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Sodium/glucose cotransporter 1 (SGLT1), an essential active glucose trans-

port protein that helps maintain high intracellular glucose levels, was previ-

ously shown to interact with epidermal growth factor receptor (EGFR);

the SGLT1–EGFR interaction maintains intracellular glucose levels to pro-

mote survival of cancer cells. Here, we explore the role of SGLT1 in triple-

negative breast cancer (TNBC), which is the most aggressive type of breast

cancer. We performed TCGA analysis coupled to in vitro experiments in

TNBC cell lines as well as in vivo xenografts established in the mammary

fat pad of female nude mice. Tissue microarrays of TNBC patients with

information of clinical–pathological parameters were also used to investi-

gate the expression and function of SGLT1 in TNBC. We show that high

levels of SGLT1 are associated with greater tumour size in TNBC. Knock-

down of SGLT1 compromises cell growth in vitro and in vivo. We further

demonstrate that SGLT1 depletion results in decreased levels of phospho-

EGFR, and as a result, the activity of downstream signalling pathways

(such as AKT and ERK) is inhibited. Hence, targeting SGLT1 itself or the

EGFR–SGLT1 interaction may provide novel therapeutics against TNBC.

1. Introduction

Breast cancer is the most frequent cancer type in women

with 1.38 million new cases (23%) each year throughout

the world. It is the fifth leading cause of cancer death

(458 000 deaths worldwide) and, globally, the most fre-

quent female cancer deaths in developing and developed

countries (Ferlay et al., 2010). Triple-negative breast

cancer (TNBC), which lacks expressions of oestrogen,

progesterone and human epidermal growth factor 2

(HER2) receptors, accounts for 10-20% breast cancers

with unsatisfactory therapeutic efficacy (O’Reilly et al.,

2015; Reis-Filho and Tutt, 2008). TNBC is the most

aggressive, high-grade breast cancer type with high risk

of metastasis and poor survival rate compared with the

other breast cancer subtypes. Chemotherapy has been
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the only accepted systemic treatment option for TNBC

for several years to increase the overall survival rate

(Khosravi-Shahi et al., 2018). However, drug resistance

occurs due to its heterogeneity (Du et al., 2015), and this

contributes to the recurrence of the metastatic disease

(Lee and Djamgoz, 2018). Therefore, it is crucial to

identify targeted therapies for TNBC.

Novel targeted therapies, such as endocrine thera-

pies and targeting HER2, were discovered by mapping

the genomic landscapes of breast cancer tumours.

Genomic analysis has led to insights into the classifica-

tion of TNBC such as the separation of TNBC into

different subtypes based on gene expression (Crisci-

tiello et al., 2012; Garrido-Castro et al., 2019; Net-

work, 2012). However, due to its complexity and

heterogeneity, it has been challenging to identify

targeted therapies for TNBC (Lehmann et al., 2011).

Atezolizumab (TECENTRIQ�, Roche, Basel, Switzer-

land), an antiprogrammed death-ligand 1 (PD-L1)

monoclonal antibody, was approved recently as a first

targeted therapy for TNBC with combination of

chemotherapy (Abraxane; nab�-Paclitaxel, Summit,

NJ, USA) (Cyprian et al., 2019). As atezolizumab plus

chemotherapy combination is only successful for PD-

L1 positive TNBC and TNBC is a heterogeneous dis-

ease, further molecular studies are required to identify

novel therapeutic targets for TNBC. Over the past dec-

ades, potential targeted therapies were discovered for

TNBC by targeting different signalling pathways such

as epidermal growth factor receptor (EGFR) (Crozier

et al., 2016; Nabholtz et al., 2016; Schuler et al., 2012;

Shao et al., 2017; Tr�edan et al., 2015). However, tar-

geting EGFR pathway was not very successful in part

due to the resistance mechanisms or activation of dif-

ferent signalling pathway(s) (Baselga et al., 2005; Base-

lga et al., 2013; Carey et al., 2012; Spector et al.,

2005). A previous study showed that inhibition of

sodium/glucose cotransporter 1 (SGLT1) sensitized

prostate cancer cells to EGFR inhibitors (gefitinib and

erlotinib) (Wright et al., 2011), although the precise

mechanisms have not been elucidated. Knowing that

SGLT1 mainly interacts with the autophosphorylation

domain of EGFR (Ren et al., 2013), we hypothesized

that SGLT1 may regulate EGFR activity in TNBC.

