blot Analysis
The frozen hippocampus was homogenized in the RIPA lysis
buffer prepared with Phenylmethylsulfonyl fluoride (PMSF).
The mixture was centrifuged at 12,000 rpm for 15 min at
4◦C and the supernatant was collected. The content of total
protein was measured with a BCA protein assay kit (Beyotime
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FIGURE 1 | Effects of GCK on behavioral seizures induced by pentylenetetrazole (PTZ). (A) The seizure scores of the PTZ, VPA, and GCK-treated groups. (B) The
latency to clonic seizures in the PTZ, VPA, and GCK-treated groups. (C) The duration of the PTZ, VPA, and GCK-treated groups. Values are mean ± SEM (n = 10).
PTZ 60 mg/kg, VPA 400 mg/kg, GCK 80 mg/kg, 160 mg/kg, and 320 mg/kg. Values were compared with the PTZ, ∗P < 0.05, ∗∗P < 0.01.

FIGURE 2 | Effects of GCK on behavioral seizures induced by lithium chloride-pilocarpine. (A) The seizure scores of the Pilo, VPA, and GCK-treated groups. (B) The
latency to onset SE in the Pilo, VPA, and GCK-treated groups. Values are mean ± SEM (n = 10). Pilo 30 mg/kg, VPA 400 mg/kg, GCK 80 mg/kg, 160 mg/kg, and
320 mg/kg. Compared with the Pilo, ∗P < 0.05, ∗∗P < 0.01, ∗∗∗P < 0.001.

Biotechnology, China). 50 µg of the protein sample was added
and separated via SDS-polyacrylamide gel electrophoresis. The
blots were blocked after being transferred onto the PVDF
membrane. The membrane was incubated overnight at 4◦C with
the primary antibodies: the mouse anti-GABAARα1 monoclonal
antibody (1:500, Abcam, United Kingdom), the rabbit anti-
NMDAR1 polyclonal antibody (1:500, Sigma, United States),

the goat anti-NKCC1 polyclonal antibody (1:200, Santa Cruz,
United States), goat anti-KCC2 polyclonal antibody (1:200, Santa
Cruz, United States), and the rabbit anti-β-actin polyclonal
antibody (1:1000, CST, United States). The blots were then
incubated in the secondary antibodies: the HRP-labeled goat anti-
mouse IgG, the goat anti-rabbit IgG, or the mouse anti-goat IgG
(Beyotime Biotechnology, China) for 1 h at room temperature.
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FIGURE 3 | Effects of GCK on the hippocampal neurotransmitters glutamate and γ-amino butyric acid (GABA) contents in pilocarpine-induced epileptic rats. (A) The
contents of GABA in the Con, Pilo, VPA, and GCK-treated groups. (B) The contents of glutamate in the Con, Pilo, VPA, and GCK-treated groups. Values are
mean ± SEM (n = 5). Pilo 30 mg/kg, VPA 400 mg/kg, GCK 80 mg/kg, 160 mg/kg, and 320 mg/kg. Compared with the Con ∗P < 0.05; compared with the Pilo,
#P < 0.05.

The bands were visualized with an ECL chemiluminescence
substrate kit (Beyotime Biotechnology, China) and scanned.
The OD value was analyzed with ImageJ 1.50i software
(United States).

Immunohistochemical Staining
Rats were anesthetized and perfused transcardially with
an ice-cold phosphate buffer, followed by an ice-cold 4%
paraformaldehyde solution. The entire brain was removed
immediately and immersed in 4% paraformaldehyde solution
for 24 h at 4◦C. The coronal sections were obtained through
the dorsal hippocampus and used for immunohistochemical
analysis.

The sections dewaxed and hydrated, then incubated in 3%
hydrogen peroxide solution for 30 min. Antigen retrieval was
performed under boiling conditions. Sections were incubated
in goat serum for 2 h to block the antigens. Sections were
incubated overnight at 4◦C with the primary antibodies: the
mouse anti-GABAARα1 monoclonal antibody (1:100, Abcam,
United Kingdom), the goat anti-NKCC1 polyclonal antibody
(1:50, Santa Cruz, United States), and the goat anti-KCC2
polyclonal antibody (1:50, Santa Cruz, United States). The
sections were then incubated in the secondary antibodies: the
biotinylated-goat anti-mouse IgG, or the mouse anti-goat IgG
(Beyotime Biotechnology, China) for 1h at room temperature.
After being rinsed three times with PBS, a DAB kit was
used to visualize the sites of antibody binding. The sections
were observed under a microscope. The positive cells in the
hippocampal CA1, CA3, DG, and H region were captured. Three
high-power images were randomly selected for each animal. The
immunoreactivity was evaluated with the staining intensity and
the ratio of positive area to the total area.

