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ABSTRACT

The organization of intracellular transport processes is adapted specifically to different cell types,
developmental stages, and physiologic requirements. Some protein traffic routes are universal to all
cells and constitutively active, while other routes are cell-type specific, transient, and induced under
particular conditions only. Small GTPases of the Rab (Ras related in brain) subfamily are conserved
across eukaryotes and regulate most intracellular transit pathways. The complete sets of Rab
proteins have been identified in model organisms, and molecular principles underlying Rab
functions have been uncovered. Rabs provide intracellular landmarks that define intracellular
transport sequences. Nevertheless, it remains a challenge to systematically map the subcellular
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distribution of all Rabs and their functional interrelations. This task requires novel tools to precisely
describe and manipulate the Rab machinery in vivo. Here we discuss recent findings about Rab roles
during development and we consider novel approaches to investigate Rab functions in vivo.

Introduction

Intracellular transport is adjusted to the demands and
functions of diverse cell types. Differentiating and mature
cells within tissues have distinct requirements for mem-
brane and protein transport. However, independent of cell
type and organismal developmental stage, cells must
maintain Essential Permanent protein/membrane Traffic
(EPT) routes. Well-known EPTs are the endocytic path-
way or the transport route between the Endoplasmic retic-
ulum (ER) and the Golgi apparatus. Rab proteins that
control EPTs are among the first transport regulators to
be identified." However, since these Rab proteins regulate
early trafficking steps at the basis of the cellular transport
machineries, the loss-of-function phenotypes of these EPT
regulators are often the sum of perturbations of multiple
intracellular pathways, making it difficult to pinpoint the
mechanistic role of individual Rabs or transport path-
ways.” Therefore, novel approaches are required to study
individual pathways and to perturb traffic regulators in a
temporally and spatially controlled manner.

While EPTs are commonly required in most cell
types, specialized cellular functions and developmental

processes require Dedicated Transient Traffic (DTT)
routes. DTTs usually do not control essential cellular
functions, but are induced on demand in response to
external signals, such as mechanical or immunological
stimuli.>* These signals often trigger intracellular events,
such as the release of second messengers or transient
increases in intracellular Ca®" levels.” Well-studied
examples are neurotransmitter release in neurons® and
pulsed secretion by salivary gland cells.” Genetic disrup-
tion of DTT transport often results in morphological or
functional defects, although cell viability is usually not
affected upon loss of Rabs controlling DTTs.

Here we discuss recent work on Rab-regulated trans-
port routes in Drosophila melanogaster. Small GTPases
are master regulators of intracellular membrane and pro-
tein transport and control the spatio-temporally targeted
delivery of membrane and protein payloads.® In the past
decade all Rab family members in Drosophila were iden-
tified” and their regulative elements characterized.'’ In
addition, comprehensive collections of inducible Rab
transgenes were generated that allow targeted misexpres-
sion of tagged Rab proteins.”'® While these genetic
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resources have provided many important insights into
the organization of the Rab machinery, they are based on
overexpression of Rab proteins. However, excess of cer-
tain Rab proteins has been shown to change transport
and to generate mutant phenotypes.'''”> Therefore,
maintaining endogenous expression levels of Rab pro-
teins is a key prerequisite for faithfully charting intracel-
lular traffic. Dunst et al. reported the generation of
endogenous YFP-tagged rab alleles (YRabs) and charac-
terized them in 6 different organs consisting of 23 differ-
ent cell types.'* This resource is suitable to predict and
compare traffic in different cell types, distinct cell differ-
entiation stages or allows screening Rabs involved in
cargo-specific transport. Caviglia et al. used the YRab
collection to investigate the identity of the membrane
material that mediates the formation of tubular connec-
tions during tracheal morphogenesis in Drosophila."”
They identified Rab7 and Rab39, which, together with
Muncl3-4/Staccato, act as regulators of lysosome-
related organelles (LROs) in tracheal tip cells.

The Rab activity cycle: Hard facts and open
questions

Rabs are switchable protein-binding platforms. Active
Rabs are GTP-bound and anchored to membranes,
where they recruit effector proteins involved in specific
traffic steps'®'” or signaling cascades.'®'® Rab proteins
are directly controlled by GDP/GTP exchange factors
(GEFs) and GTPase activating proteins (GAPs). Once
Rab-containing vesicles reach their target (delivery) sites,
local GAPs trigger hydrolysis of Rab-bound GTP, thus
rendering Rabs inactive. Deactivated GDP-bound Rabs
are then extracted from membranes through mecha-
nisms that are not yet fully understood. It has been sug-
gested that lipid translocation proteins are involved.
Recently, one study using attenuated total reflection-
Fourier transform infrared (ATR-FTIR) spectroscopy
proposed that GDP-dissociation factors (GDI)***
directly mediate membrane extraction.”> ATR-FTIR
involves the collection of infrared radiation reflected
from the interphase between an aqueous phase and a
prism, in which the evanescent wave penetrated from the
prism into the aqueous solution is absorbed by substan-
ces solved in the aqueous phase.**