Sodium/glucose cotransporter 1, encoded by the

SLC5A1 gene in humans, is an active glucose trans-

porter, which utilizes sodium gradients to transport

glucose into cells independent of extracellular glucose

concentration (Rieg and Vallon, 2018; Wright et al.,

2011). Various studies have discovered that SGLT1 is

overexpressed in different cancer types: prostate cancer

(Blessing et al., 2012), ovarian carcinoma (Lai et al.,

2012), oral squamous cell carcinoma (Hanabata et al.,

2012), head and neck carcinoma (Wright et al., 2011),

pancreatic cancer (Casneuf et al., 2008) and colorectal

cancer (Guo et al., 2011). In ovarian carcinoma,

tumour development and poor prognosis of the disease

is associated with the overexpression of SGLT1 (Lai

et al., 2012). Overexpression of SGLT1 also has linked

with higher clinical stages of colorectal cancer (Guo

et al., 2011). Despite of all these observations, the role

of SGLT1 in TNBC was not known. In this study, we

report that SGLT1 is essential for the survival of

TNBC cells in vitro and in vivo. This is achieved, at

least in part, via potentiating EGFR activity.

2. Materials and methods

2.1. Cell culture and transfection

BT549, MDA-MB-468 and MDA-MB-436 cell lines,

which all belong to triple-negative breast carcinoma

cells, were purchased from Cell Bank of the Institute of

Basic medicine, Chinese Academy of Medical Sciences

(Beijing, China), or obtained as NCI-ICBP45 kit pro-

cured through American Type Culture Collection

(ATCC; ATCC Breast Cancer Cell Panel, Manassas,

VA, USA). BT549 cells were cultured in RPMI 1640

medium (Boster, Wuhan, China) supplemented with

10% FBS (Gibco, Carlsbad, USA), 1% antibiotics and

0.023 IU�mL�1 bovine insulin (Sigma-Aldrich, Saint

Louis, MO, USA). MDA-MB-436 and MDA-MB-468

cells were cultured in Dulbecco’s modified Eagle’s med-

ium (Boster) with 20% or 10% FBS (Gibco) and 1%

antibiotics. All cells were kept at 37 °C and 5% CO2.

The short hairpin RNA (shRNA) product of SGLT1

(sh-SGLT1) with a targeted sequence of ATCTTTC

TCTTATTGGCAA and its negative control (sh-NC)

were purchased from GeneChem (Shanghai, China) and

transfected into cells according to manufacturer’s

instructions. Short interfering RNA (siRNA) oligos

against SGLT1 (MU-007589-01-0002) were purchased

from Dharmacon (Lafayette, CO, USA). Sequences are

available from Dharmacon or upon request. As a nega-

tive control, we used siGENOME RISC-Free siRNA

(Dharmacon). Cells were transfected with the indicated

siRNA oligos at a final concentration of 35 nM using

Dharmafect 2 reagent (Dharmacon).

2.2. Cell viability assay

Short hairpin RNA-transfected cells were seeded into

96-well plates with a density of 1 9 103 cells per well

and allowed to grow for 24, 48 and 72 h. When indi-

cated time arrived, 3-(4,5-Dimethyl-thiazol-2-yl)-2,5-
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diphenyltetrazolium bromide (MTT) solution (Sangon

Biotech, Shanghai, China) was added into the medium

with a final concentration of 0.5 mg�mL�1. The solu-

tion in each well was carefully sucked after incubation

for 4 h at 37 °C, replaced by 100 µL formazan solubi-

lization solution and gently mix for 10 min. OD values

at 570 nm were measured using Microplate Reader

(Bioteck Instrument, Winooski, VT, USA).

2.3. Western blot analysis

Western blot analysis was performed with lysates from

cells or tissues with urea buffer (8 M urea, 1 M thiourea,

0.5% CHAPS, 50 mM DTT and 24 mM spermine). For

immunoprecipitations, the cells were lysed for 30 min at

4 °C in pNAS buffer [50 mM Tris/HCl (pH 7.5),

120 mM NaCl, 1 mM EDTA and 0.1% Nonidet P-40],

with protease inhibitors. Indicated antibodies and

immunoglobulin G (IgG) agarose were added to the

lysate for 16 h at 4 °C. Immunoprecipitates were

washed four times with cold PBS followed by the addi-

tion of SDS sample buffer. The bound proteins were

separated on SDS polyacrylamide gels and subjected to

immunoblotting with the indicated antibodies. Primary

antibodies were from Abcam (Cambridge, UK)