Statistical Analysis
All experimental data was expressed as Mean ± Standard Error
of the Mean (SEM), SPSS19.0 software was used for statistical
analysis. The seizure score was analyzed by the Mann–Whitney U
test. Seizure latency, duration, Glutamate, GABA and OD values
were subjected to one-way ANOVA and post hoc comparisons

were performed with an LSD test. P < 0.05 was considered
statistically significant.

RESULTS

Effects of GCK on Behavioral Seizures
Induced by Pentylenetetrazole
To investigate the protective effect of GCK in an acute seizure
animal model, 60 mg/kg of PTZ was administered to establish
a seizure rat model that could replicate generalized tonic-clonic
and myoclonic seizures. Rats in the model group showed an
obvious epileptic behavioral feature after the PTZ injection. Rats
pre-treated with VPA had a lower seizure score (Figure 1A,
P < 0.05) and a longer latency than the model group (Figure 1B,
P < 0.01). Unfortunately, GCK did not display a protective effect
in the low-dose group and the middle-dose group. Interestingly,
high doses of GCK not only reduced the seizure intensity
(Figure 1A, P < 0.05) but also prolonged the latency for the
onset of seizures (Figure 1B, P < 0.05). Moreover, high doses
of GCK could shorten seizure duration (Figure 1C, P < 0.05).
These findings suggest that high doses of GCK demonstrate
anti-epileptic activity.

Effects of GCK on Behavioral Seizures
Induced by Lithium Chloride-Pilocarpine
To further identify GCK’s antiepileptic activity, the lithium
chloride-pilocarpine-induced SE rat model was selected. This
model resembled human SE and complex partial seizures. All
rats in the model group exhibited high seizure scores (forelimb
clonus, rearing, falling and jumping, even death). Seizure score
was decreased in the VPA group (Figure 2A, P < 0.05) while
the latency to the first seizure was extended in the VPA group
(Figure 2B, P < 0.001). High doses of GCK significantly reduced
the seizure score (Figure 2A, P< 0.05). Intriguingly, both middle
and high doses of GCK significantly lengthened the latency to the
initial seizure (Figure 2B, P < 0.05, 0.01). These results further
confirmed that GCK has an anti-epileptic effect.
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FIGURE 4 | Continued

FIGURE 4 | Effects of GCK on the expression of GABAARα1 and NMDAR1
protein in the hippocampus of the pilocarpine-induced epileptic rats. (A) The
expression of GABAARα1 in the Con, Pilo, VPA, and GCK-treated groups.
(B) The expression of NMDAR1 in the Con, Pilo, VPA, and GCK-treated
groups. (C–G) The GABAARα1 immunoreactivity in the hippocampal CA1,
CA3, DG, and H regions. Scale bar: 100 µm. Values are mean ± SEM (n = 5).
Pilo 30 mg/kg, VPA 400 mg/kg, GCK 80 mg/kg, 160 mg/kg, and 320 mg/kg.
Compared with the Con ∗P < 0.05; Compared with the Pilo, #P < 0.05.

Effects of GCK on the Contents of Amino
Acid Neurotransmitter in
Pilocarpine-Induced Epileptic Rats
To determine if GCK regulates the levels of amino acid
neurotransmitter, glutamate and GABA were detected with either
colorimetry or ELISA. Pilocarpine increased the content of
glutamate (Figure 3B, P < 0.05), whereas GABA was declined
in the hippocampus of the pilocarpine-induced epileptic rats
(Figure 3A, P < 0.05). Pre-treatment with various doses of
GCK (80, 160, and 320 mg/kg) and VPA (400 mg/kg) eliminated
the pilocarpine-induced decreases in GABA levels (Figure 3A,
P < 0.05). However, the hippocampal glutamate was not
significantly affected by GCK and VPA. These observations
revealed that the augmentation of GABA in the hippocampus
could contribute to the anti-seizure effect of GCK.

