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Abstract: Vascular calcification, which involves the deposition of calcifying particles within the arterial
wall, is mediated by atherosclerosis, vascular smooth muscle cell osteoblastic changes, adventitial
mesenchymal stem cell osteoblastic differentiation, and insufficiency of the calcification inhibitors.
Recent observations implied a role for mesenchymal stem cells and endothelial progenitor cells in
vascular calcification. Mesenchymal stem cells reside in the bone marrow and the adventitial layer of
arteries. Endothelial progenitor cells that originate from the bone marrow are an important mechanism
for repairing injured endothelial cells. Mesenchymal stem cells may differentiate osteogenically
by inflammation or by specific stimuli, which can activate calcification. However, the bioactive
substances secreted from mesenchymal stem cells have been shown to mitigate vascular calcification
by suppressing inflammation, bone morphogenetic protein 2, and the Wingless-INT signal. Vitamin D
deficiency may contribute to vascular calcification. Vitamin D supplement has been used to modulate
the osteoblastic differentiation of mesenchymal stem cells and to lessen vascular injury by stimulating
adhesion and migration of endothelial progenitor cells. This narrative review clarifies the role of
mesenchymal stem cells and the possible role of vitamin D in the mechanisms of vascular calcification.
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1. Introduction

Vascular calcification, which involves the deposition of calcifying particles within the endothelial
layer or smooth muscle within the medial layer, is an important issue due to its associated complications,
such as peripheral arterial occlusive disease and coronary artery disease [1–3]. Several conditions,
including insulin resistance, hypertension, acute decompensated heart failure, chronic kidney disease
(CKD), dyslipidemia, vitamin D deficiency, and metabolic syndrome, are associated with vascular
calcification [4–6]. Vascular calcification is a predictor of overall mortality and poor arteriovenous graft
maturation in patients with CKD [7,8]. As these risk factors can influence the endothelial layer and the
smooth muscle cells simultaneously, measures to prevent them are vital.

Recently, mesenchymal stem cells (MSCs) and endothelial progenitor cells (EPCs) were considered
important for the development of vascular calcification. MSCs are known as either marrow stromal cells,
bone marrow fibroblasts, or skeletal stem cells. They could be classified as bone marrow derived MSCs
or pericytes based on their origin [9]. Following their activation by inflammation or specific stimuli,
they may differentiate osteogenically, which can activate calcification. Kramann et al. suggested that
MSCs within the adventitial layer trigger vascular calcification by translocating into the endothelial
and the medial layers [10]. Microvesicles derived from injured endothelial cells induce vascular
calcification in part through the attraction of MSCs. Transcriptional modulation by specific agents,
such as vitamin D, is a possible therapeutic approach to mitigating such vascular calcification [11].

EPCs originating from the bone marrow were shown to be an important mechanism in the repair of
injured endothelial cells [12]. However, the EPC phenotype was altered under specific pathologic states,
such as the accumulation of uremic toxins [13]. The EPCs with osteogenic character were related to the
severity of the vascular calcification [14], and the pharmacologic dose of active vitamin D supplement
might enhance the expression of calcifying EPCs in CKD patients [15]. However, nutritional vitamin
D supplement may attenuate the severity of vascular calcification or aortic stiffness [16,17]. This
significance deserves further clarify. This review explains a possible role of MSCs and EPCs in the
mechanisms of vascular calcification and a possible role of vitamin D in that mechanism.

2. Mechanism of Vascular Calcification

2.1. Endothelial Injury Causing Vascular Calcification

Vascular calcification is characterized by the deposition of hydroxyapatite crystals within the
arterial layer, which may originate from atherosclerosis or arteriosclerosis (Figure 1, blue arrow). [1].
Calcifying tissue within the vascular layer may originate from apoptosis within endothelial cells
or osteoblastic changes in smooth muscle [18]. The intimal calcification is initiated by the focal
retention of apo B–containing lipoproteins in the subendothelial extracellular matrix [19]. In the
subendothelial layer, lipid-induced sequential migration of macrophages occurs. The macrophage
phagocytizes the lipoprotein cholesterol complex. However, the excessive oxidized lipoprotein induces
macrophage apoptosis [18]. The atheroma with apoptotic macrophages and oxidized lipoprotein
serves as the necrotic core of the subendothelial layer and initiates the process of mineralization [20].
In addition to subendothelial lipid accumulation, the influences of stress on the endothelial layer, such
as the activation of the renin–angiotensin–aldosterone system (RAAS), fluid overload, and insulin
resistance, exacerbates the endothelial injury. Montezano et al. demonstrated the direct effect of
angiotensin II on endothelial injuries; angiotensin II increased the release of reactive oxygen species by
activating vascular nicotinamide adenine dinucleotide phosphate oxidase [21]. Instead of repairing
in the endothelial layer, the replacement of the fibrotic tissue by fibroblasts reduced the endothelial
compliance. Thus, endothelial injury due to calcification was aggravated by the increased shearing
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stress. Subendothelial lipid accumulation initiated endothelial injury, and the subsequent inflammation
triggered by macrophages and the replacement by hydroxyapatite-associated crystals accelerated
atherosclerosis and increased arterial stiffness.
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Figure 1. The mechanism of the vascular calcification based on endothelial injury, vascular smooth
muscle cell (VSMC) calcification, mesenchymal stem cells (MSCs)/pericytes in the adventitial layer,
and the deficiency of calcification inhibitors. Cells from all layers of the vessel wall transformed into
osteoblast-like cells. The atherosclerosis within the endothelium induced endothelial calcification
by releasing matrix vesicles (MV)/extracellular vesicles (EV) with insufficient matrix Gla protein
(MGP)/fetuin A. On the other hand, atherosclerosis also stimulated VSMCs to release MV/EV with
insufficient fetuin A after being injured by uremic toxin or renin–angiotensin–aldosterone system
(RAAS) activation. The adventitial MSCs/pericyte migrated to the medial layer and transdifferentiated
into osteoblast-like cells, which contributed to calcification of the medial layer. CPP: calciprotein particle.

