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ARTICLE

Big Data Toolsets to Pharmacometrics: Application
of Machine Learning for Time-to-Event Analysis

Xiajing Gong, Meng Hu and Liang Zhao∗

Additional value can be potentially created by applying big data tools to address pharmacometric problems. The performances
of machine learning (ML) methods and the Cox regression model were evaluated based on simulated time-to-event data
synthesized under various preset scenarios, i.e., with linear vs. nonlinear and dependent vs. independent predictors in the
proportional hazard function, or with high-dimensional data featured by a large number of predictor variables. Our results
showed that ML-based methods outperformed the Cox model in prediction performance as assessed by concordance index and
in identifying the preset influential variables for high-dimensional data. The prediction performances of ML-based methods are
also less sensitive to data size and censoring rates than the Cox regression model. In conclusion, ML-based methods provide
a powerful tool for time-to-event analysis, with a built-in capacity for high-dimensional data and better performance when the
predictor variables assume nonlinear relationships in the hazard function.
Clin Transl Sci (2018) 11, 305–311; doi:10.1111/cts.12541; published online on 13 March 2018.

Study Highlights

WHAT IS THE CURRENT KNOWLEDGE ON THE TOPIC?
✔ Tools used for big data analysis have not been intro-
duced to the community of pharmacometrics or quantita-
tive clinical pharmacology. There is no report to introduce
machine-learning techniques to analyze time-to-event data
that have been conventionally analyzed using the Cox
regression model from the ASCPT community.
WHAT QUESTION DID THIS STUDY ADDRESS?
✔ Cox model, as the de facto standard, has long been
used for survival analysis, although it is known that it oper-
ates under potentially oversimplified assumptions. Given
that, what benefits can the ML-basedmethods bring to sur-
vival analysis?

WHAT THIS STUDY ADDS TO OUR KNOWLEDGE
✔ ML-basedmethods outperformed the Coxmodel in pre-
dictive performancewhen covariatesmanifest the nonlinear
relationships in the hazard function, and in identifying influ-
ential variables of high-dimensional data, with less sensitiv-
ity to data sizes and censoring rates.
HOW THIS MIGHT CHANGE CLINICAL PHARMACOL-
OGY OR TRANSLATIONAL SCIENCE
✔ Big data tools such as ML-based methodologies can
potentially serve as more powerful and flexible pharmaco-
metrics tools to provide accurate and robust survival anal-
ysis in clinical studies over conventional approaches.

Time-to-event analysis, also referred to as survival analysis
in this study, is performed to analyze the expected time-
to-event occurrence. This technique was originally devel-
oped for clinical studies, and now has been applied to many
other areas, e.g., engineering, economics, finance, health-
care, marketing, business process optimization, and even
public policy. The survival data (or time-to-event data) are
often featured by censoring in the data when there is no event
during the study period. For survival analysis, the Cox pro-
portional hazard (PH) regression model1,2 is one of the most
commonly used analysis methods, which links predictors of
interest, also referred to as covariates in this study, to relevant
hazard function, without predefining a particular distribution
for the baseline hazard. Similar regression-based methods
also include the accelerated failure time (AFT) model3–5 and
parametric PH model.6 Although these methods have been
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conventionally used for survival analysis, they are essen-
tially an endeavor to explicitly model the underlying rela-
tionships among the variables under certain assumptions
that the hazard function of the predictor variables are con-
stant over time and their effects are additive in one scale. Of
note, these assumptions may be oversimplified when mod-
eling real-world data. In addition, owing to rapid advances
in information technologies, data have become overwhelm-
ingly large, raising significant computational challenges for
conventional regression-based survival analysis methods.
For example, high-dimensional data become common when
more covariates than observations are collected. Although
the constrained version of regression-basedmethod canmit-
igate the issue of high-dimensional data, the linear addi-
tive assumption for covariates still lacks a validity check
before modeling application.7 Therefore, developments of
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advanced data analytic techniques for survival analysis are
still of high importance.
In the past decades, the development of machine learning