Effects of GCK on the Expression of
GABAARα1 and NMDAR1 Protein in
Pilocarpine-Induced Epileptic Rats
Glutamate acts on NMDAR to induce postsynaptic
depolarization which is essential for neuronal excitability.
GABAAR is crucially involved in GABA-mediated inhibition. The
effect of GCK in the expression of receptors was also investigated.
As showed in Figure 4A, pilocarpine injection resulted in
the downregulation of GABAARα1 protein (P < 0.05). GCK
displayed a significantly increased expression of GABAARα1
in the hippocampus (Figure 4A, P < 0.05). GABAARα1
immunohistochemical staining was distributed in all regions of
the hippocampus. GABAARα1 was located in the membrane
of neurons. In the pilocarpine treatment group, the staining
in the sections displayed pale yellow and the positive area
of GABAARα1 was smaller than those in the control group,
suggesting that the GABAARα1 immunoreactivity was reduced
in the hippocampus in pilocarpine-induced epileptic rats. The
sections showed brown and the positive area was larger in the
VPA treatment group. Furthermore, the middle and high doses
of GCK could also increase the staining intensity and enlarge the
positive area of GABAARα1 (Figures 4C–G), the results suggest
that GCK also increased the GABAARα1 immunoreactivity
following SE. The expression changes of NMDAR1 has a
tendency to decline in a dose-dependent manner within the GCK
pre-treated group although there was no significant change in
NMDAR1 protein’s expression (Figure 4B). GCK may regulate
GABAARα1’s expression to demonstrate its antiepileptic effect.
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Effects of GCK on the Expression of
KCC2 and NKCC1 Protein in
Pilocarpine-Induced Epileptic Rats
GABAAR-mediated action depends on the concentration of
intracellular Cl−. The expression of the cation chloride
cotransporters, including NKCC1 and KCC2, were determined to
further explain the mechanism of GCK against seizure. Western-
blot analysis showed that GCK enhanced markedly the levels of
the KCC2 protein in the hippocampus of pilocarpine-induced
epileptic rats (Figure 5A, P < 0.05). Immunohistochemical
staining showed that the KCC2 was mainly located in the
membrane of neurons throughout the entire hippocampus.
The KCC2 immunoreactivity was decreased in the pilocarpine-
induced epileptic rats, suggesting that epileptic seizures could
reduce the contents of KCC2 protein. The middle and high
doses of GCK thickened the positive area of KCC2 around
the surface of neurons in the hippocampus, it means that
GCK increased the KCC2 immunoreactivity throughout the
hippocampus (Figures 5C–G). GCK obviously reduced the
pilocarpine-induced increased expression of NKCC1 protein in
the hippocampus (Figure 5B, P < 0.05). We also observed
that NKCC1 was distributed in the membrane of neurons.
The positive expression of NKCC1 was very low in the
hippocampus in the control group, while its staining intensity
was stronger and the positive area was increased after pilocarpine
induction. Interestingly, GCK significantly reduced the NKCC1
immunoreactivity in the hippocampus (Figures 5H–L). GCK
regulates the cation chloride cotransporters to obtain an anti-
seizure effect.

DISCUSSION

Ginsenoside compound K is a primary metabolite of ginsenoside
Rb1, Rb2, and Rc in intestinal bacteria in the organisms following
oral administration. Previous studies has revealed that GCK
greatly improves memory impairment by inducing Nrf2-
mediated antioxidant enzymes (Seo et al., 2016), attenuating
cyclophosphamide-induced the deletion of hippocampal
neurogenesis, and ameliorating Aβ (25–35) induced axonal
atrophy and synaptic loss (Tohda et al., 2004; Hou et al., 2013).
GCK could also suppress microglial activation to prevent
brain impairment following cerebral ischemia (Park et al.,
2012). These findings demonstrate that GCK has a beneficial
neuroprotective effect in the treatment of neurological disorders
(Oh and Kim, 2016). However, the anti-epileptic effect of GCK
remains unknown. We found that GCK could reduce the seizure
activity by increasing the content of GABA and enhancing
the GABAAR-mediated inhibitory neurotransmission in the
hippocampus.