2.2. The Role of Vascular Smooth Muscle Ccells (VSMCs) in Vascular Calcification

Vascular smooth muscle cells (VSMCs) within the medial layer of the arteries underwent rapid
morphologic and functional changes after confronting environmental stimuli [22]. Specific stimuli
on the smooth muscle layer activated osteoblastic-like differentiation, such as hyperphosphatemia.
Hyperphosphatemia is a common complication in CKD patients because of the decrease in the renal
clearance of phosphate, which is also related to cardiovascular mortality [23]. Giachelli et al. found
that inorganic phosphate promoted the osteogenic differentiation of VSMC directly by induction of a
sodium-dependent phosphate transporter (Pit-1) [24]. The core-binding factor α-1 (Cbfa-1) served as
the transcription factor activated during the osteogenic differentiation by inducing the expression of
tissue-nonspecific alkaline phosphatase [25–27].
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During this osteoblastic transdifferentation process, translation of the Runx-activated canonical
Wingless-INT (Wnt)-β-catenin signaling accelerated active calcium deposition and vascular calcification
(Figure 1, yellow and blue arrow) [28]. Downstream bone morphogenetic protein 2 (BMP2) was
activated by Wnt and propagated the osteogenic differentiation [29]. Hyperphosphatemia also
stimulated the serum- and the glucocorticoid-inducible kinase (SGK1) with subsequent activation of
the transcription factor NF-kB in VSMCs [30,31]. Therefore, hyperphosphatemia-mediated osteoblastic
change within the smooth muscle layer may be a prominent mechanism of vascular calcification.
However, the release of matrix vesicles from VSMCs was also associated with vascular calcification [32].

In hyperphosphatemia, proliferative VSMCs with low calcitonin and α-smooth muscle actin
were found to serve as the transitional form between contractile and calcifying smooth muscle cells.
Hyperphosphatemia also stimulated the VSMC apoptosis process [33]. The apoptotic body originating
from VSMCs served as the nucleation site of mineral deposition [34]. Inorganic pyrophosphate
originated from VSMC serves as the endogenous calcification inhibitors by the ectonucleotide
pyrophosphatase/phosphodiesterase (ENPP1) mediated breakdown of nucleotide triphosphates or
by the transmembrane protein ankylosis protein homolog (ANKH) mediated transportation. [35]. If
the matrix vesicles (MV) contained sufficient calcification inhibitors, such as fetuin-A, the vascular
calcification process would be mitigated [33,36]. Therefore, lessening the phosphate burden is important
in preventing cardiovascular damage in CKD patients.

Beyond the hyperphosphatemia, protein-bound uremic toxin (e.g., indoxy sulfate) might induce
phenotypic changes within the VSMCs by increasing the oxidative stress. Uremic toxins were able to
alter the glucose metabolism within the VSMCs (and/or endothelial cells) and therefore increased the
cellular release of the calcifying exosome into the artery and worsened the vascular calcification [37].
The uremic toxin also induced the osteoblastic differentiation of VSMCs and promoted further
calcification [38]. This evidence indicated that, in CKD patients, the VSMC phenotype might be
modulated, and osteoblastic differentiation might be initiated.

The role of vitamin D on VSMCs has been discussed in many studies. Valcheva et al. noticed that the
VSMCs from vitamin D receptor-knock out mice had higher renin activity and premature senescence [39].
Based on the current evidence, in vitro studies demonstrated that vitamin D inhibited the mineralization
of VSMCs treated with phosphate and tumor necrosis factor alpha (TNF-α) [40]. On the other hand,
Chen et al. provided evidence that 1,25(OH)2D decreased VSMCs treated with endothelin mediated
by cyclin-dependent kinase 2 (Cdk-2) activity [41]. Contrary evidence also demonstrated the vitamin
D might stimulate vascular calcification by modulating the expression of parathyroid hormone-related
peptide or the receptor activator of nuclear factor kappa-B ligand/osteoprotegerin of VSMC [42,43].
The pharmacologic or the supraphysiologic concentrations of active or nutritional vitamin D might
contribute to the vascular calcification in vivo studies [44,45]. Therefore, vitamin D has rather complex
effects on calcification from the aspect of VSMC, and more advanced studies are needed to elucidate
the role of vitamin D in vascular calcification.