The subsequent formation of cytosolic Rab-GDP/GDI
complexes enables inactive Rab-GDPs to recycle and
reintegrate into their original membranes.”> How are
Rab-GDP/GDI assemblies trafficked? One possibility is
that cytosolic Rab-GDP/GDI complexes are present in
excess over local membrane-associated Rab-GTP pools.
In this scenario no directed transport is required between
different Rab pools. Alternatively, Rab-GDP/GDIs bind

Rab-GDP effectors that move the complex along retro-
grade transport routes. Although neither speculation is
easy to validate, recent technological advances will aid in
resolving Rab-GDP/GDI traffic. Especially the availabil-
ity of endogenously tagged Rabs provides an opportunity
to study and manipulate transport with unprecedented
resolution (Fig. 4). Once Rab-GDPs reach the mem-
brane, GDI-displacement factors®® or GEFs*’ promote
their membrane integration and conversion into GTP-
bound Rabs, and the traffic cycle starts over.?

How is Rab traffic spatially and temporally organized?
A sequence of Rab proteins regulates the directed trans-
port of specific cargo species and the Rab target-mem-
brane specificity is controlled by GAPs and GEFs.***
However, how GEF/GAP specificity and regulatory activ-
ity is orchestrated in time and space remains unclear.”®
Yeast Rabs can recruit GEFs that activate the next Rab in
the traffic sequence, as well as GAPs that deactivate the
predecessor.”** Similar regulatory mechanisms have
also been reported for Rabs in higher eukaryotes.”>**
Other studies show that the hypervariable C-terminal
domain of each Rab is instructive for insertion into spe-
cific membranes,” and that active Rabs are able to
induce self-amplifying loops by generating functional
lipid micro-domains.'®*® Interestingly, on the same
membrane entity multiple different Rab micro-domains
can coexist.”” Therefore, specific combinations of Rabs
may constitute a “Rab code,” defining the identities of
intracellular transport vehicles.”®

Rab proteins in drosophila melanogaster

Genetic resources that allow systematic analyses of pro-
tein localization in vivo are established for baker’s
yeast,39 C. elegans4° and fruit flies.*! However, compre-
hensive collections of tagged rab alleles suitable to study
endogenous Rab dependent transport in a complex
model organism emerged only recently for Drosophila.
In Drosophila melanogaster, 31 members of the Rab-
GTPase family were identified based on sequence com-
parisons.” Many Rabs are expressed in specific patterns
during embryogenesis,” and transcription profiles indi-
cate dynamic expression levels of many Rab transcripts
throughout development and FlyBase.org. However, it is
important to explore how mRNA expression patterns
correlate with the localization, levels and activities of the
corresponding proteins. To this aim, Dunst et al. gener-
ated a comprehensive set of endogenously modified rab
alleles (Yrabs). The YRab-collection comprises 27 strains;
each different Rab is N-terminally tagged with YFP'*
(rablibrary.mpi-cbg.de). The YFP-tag allows comparing
the distributions of different Rab proteins directly and
provides a common target for RNAi or nanobody-



induced protein depletion approaches. Dunst and col-
leagues systematically analyzed the expression, localiza-
tion and abundance of Yrabs in 6 different organs, which
harbor a total of 23 different cell types. Each cell type is
characterized by a unique composition of the Rab
machinery. For example, all cell types sampled have high
levels of Rabl mRNA and protein. In contrast, Rab10
mRNA levels are generally high but only imaginal disk
cells show correspondingly high protein levels, whereas
all other cell types tested have low Rabl10 protein levels.
Therefore, some Rabs may have cell type specific mRNA
translation or protein turnover rates. In addition, the
organization of Rab compartments is dependent on the
state of cellular differentiation. For example, Rab3 and
Rab27 regulate synaptic activity in a redundant fashion,
and their expression is limited to very few cell types.'**?
However, their expression and localization differ strik-
ingly. Rab3 is expressed during early axonogenesis and
the protein is distributed throughout the cytosol (Fig. 1).
Only upon initiation of synaptogenesis does Rab3
become restricted to presynaptic contact sites. In con-
trast, Rab27 protein is not detectable in embryonic neu-
rons and only appears in interconnected neurons at
mature synaptic contacts (rablibrary.mpi-cbg.de).