Epileptic seizures are caused by the disruption of the balance
between excitatory and inhibitory neurotransmitters (Clynen
et al., 2014). GABA is a key inhibitory neurotransmitter in the
brain that was decreased after seizure. The deficiency of GABA
would induce neuronal hyperexcitability, which contributed to
the occurrence of seizures. PTZ is a GABAA receptor antagonist

that acts as a chemical convulsant to build an animal model
of generalized tonic-clonic seizures, myoclonic seizures, or
absence seizures (Zhao et al., 2011). The rodent PTZ model is
commonly used for the antiepileptic drug screening and studying
the mechanism of seizures. Ethosuximide, trimethadione and
valproate were discovered using this seizure model, so the PTZ
test is recognized as a primary antiepileptic drug screening
model by The Anticonvulsant Screening Program (ASP) of the
United States National Institute of Neurological Disorders and
Stroke (NINDS) (Loscher, 2017). Here we chose the PTZ-induced
seizures model to test the anticonvulsant actions of GCK. We
found that GCK reduced the intensity of seizures, prolonged the
latency of seizures, and shortened the seizure duration in the
PTZ-induced seizure rat model. Previous studies demonstrated
that the Rb extract, the Mix1 (Rb1 plus Rb3) or the Mix2
(Rb1 plus Rb3 plus Rd) increases the latency to seizure onset
and shortened the seizure duration in the PTZ-induced seizures
rat model (Lian et al., 2005, 2006). Another study found that
Rb1 dose-dependently reduces PTZ-induced seizure duration
and prolongs seizure latency (Shi et al., 2018). Although these
studies yielded positive results, the route of administration and
the unspecified active ingredient limits its development and
application. In this study, an oral administration of the gavage
was performed to confirm that GCK inhibited PTZ-induced
seizures. There were several causes of the beneficial effects of high
doses of GCK. The intraperitoneally injection of higher doses of
PTZ were used to induce a rat model of seizures, where GCK
had poor water solubility and low bioavailability. These results
implied that GCK could suppress myoclonic seizures and absence
seizures.

Pilocarpine is an M muscarinic receptor agonist that can
establish SE and partial seizures with secondary generalization
(Kandratavicius et al., 2014). It is the most commonly used
model of TLE, due to the appearance of spontaneous recurrent
seizures, extensive brain damage, and resistance to the current
antiepileptic drugs in this model (Curia et al., 2008). Lithium pre-
treatment not only lowers the mortality rates, but also reinforces
the epileptogenic action of pilocarpine (Martin and Pozo, 2006).
In order to determinate the antiepileptic effect of GCK, we
applied the lithium-pilocarpine model of epilepsy with GCK
administration, where it was observed that GCK reduced the
intensity of seizures and lengthened the latency to the onset of SE.
These findings indicated that GCK might inhibit SE or complex
partial seizures.

Alterations in the balance between Glutamate and GABA in
brain could cause the occurrence and progression of seizures.
Elevation of extracellular glutamate mediated neuronal excitation
is generally considered as a critical factor in the pathological
process of epilepsy. A growing body of evidence demonstrates
a marked increase in glutamate concentration in patients
with TLE (During and Spencer, 1993). Increased extracellular
glutamate is strongly associated with decreased epileptogenic
hippocampal volume in patients with drug resistant epilepsy
(Cavus et al., 2008). The raised glutamate was found in
various animal epilepsy models (Soukupova et al., 2015). In
the present study, we also showed a high concentration of
hippocampal glutamate. Previous studies have demonstrated
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that GCK attenuated glutamate-induced cytotoxicity in HT22
cells by inducing Nrf2-mediated antioxidant enzymes (Seo
et al., 2016). Our experimental results showed that GCK had
no significant effect on pilocarpine induced glutamate levels.
Glutamate regulates brain excitability by activating the two main
ionotropic receptors including NMDA and AMPA receptors.
Glutamate regulates postsynaptic depolarization and action
potential by binding with the NMDA receptor. Nevertheless,
excess glutamate released in the synaptic cleft or the over-
activated NMDA receptor promotes calcium entering, which
leads to neuronal death and neurodegeneration (Deshpande
et al., 2008). GCK inhibits the expression and the activity of
NMDAR (Jang et al., 2004). Therefore, we explored the role
of GCK in NMDAR1 expression in the epileptic rat model,
which revealed that GCK exhibited a tendency to decrease the
expression of NMDAR1 protein in the hippocampus. There was
no obvious difference in the results, which could be caused by
the small sample size. A study has showed that GCK attenuated
morphine-induced dependence by decreasing the NMDAR1
expression in the frontal cortical regions of the rat brain (Yayeh
et al., 2016). The cause for the inconsistency of the results could
be explained by the differences between brain regions, animal
models and body conditions. Another study showed that ginseng
total saponins and ginsenoside Rg3 decreases the intracellular
Ca2+ level and the hippocampal neurons death by suppressing
NMDAR-induced spontaneous recurrent epileptiform discharges
(Kim and Rhim, 2004). We have not assessed the function of
NMDAR after GCK treatment. Thus, the effects of CK on the
glutamate-mediated neuronal excitability in epilepsy requires
further study.