2.3. The Role of Adventitial MSCs and Pericyte in Vascular Calcification

Adventitial MSCs (cluster of differentiation (CD)34+ CD31- CD146- CD45- [46]) are considered
to contribute to vascular calcification. From the postmortem study of Yang et al., adventitial
calcification occurred during the process of intracranial artery calcification [47], and the measurable
adventitial vaso vasorum was predictive of the progressive atherosclerotic change in the intracranial
arteries [48]. Researchers demonstrated that MSCs reside within the adventitial layer [46], and that
MSC differentiation might be initiated after vascular injury. For instance, angiotensin II sensitized the
MSCs with fibrogenic character by activating NF-κB [49].

Tang et al. provided evidence that the adventitial MSCs carrying the stem cell antigen 1 (Sca-1)
surface protein were activated to repair arterial injuries [50]. At the same time, multiple inflammatory
cells lie within the adventitial layer, and the pathologic status might dysregulate the repair process
and induce vascular calcification (Figure 1, yellow arrow) [51]. Del Toro et al. reported that, in vivo,
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the adventitial MSC activated chemokine-mediated monocyte and neutrophil aggregation, thus
exacerbating subendothelial injury [52]. Kramann et al. reported that vascular calcification could be
reversed after the genetic ablation of glioma-associated oncogene homolog 1 (Gli1) for the migration of
MSCs carrying human Gli1 from the adventitial layer to the smooth muscle and the endothelial layers
in specific animal models (such as those fed with high-fat diets or nephrectomized rats) [10].

Sun et al. demonstrated that human adventitial progenitor cells carrying CD10, a common
surface marker of acute lymphoblastic leukemia and lymphoid progenitors, have the potential for
osteogenic differentiation through the Sonic hedgehog-signaling pathway [53]. In addition to MSCs,
pericytes residing within the adventitia can migrate after intimal injury. Pericytes (with surface markers
platelet-derived growth factor receptor (PDGF-R)β, α-smooth muscle actin (αSMA), and Neural/glial
antigen 2 (NG-2) [54]) are located within the adventitial layer of the vasa vasorum. Vascular injury
induces pericyte differentiation and migration during neointima formation and vascular calcification.
After arterial injury, the pericyte itself contributed to the restenosis after arterial injury by modulating
the PDGF signaling [54,55]. The role of MSCs within the adventitial layer is still not clear in humans.
Based on the recent studies, the adventitial MSCs phenotype could be modified by endothelial injury
and arteriosclerosis, and such modifications might worsen the vascular calcification. The strategy on
modulating adventitial MSCs could be a new aspect in the future.

2.4. The Role of Matrix Vesicles/Exosomes and Calciprotein Particles Containing Insufficient Calcification
Inhibitors

Plasma is always supersaturated with respect to the apatitic solid phase [56]. In research
on osteoporosis and adynamic bone disease, the exchangeable calcium and phosphate pool was
supersaturated, and sequential crystal formation occurred if there were no sufficient calcification
inhibitors [57,58]. As mentioned previously, endothelial cells or VSMCs released exosomes or matrix
vesicles when damaged. The chemokine homeostasis would be disrupted when recruiting erythrocytes,
or platelets could release extracellular vesicles at the damaged endothelium [59]. In osteochondrogenic
VSMCs, calcifying cells released matrix vesicles containing calcium, phosphate, lipoprotein, and
calcification inhibitors [36]. The released exosome containing specific microRNA(miR), such as
miR-135a(*), miR-762, miR-714, and miR-712 [60], or miR-32 [61], could be transported into nearby
VSMC in a heparin sulphate proteoglycans (HSPG)-dependent manner [62], and such exosomes could
stimulate osteogenic differentiation of VSMC.

The calcification inhibitors were assembled with apolipoprotein, crystalline, and amorphous
hydroxyapatite calcium as calciprotein particles (CPPs) [63]. As the CPPs contained sufficient
calcification inhibitors, such as fetuin-A, the CPPs were integrated into spherical rather than
unstructured minerals. Such CPPs are called primary CPPs, and the primary CPPs were cleared through
the scavenger receptor A, present on hepatic endothelial cells [63,64]. In subjects with insufficient
calcification inhibitors, the CPPs turned into unstructured minerals with a diameter of 120–150
nm, which was larger than the primary CPPs (60–70 nm) [6]. These unstructured CPPs are called
secondary CPPs, and such secondary CPPs were predictive for vascular calcification and cardiovascular
mortality in uremic patients (Figure 1) [65]. Clinical evidence suggested that patients with CKD
and a higher concentration of secondary CPPs had a higher incidence of vascular calcification [66].
Therefore, maintaining sufficient calcification inhibitors should be a therapeutic strategy for treating
vascular calcification.