(SGLT1, 1 : 1000, ab14686; b-actin, 1 : 2000, ab8227;

b-tubulin, 1 : 5000, ab6046; GAPDH, 1 : 2000, ab9385;

Phospho-EGFRTyr1068, 1 : 1000, ab40815), Cell Signal-

ing Technology (Leiden, Netherlands) [SGLT1,

1 : 1000, 5042; Phospho-EGFRTyr1068, 1 : 1000, 3777,

D7A5; EGFR, 1 : 1000, 4267, D38B1; Phospho-AKT

Ser473, 1 : 1000, 9271; Phospho-AKT Thr308,

1 : 1000, 4056, 244F9; AKT, 1 : 1000, 9272; Phospho-

ERK (Thr202/Tyr204), 1 : 1000, 9101; ERK, 1 : 1000,

9102; Cleaved PARP Asp214, 1 : 1000, 9541] and Milli-

pore (Burlington, MA, USA) (PTEN, 1 : 1000, 04-409).

Signals were detected using an ECL detection system

(GE Healthcare) (Chicago, IL, USA) or an Odyssey

imaging system (LI-COR), and evaluated by ImageJ

1.42q software (National Institutes of Health) (Ber-

hesda, MD, USA).

2.4. Immunofluorescence microscopy

Cells were fixed in 4% PBS-paraformaldehyde for

15 min, incubated in 0.1% Triton X-100 for 5 min on

ice, then incubated in 0.2% Fish Skin Gelatine in PBS

for 1 h, and stained for 1 h with an anti-Phospho-

EGFRTyr1068 (1 : 100; Cell Signaling Technology,

3777). Protein expression was detected using Alexa

Fluor (1 : 400; Molecular Probes, Eugene, OR, USA)

for 20 min. TO-PRO-3 (Invitrogen, Waltham, MA,

USA) was used to stain nucleic acids (1 : 2000).

2.5. Animal study

Animal experiments were carried out in accordance with

the guidelines and approved protocols of the Ethics

Committee of Tongji Hospital (Wuhan, China). Specific

pathogen-free (SPF) nude mice (female, 6 weeks) were

purchased from Vital River Laboratory Animal Tech-

nology Co., Ltd. (Beijing, China) and housed under

SPF condition. After adaptation for 1 week in condition

of stable temperature and humidity with 12 h light–dark
cycle, mice were randomly divided into sh-NC group

and sh-SGLT1 group (n = 6 mice per group). ShRNA-

transfected MDA-MB-436 cells were harvested, rinsed

and resuspended in PBS at a concentration of

2 9 108 cells�mL�1, which were then placed on ice for

subsequent operation. Orthotopic injection was per-

formed in sterile condition in clean bench according to

protocol described previously (Kocat€urk and Versteeg,

2015) with adaptations. Briefly, after anesthetizing the

mice intraperitoneally with sterilized 2% Avertin

(Sigma-Aldrich) with a dosage of 0.12 mL/10 g weight,

mammary gland was exposed by making a small inci-

sion between the fourth nipple and the midline. A total

of 1 9 107 cells in 50 µL suspension were completely

injected into mammary fat pad located in groin without

leaking. Then, the incisions were sutured and mice were

attended until they gain consciousness. The lengths and

widths of xenografts were measured weekly by vernier

calliper, and volume was calculated using following for-

mula: V (mm3) = 1/2*length*widths2. At the end of

experiment, mice were sacrificed, while xenografts were

completely separated, measured and fixed by 4%

paraformaldehyde for histological staining.

2.6. Immunohistochemical and H/E staining and

scoring

Tissue microarray of TNBC patients with information of

clinical–pathological parameters was purchased from

Outdo Biotech (HBreD090Bc01; Shanghai, China).

Paraffin-embedded sections of xenograft tissues were sub-

jected to deparaffinization and rehydration. H/E staining

of sections was carried out using H/E staining kit (Bey-

otime, Shanghai, China) according to manufacturer’s

instructions. For immunohistochemical staining of tissue

microarray and sections of xenograft and antigen retrie-

val, blocking of non-specific binding and incubation of

primary antibodies at 4 °C overnight was sequentially

conducted. The primary antibodies used were list as fol-

lows: anti-phospho-EGFR (ab40815; Abcam, 1 : 200)

and anti-SGLT1 (ab14686; Abcam, 1 : 100). After incu-

bation with secondary goat anti-rabbit immunoglobulin

conjugated to peroxidase-labelled dextran polymer
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(SV0002; Boster) at 37 °C for 1 h, visualization, counter-

staining with haematoxylin and mounting were per-

formed. Semiquantitative evaluations of protein

expression were scored on the basis of the intensity and

the percentage of phospho-EGFR- or SGLT1-positive

tumour cells as previously described (Wang et al., 2014).