(ML) methods has impacted a broad spectrum of research
areas,8,9 including handling survival data. ML methods are
data-driven by nature, with minimal model assumptions
and feature the capacity to deal with high-dimensional
data. In the 1990s, the artificial neural networks (ANN) were
applied for more flexible modeling of covariate effects in
the survival function, offering new insight for clinical and
physiological hypothesis generation.10,11 Subsequently, the
decision tree-basedML algorithm, the random survival forest
(RSF) approach, was developed in the 2000s for survival
analysis,12–14 showing advanced performances in the iden-
tification of important covariates and predictive capability.
Recently, the support vector machine (SVM) was proposed
to process survival data.15 The concept of deep learning,16

as deployed in the AlphaGo program,17 representing the
latest development in artificial intelligence, has also been
adapted for survival analysis.18 Despite these applications of
ML algorithms, the ML-based survival analysis has not been
well recognized and there is currently no systematic eval-
uation for ML algorithms with regard to their performance
advantages over the conventionally used regression-based
methods (e.g., Cox model). In this study, we performed
extensive simulations to evaluate: i) whether performances
of conventional regression-based methods can be signifi-
cantly compromised if the survival data defy their specific
model assumptions; ii) whether the ML-based methods
outperform the conventional methods in scenarios when the
true underlying hazard function assumes more complex rela-
tionships with the corresponding covariates; and iii) whether
the ML-based methods are capable of accommodating
high-dimensional survival data and are superior to conven-
tional methods in both identifying the significant covariates
and making reliable predictions. Furthermore, based on a set
of covariate effects derived from a real exposure–response
(E-R) analysis of an anticancer therapy study, we simulated
real-world survival data sets to assess the effectiveness and
flexibility of ML-based methods. For the ML-based methods,
we adopted the well-developed ANN and RSF as proxies for
the ML approach, whereas the ordinary Cox model was used
as a representative proxy for the regression-based survival
analysis method. In the remainder of this article, without
loss of generality, right-censored data were generated in the
simulations.

METHODS

Descriptions of established methodologies are provided in
the Supplementary Information, with only critical aspects
of the procedures highlighted here.

Simulations of time-to-event data
Simulations of survival data hold unique strength in investi-
gating the specific properties, performance, and adequacy
of survival analysis methods. Survival data in this study were
simulated based on preset Cox models,19 yet with specific
changes. Without loss of generality, the Weibull distribu-
tion was used for survival time generation. By changing the

Table 1 Summary of simulated bivariate models ( β1 = −0.6, β2 = 0.3)

Model Description
Relationship for covariates

in hazard function

I Linear β1x1 + β2x2

II Nonlinear β1ex1
2 + β2cosx2

III Interaction 2x1x2

IV Nonlinear + Interaction β1ex1
2 + β2cosx2 + 2x1x2

V Nonlinear + Interaction
+ Correlation

β1e
x21 + β2cosx2 + 2x1x2,
cor(x1, x2 ) = 0.7

Table 2 Summary of clinically relevant models for data generation

Model Description Relationship for covariates in hazard function

A
Interaction

between ECOG
and Ctrough

β1 × ECOG+ β2 × Tumor size+ β3 ×Ctrough

+ β13 × ECOG×Ctrough

B Nonlinear drug
exposure effects

β1 × ECOG+ β2 × Tumor size

+ β13 × 60×Ctrough
30+Ctrough

C

Interaction
between

nonlinear drug
exposure effect

and ECOG

β1 × ECOG+ β2 × Tumor size

+ β13 × 60×Ctrough
30+Ctrough × (1 − ECOG)

relations of predictor variables in the hazard function, more
nonlinear cases can be created. Detailed mathematical for-
mulation and the procedure of simulating survival data with
preset censoring rate is described in the Supplementary
Information.

We simulated the survival data via two approaches: i)
by hypothetical mathematical models (Table 1), and ii) by
clinically relevant models (Table 2). With approach i, six
groups of survival data sets were generated with different
relationships between the predictor variables in the hazard
function: (1) linear, (2) nonlinear, (3) interaction, (4) nonlin-
ear + interaction, (5) nonlinear + interaction + correlation,
and (6) high-dimension. With approach ii, three groups of
survival data sets were simulated based on a real-world E-R
relationship for an anticancer drug with different relationships
for the predictor variables, including (A) linear + interaction,
(B) nonlinear, and (C) nonlinear + interaction. In each group,
multiple data sets (e.g., 500) were generated to conduct
predictive performance evaluations. Each data set consisted
of training data and testing data that were independently
generated from the same given model.