Among the calcification inhibitors, matrix Gla protein (MGP) phosphorylation and carboxylation
provided the effectiveness for chelating calcium [67]. Vitamin K is essential for the post-translational
conversion to γ-carboxyglutamate [68]. Under vitamin K sufficient status, phosphorylated MGP also
avoided osteoblastic changes of VSMCs [69]. Mature MGP formed mineralized complex with fetuin-A,
calcium, and phosphorus ion to lessen the mineral composition within vessels (Figure 1) [70]. In
CKD patients, the secondary CPP was associated with insufficient MGP [71]. It is rational to supply
vitamin K in subjects such as CKD patients with vitamin K deficiency [72]. Vitamin D deficiency,
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which is common in CKD patients, involves a functional vitamin K deficiency [73]. Cashman et
al. provided evidence that the vitamin D status was correlated negatively with the uncarboxylated
osteocalcin [74]. On the other hand, vitamin D might enhance the carboxylated MGP productions
based on in vitro and in vivo evidence. In the osteoblast, vitamin D induced osteogenesis by enhancing
γ-carboxylated-MGP-containing osteocalcin [75]. After treating the vitamins D and K with the osteoblast
from the diabetic mice, the bone anabolism was enhanced [73]. In this manner, the extraosseous
calcification might be lessened. Therefore, vitamin D supplements should be another strategy in
treating vascular calcification based on the aspects of the CPPs.

3. The Role of EPCs, Hematopoietic Progenitor Cells, and MSCs in Vascular Calcification

From the traditional aspects, vascular calcification involves subendothelial hydroxyapatite
formation, the osteogenic transformation of smooth muscle cells, and dysregulation/reductions in the
activity of calcification inhibitors. In severe cases of ischemic limbs or peripheral occlusive arterial
disease, the exhausted production of endothelial/hematopoietic stem cells and bone marrow MSCs
contributes to the progression of vascular calcification.

3.1. EPCs and Arterial Calcification

As subendothelial atheroma occludes arteries, hypoxia-inducible factor-1-alpha (HIF-1-alpha)
regulates the gene expression of vascular endothelial growth factor (VEGF). The activated VEGF
was shown to modulate matrix metalloproteinase-9 (MMP-9) activity and increase the mobilization
of EPCs [76]. In physiological hypoxia, angiogenesis was shown to repair a damaged endothelium
by promoting the differentiation of EPCs [77]. The circulating EPCs migrated and invaded the
subendothelial region to replace injured endothelial cells and regulated the differentiation of the
surrounding stromal cells [78]. However, the circulating EPCs may be stimulated into endothelial
regeneration or calcification. For example, in patients with end-stage renal disease, EPCs with surface
markers of CD34+/CD133−/KDR+/CD45− were activated by active vitamin D, which lowered the
expression of osteocalcin [79]. Furthermore, the concentration of circulating endothelial cells with
markers of CD34+/CD133+/KDR+ can predict cardiovascular mortality in patients with atherosclerosis
and those requiring hemodialysis [80]. However, EPCs bearing the markers CD34+/CD133+/VEGFR+

can enable vasculogenesis [81]. In patients with CKD, the accumulation of uremic toxin disrupted EPC
migration into the endothelium. Wu et al. demonstrated that the protein-bound uremic toxin indoxyl
sulfate down-regulated endothelial vacuolization by disrupting the effect of HIF-1-alpha [13]. Thus,
indoxyl sulfate disrupted EPCs regeneration and endothelial repair.

3.2. Hematopoietic Progenitor Cells and Arterial Calcification

The hematopoietic progenitor cells originating in the bone marrow can differentiate into the
myeloid and the lymphoid progenitor cells under oxidative stress. Dutta et al. first demonstrated in an
animal model that a myocardial infarction stimulated hematopoietic progenitor cells production and
worsened atherosclerosis [82]. Chronic stress decreased the expression of chemokine (C-X-C motif)
ligand 12 CXCL12 within the bone marrow and facilitated the release of inflammatory monocytes and
neutrophils [83]. The endothelial chondrocyte-like phenotype is common during vascular calcification,
and monocytic cells can be programmed through stimulation of inflammatory cytokines, such as
transforming growth factor-1β, to differentiate with chondrocyte characters, such as generate type II
collagens [84].

Doehring et al. demonstrated that transplanted bone marrow CD34+/CD13+ myeloid progenitor
cells transdifferentiated into chondrocyte-like cells in an atherosclerotic animal model [85]. Thus, bone
marrow hematopoietic progenitor cells can be conditionally stimulated into monocytes or osteoclasts,
which may regulate osteogenesis within the endothelial or the arterial smooth muscle cells. Recently,
Cho et al. showed that bone marrow–derived hematopoietic progenitor cells (Sca-1+/PDGFRα−) have
osteoclastogenic potency, which can lead to osteoclast-mediated bone resorption.
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As inflammatory cytokines, such as interleukin-1 or interleukin-5, increased, Sca-1+/PDGFRα−
decreased and was associated with more severe osteogenesis and vascular calcification within the
vascular wall [86]. Recently, Frodermann et al. provided evidence that the exercise decreased the
release of hematopoietic progenitor cells from the bone marrow by modulating the leptin release from
the adipocyte. In this manner, the cardiovascular damage was relieved by lessening the inflammatory
process [87]. This evidence gave us clues that the pathologic status induced the inflammatory
differentiation of hematopoietic progenitor cells, and that such inflammation worsened the endothelial
injury. Certain interventions lessening the differentiation might be a therapeutic strategy for treating
endothelial injuries and sequential vascular calcification.