Loss of GABA release or abnormal synthesis that impairs
GABA-mediated inhibition could also facilitate neuronal
hyperexcitability, which ultimately triggers seizures. Promotion
of GABA release to enhance the GABA-mediated inhibitory
action has become an important target of antiepileptic drugs

(Kammerer et al., 2011). GABAergic interneurons and basal
GABA outflow were lowered during the latent period and the
initial spontaneous seizure in the pilocarpine-induced TLE
(Soukupova et al., 2014). A study in vitro found that GCK
enhances spontaneous GABA release by elevating intraterminal
Ca2+ concentration (Bae et al., 2010). The current study
demonstrated that GCK increased the level of GABA in the
hippocampus. Ginsenosides could not only raise GABA levels
but could also reduce glutamate levels in the hippocampus
and cortex in the rat model of Alzheimer’s disease (Zhang
et al., 2016). Although the models were different and the active
ingredients were unclear, the results confirmed that GCK is
a main metabolite of ginsenosides that could promote GABA
release. These findings demonstrated that GCK could increase
GABA release to suppress epileptic seizures.

γ-aminobutyric acid exerts its neuronal inhibitory via
activating GABAARs-mediated inhibitory postsynaptic currents.
GABAARs are identified as heteropentameric ion channels
formed by 19 subunits (Uusi-Oukari and Korpi, 2010). The
physiological, pharmacological, and targeting properties of
GABAARs were determined by the subunit composition of
GABAAR. The γ subunit at the synaptic sites mediates rapid
phasic inhibition while the extrasynaptic δ subunit regulates
the persistent tonic inhibition (Gonzalez et al., 2013). The α

subunit is an important and common subunit of GABAARs.
GABAARα consists of six isoforms including α1-α6. GABAARα1
is the most commonly expressed in the brain (Laverty et al.,
2017). GABAARα1 is the target of benzodiazepines, which
have anticonvulsant and sedative effects (Rudolph et al.,
1999; McKernan et al., 2000). Multiple bodies of evidence
have shown that the mutation of the α1 subunit is closely
associated with several types of seizures, including early
infantile epileptic encephalopathy, childhood absence epilepsy
and juvenile myoclonic epilepsy (Braat and Kooy, 2015). Previous
studies have shown that the expression of α1 subunit was

FIGURE 5 | Continued
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FIGURE 5 | Effects of GCK on the expression of KCC2 and NKCC1 protein in the hippocampus of the pilocarpine-induced epileptic rats. (A) The expression of
KCC2 in the Con, Pilo, VPA, and GCK-treated groups. (B) The expression of NKCC1 in the Con, Pilo, VPA, and GCK-treated groups. (C–G) The KCC2
immunoreactivity in the hippocampal CA1, CA3, DG, and H regions. Scale bar: 100 µm. (H–L) The NKCC1 immunoreactivity in the hippocampal CA1, CA3, DG,
and H regions. Scale bar: 100 µm. Values are mean ± SEM (n = 5). Pilo 30 mg/kg, VPA 400 mg/kg, GCK 80 mg/kg, 160 mg/kg, and 320 mg/kg. Compared with
the Con ∗P < 0.05; compared with the Pilo, #P < 0.05.
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decreased in epileptic rats (Brooks-Kayal et al., 1998). The current
study also observed reduced expression of GABAARα1 in the
hippocampus 1 day post-SE, suggesting GABAARα1 changed
during the development of epilepsy. An earlier study showed
that GCK enhanced the action of GABA receptor agonist in the
brain (Jang et al., 2004). The detailed mechanism of GCK’s action
remains unclear. The current study demonstrated that GCK up-
regulated the expression of GABAARα1 in the hippocampus after
SE. Genetic conditional enhanced expression of GABAARα1 in
the DG prolonged the latency to the initial spontaneous seizure
and inhibited the development of spontaneous seizures after
SE (Raol et al., 2006a). GCK may inhibit the development of
chronic epilepsy as a pharmacological regulator of GABAARα1
expression. Although we did not explore the effect of GCK on
other GABAAR subunits, the elevation of GABAARα1 could offer
a partial explanation of the neuroprotective effect of GCK against
epilepsy.