Machine-learning based survival analysis
In recent years, ML algorithms have been extensively dis-
posed in various domains; in this study, two well-established
ML-based methods, RSF and ANN, were applied on sim-
ulation data for survival analysis. The methodologies are
provided in the Supplementary Information. For RSF, 200
trees were built and a log-rank splitting rule for survival
curves20 was applied to establish the model. For ANN, we
adopted the partial logistic regression approach (PLANN)10

based on a three-layer, feed-forward neural network among
several previously proposed ANN strategies for survival
analysis.10,21,22,34 A grid search strategy was incorporated for
finding the optimal setting of ANN by fivefold validation.23
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Performance evaluation for survival model
It is desirable that a survival model could correctly distin-
guish between high-risk and low-risk individuals, and pre-
dict a probability of the event of interest prior to a specified
time. Prediction accuracy is therefore an important metric
for performance evaluation of a survival model. One popu-
lar evaluation metric for prediction accuracy, concordance
index (C-index)24 (see Supplementary Information for the
estimation procedure), was used to compare model perfor-
mance between the conventional Cox model and ML-based
approaches (i.e., RSF and ANN). The C-index is related to
the area under the receiving operating characteristic (ROC)
curve, and is regularly used as prediction error estimation. In
addition, the C-index does not depend on a single fixed time
for evaluation, and specifically accounts for the presence of
the censoring. Over multiple simulation data sets, mean C-
index was obtained for the same given model to mitigate the
stochastic effect from randomly generated data sets.

RESULTS
Simulations based on mathematical models
To demonstrate the appealing properties of ML-based
approaches in survival analysis, e.g., minimal assumption for
data and capacity to deal with high-dimensional data, we
simulated six groups of survival data from hypothetical math-
ematical models (1–6) (see METHODS section). As shown
in Table 1, five bivariate models (I–V) were designed to rep-
resent various relationships among predictor variables x =
(x1, x2 ) with progressively increasing complexity. In Model I,
two covariates have an effect on the hazard with linear rela-
tionships. Model II assumes a case where covariate affects
the risk function nonlinearly. Interaction between covariates
is manifested in Model III. Model IV consists of both a non-
linear and interaction term of covariates. In Model V, the rela-
tionship among covariates remains the same as Model IV,
while covariates are correlated.We designedModel VI to rep-
resent the high-dimensional scenario, in which 250 covari-
ates were sampled from multivariate normal distribution with
200 observations. In the model, 250 covariates follow linear
additive relationship, and the covariate coefficients are set to
zero except for the first 25 covariates (covariate coefficients
as 0.2; mutually correlated with each other with correlation
coefficient of 0.7), so that we can examine if a survival model
can correctly describe such high-dimensional data, and offer
insights into the preset important covariates even when they
are sparse (i.e., 25/250). BothML-basedmethodologies (RSF
and ANN) and the Cox model are applied to the simulated
data for performance evaluations.

Visual inspection of simulated data
Survival data were generated from Models I-V with sample
size n = 500 and censoring rate of 0.25. Figure 1 displays
the Kaplan–Meier25 curves of the generated data from the
five models. The curve for Model I (linear additive relation-
ship between covariates; lower green curve) is significantly
different from the other Models, despite the covariates
being drawn from the same distribution, suggesting that
relationship assumption among covariates may have sig-
nificant impact on survival assessment. If the real survival
data defy the linear additive assumption (say “nonlinear

Figure 1 Kaplan–Meier survival curves for the simulation data sets
from bivariate models I–V. Shaded areas denote the confidence
intervals (α = 0.05).

relationship” as Model II), application of the Cox model to
the data is equivalent to using the model suitable for Model I
curve to analyze Model II curve (Figure 1), where suboptimal
estimation due to model misspecification could be expected.

Predictive performance of different survival analysis
models
For each of Models from I to V, 500 data sets were inde-
pendently generated, in which each data set consists of
one training and one testing data independently gener-
ated from the given model with the sample size of 500
and censoring rate of 0.25. For each data set, the train-
ing data were used to fit the Cox model or train the ML-
based method (i.e., RSF and ANN, respectively), whereas
the testing data were used to examine the prediction abil-
ity reflected by the C-index (briefly, a value of 1 rep-
resenting perfect prediction, while a value of 0.5 refers
to a random guess; see METHODS for the details). For
the 500 data sets, the mean prediction assessment (aver-
age C-index value) was obtained for the given Model.
Figure 2 shows an example of survival predictions of two
virtual subjects from a data set generated by Model II. In this
case, the “red” subject had an event at the 19th day, while the
“green” subject had an event at the 85th day. The true under-
lying survival functions (dotted curves) reflect that the “red”
subject has lower survival probability than the “green” sub-
ject. Predictions from the Cox model (dashed curves) yielded
the reversed survival curves (i.e., the “red” subject has a
greater survival probability than the “green” subject, which
is opposite to the true setting), while RSF (solid curves) pro-
vided correct predictions for these two subjects and steep
decreases of survival probability can be seen around the 19th