3.3. MSCs and Arterial Calcification

MSCs are multipotential stromal cells that can differentiate into osteoblasts, chondrocytes,
or adipocytes. MSCs reside within adipose tissue, bone marrow, the umbilical cord, and the
adventitial/medial layer of the vasculature. Cluster of differentiation (CD) markers indicate the
origin of MSCs. For example, stromal stem cells from bone marrow have the surface markers SH2,
SH3, CD29, CD44, CD71, CD90, CD106, CD120a, and CD124. The surface markers of MSCs determine
whether they have the potential to differentiate into endothelial cells under specific stimuli. Miranville
et al. demonstrated that adipose tissue-derived MSCs with CD34+/CD31−markers differentiated into
endothelial cells and alleviated neointima formation [88]. However, MSCs residing within tissues other
than the adventitial layer contributed to inflammation rather than differentiation into endothelial cells
during osteogenic differentiation [89]. This was because MSCs that originated from adipose tissue or
bone marrow required collagenase to cleave the hindrance posed by the stromal cells [90]. In summary,
adipose MSCs have potential for osteogenic differentiation, and such characteristics might be related
to the development of vascular calcification.

3.4. Extracelluar Vesicles and Calciprotein Particles Stimulated by MSCs

Extracellular vesicles are the double-layer phospholipid membrane vesicles released from
cells. They encapsulate biological molecules such as nucleic acids, diverse cellular proteins, and
metabolites [91,92]. As the extracellular vesicle might contain microRNA or specific proteins, it served
as the intercellular communication [91]. MSCs had anti-inflammatory and or immunosuppressive
properties [93], and the exosomes released from MSCs were identified as a possible therapeutic target
for vascular calcification [94]. G Sahoo et al. showed that the exosome released from human stem
cells induced endothelial viability in a paracrine manner [95]. Guo et al. reported that exosomes from
bone marrow–derived MSCs bear the surface markers CD63 and CD81. Such exosomes hampered
VSMC calcification by modulating the microRNA regulating the mitogen-activated protein kinase
(MAPK) or the Wnt signaling pathways [96]. Wei et al. demonstrated that extracellular vesicles isolated
from the MSCs and coated with heparin-based vehicles maintained patency after arterial graft in
rats. This effect was modulated through the transfection of extracellular vesicles from atherogenic
macrophages into anti-inflammatory and antiosteogenic macrophages [97]. From the evidence above,
the undifferentiated MSCs had anti-inflammatory and/or immunosuppressive properties, and the
extracellular vesicles released from MSCs might be a therapeutic strategy for vascular calcification by
reducing inflammation.

4. Possible Therapeutic Roles of Vitamin D in MSCs and Vascular Calcification

Vitamin D is an essential hormone provided through exposure to sunlight or through intake
from the diet. There are two major types, ergocalciferol and cholecalciferol. After being radiated by
ultra-violet B (UVB) light at wavelengths of 290–315 nm, the ergosterol in plants or fungi is synthesized
into ergocalciferol. Cholecalciferol originates from keratinocytes. After being radiated by UVB,
7-dehydrocholesterol is transformed into cholecalciferol [98]. The body’s synthesized cholecalciferol
or ingested ergocalciferol/cholecalciferol is transported to the liver by a vitamin D transport protein
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and hydroxylased within the liver, where the vitamin D is transformed into 25-hydroxy vitamin D
(25(OH)D, which is transported to the kidneys to be converted to 1,25(OH)2D by 1-alpha hydroxylase.
The 1,25(OH)2D is then transported from the cytoplasm into the nucleus to interact with the vitamin D
binding protein, which binds to the vitamin D receptor element so that vitamin D can influence the
transcription of specific genes [99].

Vitamin D deficiency is common in CKD and diabetes mellitus for several reasons: (1) renal
deterioration and proteinuria [100–102], (2) reduced 1-alpha hydroxylase activity within the kidney [103,
104], (3) increased catabolism of 25(OH)D into inactive metabolite 24,25(OH)2D [103,105], and (4)
pharmacological concentrations of vitamin D [106]. Current active vitamin D supplements have
microgram concentrations [107]. In vitro studies demonstrated that supraphysiological concentrations
of active vitamin D influenced the 25(OH)D production in the liver.

In CKD patients, 1,25(OH)2D was interfered with by fibroblast growth factor 23 (FGF23). FGF23
is the hormone secreted from osteocytes. In the CKD patients with decreased renal excretion of
inorganic phosphates, FGF 23 served as the phosphaturic hormone to decrease the reabsorption of
phosphate from the proximal tubule in the kidneys [108]. FGF23 directly suppressed the activity of
1-α hydroxylase and increased the activity of 25-hydroxyvitamin D3-24-hydroxylase [109,110]. The
decrease of vitamin D and the increase of FGF23 interfered with the osteogenic differentiation of bone
marrow MSCs in CKD patients [111–113]. Therefore, the correction of vitamin D deficiency is critical to
the treatment of vascular calcification, and the synergy of vitamin D and MSCs should be considered
in the treatment of vascular calcification.