GABAAR-mediated synaptic transmission was determined
by the intracellular Cl− concentration. Cation-chloride
cotransporters plays a crucial role for maintaining Cl−
homeostasis (Loscher et al., 2013). NKCC1 is a main driver
that promotes Cl− into cells while KCC2 is a key efflux pump
that mediates Cl− extrusion in neurons. NKCC1 regulates
the depolarizing responses to GABAA receptor activation by
elevating the intracellular Cl− level. During the development
of brain, NKCC1 expression decreases from postnatal week
to maturity. KCC2 enhances fast hyperpolarizing GABAA
receptor-mediated inhibition by lowering the intracellular Cl−
concentration. Its expression increases in brain with age and
maturity (Puskarjov et al., 2014a). The balance between NKCC1
and KCC2 is destroyed in the patients with TLE (Eftekhari
et al., 2014). The up-regulated NKCC1 expression has been
found in the brain of epileptic patients with malformations
of cortical development and hippocampal sclerosis (Sen et al.,
2007). Its up-regulation is also reported in the amygdala kindling
model and the pilocarpine-induced epileptic animal model
(Okabe et al., 2002; Li et al., 2008). Previous literature found
that NKCC1 accelerates neonatal seizures in the developing
hippocampus (Dzhala et al., 2005). The NKCC1 inhibitor
bumetanide represents anti-seizure activity and restores the
anti-epileptic effects of diazepam and phenobarbital (Dzhala
et al., 2008). Bumetanide has been found to reduce the
development of pharmacoresistant epilepsy (Sivakumaran
and Maguire, 2016). A previous study reported that seizure
frequency and epileptiform discharges are reduced in patients
with TLE following bumetanide administration (Eftekhari
et al., 2013). NKCC1 is a potential target for the treatment
of epilepsy. In the present study, we found that pilocarpine
induced the upregulation of NKCC1 protein in epileptic rats.
GCK could reduce NKCC1 expression in the hippocampus in
the pilocarpine-induced epileptic rats. The results showed that
GCK could lower the intracellular Cl− concentration to suppress
GABAAR-mediated neuronal excitation.

KCC2 is a major impact factor of GABA-mediated
hyperpolarizing postsynaptic inhibition. The expression level of
KCC2 protein in the cell surface, as well as its phosphorylation
state controls KCC2 function (Moore et al., 2017). Decreased

KCC2 expression has been reported in human focal cortical
dysplasia (Shimizu-Okabe et al., 2011). Its reduction was also
observed in the animal model of pilocarpine-induced SE and
brain injury-induced epilepsy (Bonislawski et al., 2007; Pathak
et al., 2007). The KCC2-deficient mice exhibited spontaneous
generalized seizures and were more vulnerable to seizures
induced by PTZ (Tornberg et al., 2005). Two variants of KCC2,
R952H, and R1049C, were discovered in human idiopathic
generalized epilepsy and febrile seizures (Kahle et al., 2014;
Puskarjov et al., 2014b). The loss of KCC2 impairs neuronal Cl−
extrusion leading to seizure-like ictal discharge (Buchin et al.,
2016). CLP257 enhances KCC2 activity, which could mediate
ictogenesis (Gagnon et al., 2013; Hamidi and Avoli, 2015),
this suggests KCC2 is a viable therapeutic target for epilepsy.
The current study found that GCK increased the pilocarpine-
induced lowered KCC2 expression. These results suggested that
GCK could correct the imbalance between NKCC1 and KCC2
expression to enhance GABA-mediated neuronal inhibition.

CONCLUSION

Ginsenoside compound K reduced the severity of epileptic
seizures and prolonged the latency to the initial seizure. GCK
increased the contents of GABA in the hippocampus. Moreover,
GCK up-regulated the expression of GABAARα1 and KCC2
protein while GCK reduced the pilocarpine-induced increased
NKCC1 expression. Our study results suggested that GCK could
inhibit the seizure activity by promoting GABA release from the
hippocampal neurons and enhancing the GABAergic inhibition-
related protein expression, which could demonstrate a promising
future for the development of novel anti-epileptic drugs.
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