2.7. TCGA data mining and pathway analysis

SLC5A1, mRNA expression z-score (RNA Seq V2

RSEM) and molecular subtypes of breast invasive car-

cinoma (TCGA, Provisional) were obtained from

cBioPortal for Cancer Genomics website (http://

www.cbioportal.org). Molecular subtypes of breast

samples were separated based on ER, PR and HER2

status, and mRNA expression of SGLT1 was analysed

in each subtype in GRAPHPAD PRISM 8 (La Jolla, CA,

USA) by ordinary one-way ANOVA.

Two different data sets, TCGA_BRCA_RPPA-2015-

02-24 and TCGA_BRCA_exp_HiSeqV2-2015-02- 24,

for RPPA protein expression and gene expression RNA-

Seq (IlluminaHiSeq, San Diego, CA, USA), respec-

tively, were extracted from UCSC Cancer Browser

(https://genome-cancer.ucsc.edu/) for the analysis of

genomic matrix data in TNBC samples. The data of

TNBC samples that had SGLT1 mRNA expression

from the cBioPortal for Cancer Genomics website were

aligned with the samples in genomic matrix of TCGA

data for both protein and gene expressions. For both

protein and gene expression data sets, top 20% and bot-

tom 20% of samples were chosen for high and low

SGLT1 expression, respectively. Then, unpaired t-test

was performed to find the significantly different pro-

teins/genes between high and low SGLT1 groups in R

version 3.4.4 (Auckland, New Zealand), P < 0.05. For

the protein expression of AKT_pT308 in TCGA protein

data set, PRISM8 was used to plot scatter dot plot

between high and low SGLT1 groups.

To explore the pathway analysis of the TCGA gene

data analysis, the database for annotation, visualization

and integration discovery (DAVID) functional annota-

tion web tool was conducted (version 6.8; https://david.

ncifcrf.gov (Huang et al., 2009)). A total of 1325 genes,

which were positively correlated with SGLT1 in TCGA

gene data, were analysed with DAVID web tool and

obtained the lists of enriched Kyoto Encyclopedia of

Genes and Genomes pathway, REACTOME pathway,

BIOCARTA, BBID and EC number. A P value ≤ 0.05

was considered significant. The pathways were sorted

from lowest P value, and top 34 pathways were chosen

which then were sorted with highest number of shared

genes. Subsequently, we then plotted that histogram

plot with the top 15 pathways in GRAPHPAD PRISM 8.

2.8. Statistical analysis

Comparison of two groups was statistically calculated

by Student’s t-test. Chi-square test or Fisher exact test

were used to evaluate the relationship of SGLT1

expression and clinical parameters of TNBC. Correla-

tion between expressions of SGLT1 and phospho-

EGFR was analysed using Pearson’s correlation. Data

were shown as mean � SD. Statistical analysis was

conducted using SPSS version 19.0 (Endicott, NY,

USA). Unpaired t-test was performed for TCGA data

analysis in R version 3.4.4. To identify the statistical

difference of AKT_pT308 between high and low

SGLT1 group in TCGA protein data, unpaired t-test

was performed in GRAPHPAD PRISM 8 software.

3. Results

3.1. SGLT1 expression is higher in TNBC, and

this associates with a larger tumour size

The expression of SGLT1 was upregulated in various

cancer types (Blessing et al., 2012; Casneuf et al., 2008;

Guo et al., 2011; Hanabata et al., 2012; Lai et al., 2012;

Wright et al., 2011). To investigate whether the expres-

sion of SGLT1 is different between each molecular sub-

type of breast cancer, TCGA breast invasive carcinoma

(Provisional) data were analysed. The mRNA levels of

SGLT1 (SLC5A) were significantly higher in TNBC and

HER2-positive subtypes than luminal A and luminal B

(Fig. S1). No significant difference between TNBC- and

HER2-positive subtypes was observed (Fig. S1).