and 85th day for them, respectively. This example shows the
insufficiency of the Cox model in analyzing survival data with
a nonlinear relationship among predictor variables. In a sim-
ilar manner, performance comparisons were conducted for
all models and for all survival analysis methods. The results
of the prediction ability by C-index are shown in Figure 3.
From the figure, there is no significant difference in prediction
performance for Model I (Linear) between Cox model and ML

www.cts-journal.com
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Figure 2 An example of survival prediction performance for two
hypothetical subjects. In simulation, the “red” subject experienced
an event at 19th day, and the “green” sample experienced an event
at 85th day. S(t ) indicates survival function; RSF, random survival
forest; ANN, artificial neural network.

approaches. For Models II–V that are not linear or additive
for covariates in the hazard function, the Cox model gener-
ally provided a C-index score of around 0.5 (meaning random
guessing for prediction), while the ML-based approach pro-
vided a C-index of around 0.75, in which RSF demonstrated
slightly better prediction ability than ANN.
For simulated data based on Model VI (high-

dimensionality), the Cox model failed to yield reasonable
estimation due to the parameter identifiability issue (i.e.,
number of observations (200) less than number (250) of
predictor variables). In contrast, the ML-based approaches
RSF and ANN produced C-index values around 0.71 for
predictive performance assessment. Importantly, ML-based
approaches were also able to capture influential predictors
based on their relative importance for ANN,26 and variable
importance (VIMP) for RSF.12,27 Relative importance is esti-
mated directly from neural network weight connections,
while VIMP is calculated by prediction error change after
noising up a variable. For both metrics, positive values
indicate the corresponding variables have high predictive
power, while zero or negative values indicate nonpredictive
variables with low predictive power. When applied to simu-
lated data by Model VI, both ANN and RSF identified the first
25 important covariates set by the true model, as illustrated
in Figure 4. These results, taken together, demonstrate that

ML-based approaches can outperform the Cox model for
the survival data with nonlinear and additive relationships in
the hazard function and high dimensionality.

Data sensitivity testing
The above simulations were performed with predefined sam-
ple size (n= 500 forModels I–V, and n= 200 forModel VI) and
censoring rate (0.25). In this section, the effects of sample
size and censoring rate on model performances were exam-
ined to test the robustness of ML-based survival methods.

First, the impact of censoring rate was investigated, where
the censoring rate from 0 through 0.25 and 0.5 to 0.75 was
used to generate survival data for each simulation model.
Following the same procedure as the previous section, the
ML-based methods and Cox model were applied to the gen-
erated survival data to conduct predictions. The C-index
was then calculated to measure the predictive performance
of different survival analysis methods (Supplementary
Figure S1). In general, predictions based on low-level cen-
soring data provided greater C-index values, suggesting that
data censoring negatively affected the survival prediction for
all approaches. Given a fixed censoring rate, ML approaches
outperformed the Cox regression model in predictive per-
formance for Models II–V that represent nonlinear relation-
ships for predictor variables in the hazard function. For high-
dimensional data generated from Model VI, the Cox model
could not work properly due to over-parameterization. For
Model II–VI, the RSF and ANN rendered similar C-index val-
ues. For Model I, all approaches provided comparable C-
index values when the censoring rate was low (e.g., 0); how-
ever, when the censoring rates were high (e.g., 0.75), the Cox
model offered slightly better prediction accuracy than the
ML-based approaches. This is partly because the simulation
data were generated by the same Coxmodel used for regres-
sion. The study results also indicate that, in the presence
of model misspecification for scenarios of Model II–IV, the
performance of the Cox model can be significantly compro-
mised, and the performance of the RSF and ANN methods,
as fully data-driven methods, can be negatively impacted
when the data censoring rate is high but at a lesser extent
than the Cox model.

Subsequently, to investigate the effect of sample size
on predictive performance, survival data were generated
at varying sample sizes, n = 200, 400, 600, 800, 1,000
with a fixed censoring rate of 0.25. The study results show

Figure 3 Prediction errors in terms of C-index (concordance index) by Cox model, ANN, and RSF. Results are based on 500 repeated
simulations. Mean and standard deviation of C-index are displayed.