Vitamin D deficiency is a risk factor and a predictor for cardiovascular disease [114].
In epidemiological studies, vitamin D deficiency was associated with a higher incidence of
hypertension [115], coronary artery disease (CAD) [116], fatal stroke [117], and peripheral arterial
disease [118]. Vitamin D deficiency itself was associated with impaired peripheral insulin
sensitivity [119] and arterial stiffness [120]. The role of vitamin D in vascular disease involves
immune modulation by moderating the release of anti-inflammatory cytokines by macrophages [121]
or the reduction of RAAS hyperactivity [122,123]. Moreover, vitamin D can regulate carboxylation of
the vitamin K-mediated MGP. Carboxylated MGP chelates excessive calcium and lessens extraosseous
calcification. Vitamin D enhances osteocalcin and MGP production within osteoblasts. The downstream
carboxylation of osteocalcin and MGP improves bone mineralization and mitigates extraskeletal
calcification [6]. Beyond the aspects above, the adjunctive role of the vitamin D on MSCs or EPCs in
treating vascular calcification is discussed as below.

4.1. The Influence of Vitamin D on EPCs in Vascular Calcification

Vitamin D receptor expression can predict cardiovascular disease. Ai et al. demonstrated
that patients with CAD had fewer vitamin D receptors on EPCs than did control patients
(Table 1) [124]. Vitamin D supplementation can accelerate EPC migration and differentiation through
an angiogenesis-associated pathway. Grundmann et al. showed that endothelial colony-forming cells
expressed mRNA of VEGF and pro-matrix metalloproteinase (pro-MMP) activity after treatment with
physiological concentrations of 1,25(OH)2D in vitro (Table 1) [125]. Additionally, Schröder-Heurich
et al. demonstrated that 1,25(OH)2D increased endothelial progenitor adhesion by alleviating the
inflammatory signals of TNF-α in vitro (Table 1) [126].
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Table 1. The influence of vitamin D on EPCs in the development of vascular calcification.

Performance of EPCs Characteristics Surface Marker

Vitamin D receptors on EPCs Decrease in coronary artery
disease (CAD) [124] CD45dim, CD34+, and KDR+

EPCs migration and differentiation Accelerated [125] CD34+, CD31+, CD45−, and CD133−
Endothelial colony-forming cells
expressed mRNA of VEGF and
pro–matrix metalloproteinase

(pro-MMP) activity

Increased [125] CD34+, CD31+, CD45−, and CD133−

Endothelial progenitor adhesion Increased [126] CD31+, CD45+, and CD133+

Migration of the EPCs from the
bone marrow Increased [127]

1,1′-Dioctadecyl-3,3,3′,3′-tetramethylindocarbocyanine-labeled
acetylated low density lipoprotein and fluorescein

isothiocyanate -Ulex europaeus agglutinin-1
Formation of VE-cadherin

adhesion junctions on the EPCs Increased [126] CD31+, CD45+, and CD133+

EPC injury by Ang II through
modulating the PPAR-γ/HO-1

pathway
Decreased [128] VEGF-2+ and CD13+

EPC viability Improved [129] CD34+ and KDR+

Yu et al. found, in vitro, that physiological concentrations of 1,25(OH)2D altered the RNA
expression profile of EPCs treated with high glucose [127]. Differentially expressed RNA influenced the
activity of MMP and guanosine-5’-triphosphatase, which are related to EPC migration. These in vitro
studies demonstrated that 1,25(OD)2D supplementation at physiological concentrations improved
the adhesion of the EPCs in the injured endothelium and stimulated the migration of EPCs from the
bone marrow.

Schröder-Heurich et al. also demonstrated that the adequate vitamin D supplement promoted
the formation of VE-cadherin adhesion junctions on the EPCs. In this manner, the endothelial barrier
integrity pretreated with TNF-α was repaired. Xu et al. also demonstrated that, in vitro, vitamin D
alleviated EPC injuries, which were treated with Ang II by modulating the PPAR-γ/HO-1 pathway.
The angiogenesis impaired by Ang II would be restored after vitamin D was supplied at cellular level
(Table 1) [128]. At the same time, the study from Hammer et al. provided evidence that the calcitriol
supplement improved EPCs viability in vitro (Table 1) [129]. These in vitro studies showed the possible
therapeutic effect of the vitamin D on EPC migration and adhesion as well as the enhancement of the
endothelial integrities under the circumstances involving vascular injury.

4.2. The Role of Vitamin D and MSCs/Pericytes in Vascular Calcification

Beyond the ability to differentiate osteoblasts, adipocytes, and chondroblasts, MSCs demonstrated
anti-inflammatory and immune regulation functions [130,131]. An in vivo study initiated by Kramann
et al. showed that the osteoblast-like character was initiated under specific circumstances, such
as uremia [132]. The inflammatory cytokines released from the injured aorta, such as TGF-β1,
mobilized MSC migration for neointimal formation [133]. However, Wang et al. provided in vitro
evidence that the conditioned medium from MSCs retarded the VSMC osteoblastic change by
blocking the bone morphogenetic protein (BMP) signaling and decreasing inflammatory cytokines
in vitro [134,135]. Based on the in vitro evidence above, MSCs might provide the protective role in a
paracrine manner to influence the calcification process, including anti-inflammatory effects, blocking
the BMP2-Smad1/5/8 signal, downregulating the Wnt signal within VSMC, or attenuating the apoptosis
of VSMC (Figure 2) [134–137].