In order to examine whether SGLT1 expression levels

correlate with clinical–pathological features in TNBC, we

performed immunohistochemistry staining of SGLT1 in

TNBC tissue microarrays. Table 1 shows clinical and

pathological characteristics of the 90 TNBC patient sam-

ples. We found only tumour size was significantly

affected by SGLT1 expression (Table 1). Representative

images of high and low expression of SGLT1 in TNBC

are shown in Fig. 1A. Tumour size was significantly lar-

ger in high SGLT1 TNBC samples compared with the

low SGLT1 TNBC samples (P = 0.006; Fig. 1B).

3.2. SGLT1 depletion impairs cell viability of

TNBC

Given the fact that SGLT1 levels associate with

tumour size, we next checked whether SGLT1 deple-

tion impairs cell viability. MTT assay was performed

in control or SGLT1-depleted MDA-MB-436, MDA-

MB-468 and BT549 cell lines (Fig. S2). The OD values
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in MDA-MB-436, MDA-MB-468 and BT549 cells

were significantly decreased in SGLT1-depleted ones

compared with the controls in various time points

(Fig. 2A). We subsequently performed an in vivo study

to determine the effect of SGLT1 knockdown on

tumour growth. MDA-MB-436 tumours were estab-

lished in the mammary fat pad of female nude mice.

As shown in Fig. 2B, tumours were found in four of

six mice where control MDA-MB-436 cells were

injected, whereas only two of six mice had tumours

where SGLT1-depleted MDA-MB-436 cells were

injected. The volume and weight of tumours present in

the mice injected with SGLT1-depleted MDA-MB-436

cells were significantly lower than that in the control

group injected with control cells (Fig. 2B). Hence, a

reduction in SGLT1 expression is able to inhibit

TNBC cell growth in vitro and in vivo.

3.3. TCGA analysis reveals a link between SGLT1

status and AKT signalling in TNBC samples

In order to find how SGLT1 regulates tumour growth,

we analysed data from the TCGA project. Protein

(RPPA) TCGA breast invasive carcinoma data and

Gene, RNASeq (IlluminaHiSeq) TCGA breast invasive

carcinoma data sets were obtained from UCSC Cancer

Genomics Browser (https://genome-cancer.ucsc.edu/).

Protein expression data included 410 breast invasive

carcinoma samples and 142 proteins; and gene expres-

sion data contained 1215 samples and 20530 genes. Both

protein (RPPA) and gene expression, RNASeq (Illu-

minaHiSeq), breast invasive carcinoma samples from

Cancer Genome Browser were aligned with TNBC sam-

ples, as shown in Fig. S1. The alignment showed 59 and

160 TNBC samples in protein (RPPA) and gene, RNA-

Seq (IlluminaHiSeq) data, respectively. In both protein

and gene expression data sets, the top 20% and bottom

20% samples were separated into two groups: high and

low SGLT1-expressing samples, respectively, and

unpaired t-test was performed to find the significantly

different proteins/genes between the groups. A heat

map of protein expression for 19 proteins, including

phosphorylated AKT (AKT_pT308), that were signifi-

cantly different between high and low SGLT1-express-

ing samples (P < 0.05) is shown in Fig. 3A. The scatter

dot plot showed the protein expression of phosphory-

lated AKT (AKT_pT308) for each sample in high and

Table 1. The relationship between patients’ clinical–pathological

characteristics and SGLT1 expression in TNBC. The other P values

were obtained by chi-square test.

Characteristics N

SGLT1

P valueLow expression High expression

Age 90

≤ 50 46 28 18 0.290

> 50 44 21 23

Location 90

Left breast 46 23 23 0.406

Right breast 44 26 18

Grade 90

I–II 36 19 17 0.832

III 54 30 24

Size 86

≤ 2 cm 37 26 11 0.016*

> 2 cm 49 21 28

Positive LN 35

≤ 2 21 10 11 0.728a

> 2 14 5 9

aP value of Fisher’s exact test. The other P values were obtained

by chi-square test. *P < 0.05.

Fig. 1. SGLT1 expression levels associate with tumour size in

triple-negative breast carcinoma (TNBC). (A) Representative SGLT1

staining pattern (high or low SGLT1) in 90 TNBC tissue microarray

cores. Scale bar: 100 lm. (B) The relationship between SGLT1

expression and tumour size in TNBC samples was analysed. Chi-

square test was performed (P = 0.006).
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low SGLT1 groups (Fig. 3B). A total of 2279 signifi-

cantly different genes between high and low SGLT1-ex-

pressing samples are shown by the heat map (Fig. 3C).