Clinical and Translational Science
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Figure 4 The predictor importance of ANN and RSF for high-dimensional simulated data based on Model VI, evaluated by relative impor-
tance and VIMP, respectively. The preset significant covariates are indicated in red. The results showed that the first preset 25 important
covariates were identified with relatively larger importance values than the nonsignificant covariates by both RSF and ANN.

that both ML-based approaches consistently gave greater
C-index values than the Cox model regardless of sample
size for data sets generated from Models II–V. For Model VI,
RSF and ANN yielded similar C-index values across all sam-
ple sizes, except for a slight decrease for ANN when sample
size was 200. In contrast, the Cox model failed to converge
at sample size n = 200, and generated increasing C-index
values that reached its maximum at n = 400. The C-index
values for Cox model were consistently lower than those for
ML-based approaches (Supplementary Figure S2). For data
generated fromModel I, the Coxmodel performs slightly bet-
ter than ML-based approaches, as the Cox model is the true
model used for data generation.

Model evaluation using clinically relevant simulated data
To further verify the usefulness of ML-based survival meth-
ods, a well-established clinical model was used to simulate
the survival data for performance check. Specifically, survival
data were generated based on a real-case drug E-R analy-
sis model. E-R analysis examines the relationship between
drug exposure and clinical outcomes that are often binary
outcomes (e.g., progression-free survival or overall survival of
cancer patients). It has been reported that, in an E-R analysis,
the effect of drug exposure on clinical outcomes is often con-
founded with other patient-specific risk factors.28 For exam-
ple, for anticancer treatment, clinical response is not only dic-
tated by drug exposure but also by baseline disease severity
and other factors.
The simulations were based on an E-R relationship for an

anticancer drug, derived from an attempt to investigate the
association between overall survival and predictors of inter-
est including drug exposure in terms of drug trough concen-
trations (Ctrough), the Eastern Cooperative Oncology Group
(ECOG) performance score (a metric for quality-of-life (QOL)
with “0” indicating optimal QOL of being fully active and
“1” indicating restrictedness in physically strenuous activity),
and the baseline tumor size. In our simulations, three mod-
els with nonlinear hazard functions (Models A–C in Table 2)
were used to stand for the following scenarios: i) interac-
tion between ECOG and Ctrough (Model A), ii) nonlinear drug
exposure effects (Model B), and iii) interaction between the
nonlinear drug exposure effect and ECOG (Model C). In Mod-

Table 3 Mean and standard deviation of prediction accuracy (C-index) of Cox,
RSF, and ANN for E-R relationship simulations, respectively

Model A Model B Model C

Cox 0.50 ± 0.01 0.49 ± 0.02 0.49 ± 0.02

RSF 0.70 ± 0.01 0.59 ± 0.02 0.70 ± 0.01

ANN 0.68 ± 0.03 0.61 ± 0.02 0.69 ± 0.03

els B and C, the nonlinear drug exposure effect was mod-
eled as an Emax-type function,

Emax×Ctrough
EC50+Ctrough , where the relevant

parameters were derived from registrational clinical trial data.
Survival data were simulated following the same process

as outlined in the previous section. Ctrough and baseline tumor
size were drawn from normal distributions with clinically
observed mean and variances, and ECOG was drawn from a
binomial distribution (Supplementary Table S1). The corre-
sponding coefficients for covariates (i.e., β1, β2, β3 and β13

in Model A) were derived by fitting clinically observed data
with the predefined model (e.g., Model A). For each model,
500 data sets were generated, where each data set consists
of one training data set and one testing data set, with a sam-
ple size of 500 and a censoring rate of 0.25. The Cox model,
ANN, and RSF were applied to the same simulated data for
performance comparison. The C-index was used to assess
the prediction accuracy for the different survival methods.
Summary statistics (mean ± standard deviation) of the C-
index are listed in Table 3. As shown, the Cox model only
produced C-index values round 0.5 for data sets generated
from all three Models A-C. This is expected, as all the simula-
tion models deviate from the linear and additive assumption
underlying the Cox model. In contrast, both ML approaches
gave comparably higher C-index values (�0.7 for Models A
and C, �0.6 for Model B) than the Cox model, suggesting
better predictive performance of ML-based approaches for
survival analysis, especially when the hazard function mani-
fests a more than linear relation to the predictor variables.