Vitamin D deficiency was related to adventitial inflammation in clinical studies. Oma et al.
noticed that the vitamin D concentration was inversely correlated with the monocyte infiltration within
the adventitial layer in patients with CAD and inflammatory rheumatic disease [138]. Additionally,
the vitamin D associated gene expression within aortic tissue might be influenced in patients with
rheumatoid arthritis. Paraoxonases 2, which had antioxidative properties during atherosclerotic
processes, was regulated by vitamin D. The expression was lessened during the inflammation [139].
Vitamin D was associated with lessening the inflammatory cytokine.
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Figure 2. The adjunctive role of vitamin D in treating vascular calcification based on MSCs and
endothelial progenitor cells (EPCs). In physiological hypoxia, angiogenesis can repair a damaged
endothelium by promoting the differentiation of EPCs. The circulating EPCs migrated and invaded the
subendothelial region to replace the injured endothelial cells; they also regulated the differentiation of
the surrounding stromal cells and therefore reduced calcification. The MSCs mitigated calcification
by lowering the proinflammatory cytokines or reducing the VSMC osteogenic expression. Vitamin
D served as the adjunctive role in mitigating calcification by influencing EPCs and MSCs in several
manners. For EPCs, vitamin D enhanced the EPCs mobilization during angiogenesis by increasing
the vascular endothelial growth factor (VEGF) release. Vitamin D also enhanced the EPC adhesion
and migration. Under the inflammatory status, such as high TNF-α scenario, the further vascular
calcifications could be lessened by the usage of vitamin-D. For MSCs, vitamin D influenced the secretion
of proinflammatory cytokines, such as TNF-α, interleukin 1(IL-1), and interleukin 6 (IL-6), which might
induce osteogenic MSCs. Vitamin D decreased the VSMC osteogenic differentiation by decreasing the
BMP2-Smad1/5/8 (mothers against decapentaplegic homolog 1/5/8) signal or Wnt5a expression.

From the in vitro study initiated by Wang et al., the culture medium of MSCs decreased the calcium
deposition in the VSMC because of the decreased expression of TNF-α, IL-1β, and IL-6 (Figure 2) [134].
Wasniks et al. also noticed that vitamin D decreased the TNF-α, and IL-6 secretions within osteocytes
by suppressing M1 macrophages and influencing the osteogenic expression of MSCs [140]. Vitamin D
had several roles in reducing the IL-1β-stimulated inflammatory profile in the adipocyte tissue, and
such characteristics might be applied in lessening the calcification in MSCs in vitro [141].

A low vitamin D diet was observed to induce vascular calcification through the activation of
BMP2 within the VSMC [142]. Fu et al. found that 1,25(OH)2D suppressed BMP2 activity in the bone
marrow MSCs by binding the BMP2 promoting region [143]. Goltzman et al. also provided in vivo
evidence that the vitamin D that originated from the osteocyte directly decreased the BMP2 release
into serum and then mitigated the extraskeletal calcification [144].

Human marrow-derived MSCs (marrow stromal cells, hMSCs) give rise to osteoblasts, and their
differentiation is stimulated by 1α,25(OH)2D, although hMSCs can also synthesize 1α,25(OH)2D.
CKD reduces 1α,25(OH)2D production in kidneys and human MSCs [112]. Indeed, the vitamin D
metabolism in hMSCs is regulated, as it is in the kidneys, and this promotes osteoblastogenesis in
an autocrine/paracrine manner. CKD is associated with elevated circulating fibroblast growth factor
23 (FGF23). In vitro, rhFGF23 counters vitamin D-stimulated osteoblast differentiation of hMSCs
by reducing the vitamin D receptor, CYP27B1/1α-hydroxylase, biosynthesis of 1α,25(OH)2D3, and
signaling through BMP-7. Thus, the dysregulated vitamin D metabolism in hMSCs may contribute to
impaired osteoblastogenesis and altered mineral metabolism in CKD subjects [113].

MSCs have the ability to reduce the VSMC calcification through down-regulating the Wnt signaling
pathways. Guan et al. found that the culture medium from MSCs decreased the VSMC osteogenic
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differentiation by lowering Wnt 5a (Figure 2) [145]. Vitamin D regulated the expression of Wnt 5a
in other systems, such as the respiratory tract [146]; therefore, it might provide a conjunctive role in
decreasing vascular calcification.

From the evidence mentioned above, the adventitial MSCs carrying Gli-1 differentiated into
osteoblast-like cells in the medial layer. However, the role of vitamin D on the MSCs in the adventitial
layer is still under investigation. Recently, Hegner et al. noticed that the expression of the mammalian
target of rapamycin (mTOR) influenced the calcification of MSCs in vitro [147]. They found that
the activation of mammalian target of rapamycin complex 1 (mTORC1) was associated with the
calcification of MSCs. When inhibiting mTORC1 by rapamycin, the mammalian target of rapamycin
complex 2 (mTORC2) activity increased with a lessening of the calcification in MSCs. Vitamin D
inhibited the mTORC1 activity through the inhibition of the tuberous sclerosis protein complex [148].
From this aspect, vitamin D might modulate the MSCs within the adventitia directly or influence
the microenvironment.