To demonstrate whether the significantly positive

genes with SGLT1 in TCGA data set are involved in

the same pathway, DAVID, online website (https://da

vid.ncifcrf.gov) was used to perform a pathway analy-

sis. We found PI3K–AKT signalling pathway is the

top pathway that has the highest hit genes, followed

by Ras signalling and other pathways (Fig. 3D). These

analyses suggested that SGLT1 may interact with

AKT signalling pathway.

3.4. SGLT1 binds EGFR and positively regulates

EGFR activity

Search Tool for the Retrieval of Interacting Genes

(https://string-db.org) analysis showed the interaction

between SGLT1 and EGFR (Fig. S3), which was

reported earlier (Ren et al., 2013; Weihua et al., 2008).

In fact, we also observed EGFR–SGLT1 interaction in

MDA-MB-468 human breast cancer cells. Endogenous

EGFR and SGLT1 co-immunoprecipitated together in

MDA-MB-468 cells (Fig. 4A).

Given that SGLT1 interacts primarily with the auto-

phosphorylation domain of EGFR (Ren et al., 2013),

we asked whether SGLT1 status could also affect

EGFR activity on the other hand. Consistently, the

immunofluorescence signal of phospho-EGFRTyr1068

was at the cell membrane in MDA-MB-468 cells

(Fig. 4B). To test the biological importance of the

observed EGFR–SGLT1 interaction, we examined the

level of phospho-EGFRTyr1068 by immunofluorescence

staining in MDA-MB-468 cells treated with control

small interfering RNA (siRNA) or siRNA against

SGLT1. Importantly, SGLT1 depletion by RNA

Fig. 2. SGLT1 depletion impairs cell viability of TNBC in vitro and in vivo. (A) Knockdown of SGLT1 in BT549, MDA-MB-436 and MDA-MB-

468 cells resulted in cell growth inhibition as performed by MTT assay. Data are represented as a mean value � standard deviation of three

independent experiments. Student’s t-test was conducted to identify statistical differences in each time point. *P < 0.05, **P < 0.01 and

***P < 0.001. (B) Graphs showing tumour volume (P = 0.04) or weight (P = 0.03) present in the mice injected with control or SGLT1-

depleted MDA-MB-436 cells. Pictures of the tumours formed were also shown. Scale bar: 1 cm. Student’s t-test was performed between

control and SGLT1 RNAi groups to identify statistical difference of tumour volume and weight.
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Fig. 3. TCGA analysis reveals a link between SGLT1 status and AKT signalling in TNBC samples. Heat maps of the columns indicate each

individual sample in high and low SGLT1 groups across each protein (A) and gene (C) in TCGA breast invasive carcinoma data, which

obtained from Cancer Genome Browser. Rows indicate protein expressions (RPPA) (A) and gene expressions (IlluminaHiSeq) (C). Dark blue

colour indicates low expression of proteins/genes, and dark pink colour illustrates highly expressed proteins/genes. Unpaired t-test was

analysed to find the significantly different proteins/genes in TCGA breast invasive carcinoma data sets. n represents the number of samples

in each group. (B) Box plot shows the protein expression of AKT_pT308 between high and low SGLT1 groups in TNBC, TCGA breast

invasive carcinoma. *P < 0.05. (D) The genes that were positively regulated with SGLT1 were analysed in DAVID website to show which

pathways are regulated. Histogram shows top 15 pathways based on lowest P value. Y-axis shows the pathways, and top x-axis and

bottom x-axis show the number of shared genes in each pathway and �log10 (P value), respectively.
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interference (RNAi) largely abolished the membrane

signal of phospho-EGFRTyr1068 (Fig. 4B). For most of

the analyses described here, we used pools of four

siRNA against each gene (‘SMARTpools’ from Dhar-

macon). However, deconvolution of siRNA pools into

their constituent individual oligonucleotides is an

important step in minimizing the potential for off-tar-

get effects to compromise the analysis of gene knock-

down studies (Echeverri et al., 2006). Figure S4

showed that deconvolution of SGLT1 siRNA

SMARTpool, two out of four different oligonu-

cleotides, clearly led to the downregulation of SGLT1

and reduced level of phospho-EGFRTyr1068.

We next asked whether SGLT1 status could affect

the activity of EGFR downstream pathways, which

was investigated by examining the EGFR signalling

cascade in MDA-MB-468 cells transfected with control

siRNA or SGLT1 siRNA. The basal phosphorylation

levels of EGFR (Tyr1068) and AKT (Ser473 and

Thr308) were reduced in SGLT1-depleted MDA-MB-

468 cells compared with control cells or control

siRNA-treated cells. Total protein levels of EGFR and

AKT, however, were not affected (Fig. 4C). Following

SGLT1 gene silencing in MDA-MB-468 cells, a rapid

and profound loss of cell viability was observed, most

likely resulting from a robust induction of apoptosis.