DISCUSSION

Cox model is subject to certain modeling assumptions that
are challenging to be fully verified before its use and to
substandard performance for high-dimensional data. In this

www.cts-journal.com
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study, we evaluated the utilization and performance of ML-
based approaches (RSF and ANN as proxies) for survival
analysis as an alternative to the conventional Cox regres-
sion model. Model performances were assessed by apply-
ing the Cox model and ML approaches to the simulated
survival data sets assuming different types of hazard func-
tions for predictor variables with/without high dimensional-
ity. The C-index metric was employed to evaluate and com-
pare their predictive accuracy. Our simulation results, taken
together, suggest that the ML-based approach outperforms
the Cox model either when the hazard function deviates
from linear and additive relationships, or when handling high-
dimensional data, by virtue of its data-adaptive property.
There have been the extensive studies reporting ML appli-

cations in disease diagnosis and prognosis. Based on the
reports, RSF showed superior or noninferior performance to
the Cox model for predicting the survival of patients with
breast cancer,29 prostate cancer,30 and systolic heart failure
based on baseline characteristics.31 ANN was reported to
outperform the Cox model in survival prediction of kidney
failure32 and breast cancer occurrence.33,34 ANN and RSF
were also evaluated to have comparable prediction perfor-
mance in a head-to-head evaluation of breast cancer survival
in microarray studies.33,35 Our study offers a systematic per-
formance evaluation of ML approaches and the Cox model
through simulations with known true models and demon-
strated good prediction performances associated with ML-
based methods.
One appealing feature of ML methods is that it can cope

with data of high-dimensionality, even in situations where
there are more variables than observations. This is consis-
tent with our finding that both ANN and RSF can success-
fully capture the preset significant predictor variables out of
high-dimensional survival data by Garson’s algorithm and
VIMP, respectively. While our main purpose is to demon-
strate how to effectively useMLmethods in high-dimensional
survival problems, it is worth noting that other methods for
covariate importance evaluation are also available, includ-
ing the connection weights approach, the partial derivatives
for ANN (reviewed previously36), and the minimal depth for
RSF.13 To accommodate the Cox model in large feature set-
tings, variable selection and dimension reduction techniques
have been developed, e.g., the univariate shrinkage37 and
penalized partial likelihood approach.38 Nonetheless, these
improved versions should be used with caution, as the linear
additive relationship between covariates in hazard function is
still assumed.
A virtual case was created based on an E-R relationship

that involves both patient-level drug exposure and disease
characteristics as confounding covariates. For all the sce-
narios with different degrees of nonlinearities in the tested
hazard functions, ANN and RSF demonstrate reasonable
predictive performance, while the Cox regression model can
produce random predictions. Given all the flexible features
inherent to the ML techniques, higher regard is warranted to
utilize these approaches in both the regulatory setting and
industrial drug development.
Besides the aforementioned ANN and RSF methods, sev-

eral alternative ML approaches for survival analysis will be
further assessed in our future research. SVM highlights a

more recent ML method that has been adapted to handle
right-censored data in many circumstances. The modified
support vector regression (SVR) algorithm for survival analy-
sis was proposed in 2007.39 Van Belle et al.15 later developed
an SVR-based method making use of ranking and regression
constraints for right-censored data. The results of their study
indicated that the SVR method outperforms the Cox model
for high-dimensional data, while for clinical data the mod-
els have similar performance. Recently, deep learning was
applied to Faraggi-Simon ANN to analyze survival data and
showed better predictive ability when compared with the Cox
model.18 Given the availability ofmultipleML approaches, the
choice of method may depend on the totality of a situation,
including the types of data collected, the size of data set,
and the computational efficiency. To qualify the best model,
a significant number of possible model configurations need
to be assessed. For instance, the architecture of anMLmodel
can be complex, with many potential permutations on fitting
weights, number of hidden nodes, and hyperparameters for
ANN, and number of trees and splitting rules for RSF. At the
same time, caveats should be given to the limitations of ML
approaches, one of which is characterized as a “black box.”
Whereas the regression coefficients in the Cox model can
be interpreted as the likelihood of an outcome given values
of the covariates, neither RSF nor ANN seems suitable for
providing such interpretation. RSF becomes even more of a
black box due to potential model uncertainty induced by the
trees that differ across bootstrap samples. Overall, the suc-
cess of implementing ML-based methods is dictated by both
model selection and model fine-tuning.

In summary, our study demonstrates high flexibility and
reliability of ML-based approaches for survival analysis, even
in situations when the Coxmodel fails to produce results with
the desired accuracy. The study results support the applica-
tion of ML methods for time-to-event analysis.
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