4.3. The Role of Vitamin D in Adipose Tissue-Derived Stem Cells

The previous sections revealed that adipose tissue-derived MSCs have multipotency for
differentiation into chondrocytes or smooth muscle cells. Adipose tissue-derived MSCs have vitamin
D receptors within the nucleus, and the supplementation of the active form of vitamin D stimulated
CYP24A1 activity and reduced 1,25(OH)2D expression within MSCs. However, the supplementation
of the 25(OH)D increased intracellular active vitamin D production [149]. Thus, adipose tissue-derived
MSCs can be modulated by vitamin D, especially nutritional vitamin D (e.g., cholecalciferol). From the
study of Pesarini et al., vitamin D decreased the viability in time- and dose-dependent manners on the
adipose tissue-derived MSCs and decreased the further adipose tissue formation [150].

Vitamin D induced the adipocyte stem cell osteogenic changes through activating bone
morphogenetic protein 2 (BMP2) signaling [151]. At the same time, the supplementation of vitamin D
modulated the chemokine-mediated inflammation induced by adipose tissue [152]. The vitamin D
supplement might modulate the miR expression in the adipose tissue. Karkeni et al. also provided
evidence that vitamin D lowered NF-κB signaling by alleviating the expression of miR 146a and
miR-150 [153]. Thus, vitamin D decreased the adipocyte formation from stem cells by inducing
apoptosis and modulating the inflammatory cytokine release within the adipocyte.

In addition to MSC migration, vitamin D may influence the differentiation of MSCs into adipocytes.
MSCs within the bone marrow are the molecular switch between the osteoblastogenic and the adipocytic
transformation. Several pathways, such as C/EBP-γ, C/EBP-α, and peroxisome proliferator-activated
receptor-γ pathways, regulate MSC differentiation [154]. Vitamin D contributes to bone formation
by activating the Wnt/β-catenin pathway. Lu et al. showed that active vitamin D induced bone
formation by increasing the secretion of Wnt 10b by osteoclasts [155]. Therefore, vitamin D may play
an adjunctive role in alleviating adipocyte transformation in MSCs and reducing the inflammation
associated with vascular calcification.

The aforementioned evidence reveals that vitamin D may play a substantial role in modulating
the therapeutic effect of MSCs in the treatment of vascular calcification.

5. Conclusions

Vascular calcification involves the deposition of calcifying particles within the endothelial and the
medial layers after vascular damage. Recent reports on the MSCs lying within the adventitial layer
demonstrated their role in developing vascular calcification. Therefore, the possible role of progenitor
cells originating from bone marrow and soft tissue should be emphasized. Vitamin D deficiency is an
important factor contributing to vascular calcification. Supplementation of vitamin D might modulate
the calcification by modulating the MGP carboxylation. On the other hand, vitamin D might influence
the phenotype of EPCs, hematopoietic progenitor cells, and MSCs. Vitamin D may be targeted along
with MSCs in the treatment of vascular calcification.
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Abbreviation

αSMA α-smooth muscle actin
Ang angiotensin
BMP bone morphogenetic protein
BMP2 bone morphogenetic protein2
C/EBP CCAAT/enhancer binding protein
CAD coronary artery disease
CBFA1 core-binding factor α-1
CD cluster of differentiation
Cdk-2 Cyclin-dependent kinase 2
CKD chronic kidney disease
CXCL1 Chemokine (C-X-C motif) ligand 1
CXCL12 Chemokine (C-X-C motif) ligand 12
CYP24A1 Cytochrome P450 family 24 subfamily A member 1
EPCs endothelial progenitor cells
FGF23 Fibroblast growth factor 23
Gli1 The Human Glioma-Associated Oncogene Homolog 1
HIF-1-alpha hypoxia-inducible factor-1-alpha
IL-1 interleukin 1
IL-6 Interleukin-6
KDR kinase insert domain receptor
LDL low-density lipoprotein
M1 macrophage classically activated macrophage
MAPK mitogen-activated protein kinase
MGP matrix Gla protein
miR MicroRNA
MMP matrix metalloproteinase
MSCs mesenchymal stem cells
mTOR mammalian target of rapamycin
mTORC1 mechanistic target of Rapamycin complex 1
mTORC2 mechanistic target of Rapamycin complex 2
MV Matrix vesicle
NF-kB nuclear factor kappa-light-chain-enhancer of activated B
NG-2 Neural/glial antigen 2
PDGFR Platelet-derived growth factor receptors
PDGFRβ Platelet-derived growth factor receptor beta
PPAR-γ peroxisome proliferator-activated receptor gamma
RAAS renin-angiotensin-aldosterone system
Sca-1 stem cell antigen 1
SGK-1 serum- and glucocorticoid-inducible kinase 1
Smad 1/5/8 Mothers against decapentaplegic homolog 1/5/8
TNF-α tumor necrosis factor alpha
UVB ultraviolet B
VEGF vascular endothelial growth factor
VSMC vascular smooth muscle cell
Wnt Wingless-INT
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