This is evident by the detection of poly ADP ribose

polymerase (PARP) cleavage, a well-described indica-

tor of effector caspase activation and consequent cell

death (Fig. 4C).

The difference was more notable upon epidermal

growth factor (EGF) treatment. A much stronger

Fig. 4. SGLT1 binds EGFR and positively regulates EGFR activity. (A) Total cell lysates from MDA-MB-468 cells were immunoprecipitated

with an anti-EGFR antibody or control IgG. EGFR and SGLT1 levels are indicated. IgGH indicates IgG heavy chain. (B) Immunofluorescence

staining of Phospho-EGFRTyr1068 (green) in MDA-MB-468 cells transfected with SGLT1 siRNA or control siRNA. TO-PRO-3 (blue) was used

to stain nuclei. Scale bar: 10 µm. (C) Protein expression of Phospho-EGFRTyr1068, EGFR, Phospho-AKT Ser473, Phospho-AKT Ser308, AKT,

Cleaved PARP Asp214 and SGLT1 in MDA-MB-468 cells with indicated treatments. b-tubulin was used as a loading control. (D) Protein

expression of Phospho-EGFRTyr1068, EGFR, Phospho-AKT Ser473, Phospho-ERK (Thr202/Tyr204) and SGLT1 in MDA-MB-468 cells with

indicated treatments. b-tubulin was used as a loading control.
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response induced by addition of EGF was observed in

control siRNA-treated cells compared with SGLT1-de-

pleted MDA-MB-468 cells, reflected by the phosphory-

lation levels of EGFR (Tyr1068), ERK (Thr202/

Tyr204) and AKT (Ser473; Fig. 4D). These data sug-

gest that by binding to EGFR, SGLT1 potentiates

EGFR signalling.

To further validate the in vitro findings, the regula-

tion of EGFR phosphorylation by SGLT1 was investi-

gated in vivo using tumour sections derived from

control shRNA or SGLT1 shRNA-transfected MDA-

MB-436 cells (Fig. 2B). Using adjacent tumour sec-

tions derived from MDA-MB-436–control shRNA

cells, we observed positive SGLT1 and EGFR phos-

phorylation. In tumours derived from MDA-MB-436–
SGLT1 shRNA cells, SGLT1-negative tumour regions

showed reduced levels of EGFR phosphorylation

(Fig. 5). In addition, the correlation of SGLT1

expression and EGFR phosphorylation levels was

analysed in TNBC samples (Fig. 6). High SGLT1 cor-

related with high EGFR phosphorylation levels in

TNBC (P < 0.0001). These observations agree with the

finding that SGLT1 potentiates EGFR signalling in

TNBC.

4. Discussion

Chemotherapy has been the only systemic treatment

option for TNBCs for several years to increase the

overall survival rate of the patients (Khosravi-Shahi

et al., 2018), but chemotherapy resistance is the major

challenge for the treatment of the patients with TNBC

(Lee and Djamgoz, 2018). Therefore, several studies

detected the molecular changes before and after the

chemotherapy to identify potential targeted therapy

for TNBC (Balko et al., 2014). Identification of

Fig. 5. Downregulation of SGLT1 reduces EGFR phosphorylation level in vivo. Adjacent tumour sections from representative cases of

tumour xenografts formed by MDA-MB-436 cells treated with control or SGLT1 shRNA were stained with H/E. The expression of SGLT1

and p-EGFR is also indicated. Scale bars: 100 lm.
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targeted therapy for the patients with TNBC could

help to prevent the risk of resistance of the treatment

option and recurrence of the disease. In this study, we

showed that targeting of SGLT1 has the potential to

treat TNBC. We found SGLT1 status associates with

tumour size in TNBC. Similarly, SGLT1 expression

showed significant association with clinical–pathologi-
cal characteristics and prognosis of ovarian cancer;

SGLT1 overexpression significantly correlated with

increased pT status and poor prognosis (Lai et al.,

2012). Guo et al. (2011) also reported that higher

expression of SGLT1 significantly associated with the

clinical stage of colorectal cancer (Guo et al., 2011).

SGLT1 is an active glucose transporter and plays a

critical role in glucose absorption and retention in the

body (Wright et al., 2011). In cancer cells, a high rate

of glucose uptake is required to meet the increased

energy needs and leads to abnormal growth of cancer-

ous cells (Hanahan and Weinberg, 2011). Depletion or

inhibition of SGLT1 may reduce the energy supply to

the cancer cells. In addition, we demonstrated that

downregulation of SGLT1 dampened EGFR-AKT or

EGFR-ERK pathways activity, which phosphorylates

a plethora of targets to activate the cell cycle, prevent

apoptosis and trigger cellular growth (Downward,

2003; Manning and Cantley, 2007). As a result,

SGLT1 depletion induced apoptosis in TNBC cells

and inhibited their growth in vitro and in vivo. Consis-

tently, overexpression of SGLT1 protected renal

epithelial cells (Ikari et al., 2005) and intestinal epithe-

lial cells (Yu et al., 2008) from apoptosis.

Upon activation by its growth factor ligands, EGFR

undergoes a transition from an inactive monomeric

form to an active homodimer (Yarden and Sch-

lessinger, 1987). EGFR dimerization stimulates its

intrinsic intracellular protein–tyrosine kinase activity.

As a result, autophosphorylation of several tyrosine

residues in the C-terminal domain of EGFR occurs

(Downward et al., 1984; Lemmon et al., 2014). This

autophosphorylation elicits downstream activation and

signalling. For example, growth factor receptor-bound

protein 2 binds activated EGFR at phospho-Tyr1068,

which is crucial to the EGF-induced activation of Ras

signalling pathway (Rojas et al., 1996). It was demon-

strated autophosphorylation of EGFR is taking place

primarily by activated EGFR located at the cell mem-

brane (Sousa et al., 2012). Downregulation of SGLT1

by RNAi resulted in the decreased level of phospho-

EGFRTyr1068, and as a result, the activity of down-

stream signalling pathways (such as AKT and ERK)

was inhibited, suggesting that SGLT1 may facilitate

the autophosphorylation of EGFR upon ligand bind-

ing. This result was also supported by significantly

positive correlation between phospho-EGFR and

SGLT1 in TNBC samples.

In line with the previous report indicating that loss

of EGFR protein but not its tyrosine kinase activity

sensitized cancer cells to chemotherapeutic agent (Wei-

hua et al., 2008), EGFR tyrosine kinase inhibitors did

not produce therapeutic effects for certain cancers

(Cohen et al., 2003; Dancey and Freidlin, 2003;

Fukuoka et al., 2003). It has been highlighted EGFR

tyrosine kinase inhibitors or monoclonal antibodies

against TNBC showed low response rate, and the com-

bination treatment with tyrosine kinase inhibitors or

monoclonal antibodies and chemotherapy also showed

low response rate and no benefits in the survival rate

of patients (Baselga et al., 2013; Carey et al., 2012;

Fig. 6. SGLT1 expression levels positively correlate with EGFR

phosphorylation in TNBC. (A) Adjacent tumour sections from

representative cases show SGLT1 and p-EGFR expression in

TNBC. Scale bar: 100 lm. (B) The relationship between SGLT1

expression and EGFR phosphorylation was analysed by Pearson

correlation test (R = 0.41, n = 90, P < 0.0001).
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Finn et al., 2009; Lee and Djamgoz, 2018; Schuler

et al., 2010). Therefore, further works are needed to

find out the best way to use EGFR targeted therapy in

TNBC. EGFR–SGLT1 interaction stabilizes SGLT1

for the high uptake of glucose by cancerous cells and

leads to the progression of cancer (Ren et al., 2013;

Weihua et al., 2008). EGFR depletion (Weihua et al.,

2008) or deletion of the SGLT1 interacting domain in

EGFR promoted the downregulation of SGTL1 via

the proteasome machinery (Ren et al., 2013). Together,

targeting SGLT1 itself or EGFR–SGLT1 interaction

might potentially provide novel therapeutics for TNBC

patients.

5. Conclusion

In summary, this study shows that high levels of

SGLT1 are associated with greater tumour size in

TNBC. SGLT1 depletion compromises cell growth

in vitro and in vivo. We further demonstrate that

downregulation of SGLT1 results in decreased levels

of phospho-EGFR, and as a result, the activity of

downstream signalling pathways (such as AKT and

ERK) is inhibited. Hence, SGLT1 is required for the

survival of TNBC via potentiation of EGFR activity.
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