What is the biologic relevance of the intracellular
compartmentalization of Rab proteins? Total Rab pro-
tein levels do not reflect the proportion of active GTP-
bound Rabs, and visualizing the localization of YRabs
does not allow discriminating between different Rab
activity states. However, active GTP-Rabs are generally
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integrated into membranes, whereas inactive GDP-Rabs
are GDI-bound and distributed in the cytosol. Biochemi-
cal approaches can be used to separate these Rab pools.
Isopycnic density gradients can be used to sediment
cytosolic Rabs.* Consequently, the non-sedimenting
Rab protein fraction represents GTP-Rabs engaged in
membrane traffic. However, an in-depth understanding
of traffic routes requires systematic mapping of the sub-
cellular localization of all Rabs and characterizing their
functional interconnections. The most common strategy
is to use immunohistochemical approaches. The detec-
tion of Rab proteins with fluorescent probes often reveals
prominent puncta (rablibrary.mpi-cbg.de). Notably,
however, the subcellular distribution of membrane pro-
teins in fixed samples is prone to artifacts,** and only live
imaging can reveal the dynamic morphologies of intra-
cellular membrane compartments. For instance, com-
partments that move from the trans-Golgi network
toward the plasma membrane often resemble tubular
shapes, distinct from spherical vesicles.*> Thus, fixation
and staining methods need to be carefully validated to
minimize experimental artifacts. Dunst and colleagues
used fixed samples and annotated systematically the
localization of each Rab in many different cell types
using defined and unbiased terminology for grouping all
Rabs into similarity-clusters. For instance, Rab depen-
dent ER traffic is well studied, and Rabl, 2, 10 and 18 are
known to regulate traffic between ER and other organ-
elles*>*” or maintain ER structure.*® In Drosophila sali-
vary gland cells these ER-Rabs show similar distribution

Figure 1. Rab3 expression in embryonic neurons. Rab3 and Rab27 are pan-neuronal presynaptic vesicle identifiers. In contrast to Rab27
(no detectable YRab27 in embryonic neurons, data not shown), Rab3 is expressed in a subset of wiring neurons (before synapse forma-
tion). Interestingly, after axogenesis all interconnected neurons show Rab3 and Rab27 restricted to presynaptic membranes. A-C Car-
toons (adapted from Fly atlas (Hartenstein, V. (1993) Atlas of Drosophila development and flybase.org) depicting different
developmental stages of Drosophila embryos. (A’-C') Images from corresponding Yrab3 embryonic ventral nerve cords. Of note, YRab3
(green) is detectable in neural cell bodies (A’-C’, white arrowheads) and projections (A’-C’, white arrows). HRP (magenta) labels all neuro-
nal membranes, developmental stages are indicated (A-C, upper left corner), scale bars indicate 20.m.
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Figure 2. ER associated Rab proteins in salivary gland cells. Rab1 and Rab2 are canonical Rab proteins that regulate traffic between ER
and the Golgi apparatus. We show here that Rab7 and 8, but not Rabé (trans-Golgi Rab protein) are present on Rab1 membranes in sali-
vary gland cells. It remains to be shown what role Rab7 and Rab8 may play in ER/Golgi related transport. Of note, all used Yrab and
Crab alleles reflect the endogenous expression of respective Rab proteins. A,A” Confocal micrograph shows wild-type salivary gland (A)
stained with phalloidin (F-actin, white) and DAPI (nuclei, blue). Cells in boxed region are magnified in (A’). Scale bars indicate 5um. B-E”
Confocal cross-sections of salivary gland cells from YFPrab6;CFPrab1 (B-B”), YFPrab8;CFPrabl (C-C"), YFPrab2;CFPrab1 (D-D”) and
YFPrab7;CFPrab1 (E-E”) larvae probed for direct YFP fluorescence (B-E, in gray and B"-E” in magenta) or stained against CFP-HA (B’-E’, in
gray and B”-E” in green). Arrows and arrowheads point to individual Rab domains; in B”-E” dashed lines indicate cell nucleus (N) and
dotted lines mark the apical domain; scale bars indicate 5.«m. Note that Rab6 accumulates apically and in a domain adjacent to Rab1

basally, whereas Rab2, Rab7 and Rab8 partially overlap with Rab1.

and the authors grouped these Rabs into one annotation
cluster (Fig. 2, D-D”). Rab6 is linked to Golgi and post-
Golgi transport.”” Although Rabé6 is localized in puncta,
the Rab6 annotation tree is different from the ER-Rab
cluster (Fig. 2, B-B"). Surprisingly, also Rab7 and 8 clus-
tered together with ER-Rabs. Only Rab7 was found to
localize at ER contact sites.”® So far, Rab8’' is not
reported to organize ER transport. Are Rab7 and 8 asso-
ciated with ER membranes in Drosophila cells? In sali-
vary gland cells Rab7 and Rab8 partially co-localize with
Rabl, thus confirming that the annotation correctly
grouped Rab7 and Rab8 with Rab1 (Fig. 2, C-C” and E-
E").

The collection of tagged rab alleles in Drosophila rep-
resents a unique resource to systematically chart intracel-
lular transport in vivo. The findings indicate a very
complex interplay between protein expression, localiza-
tion and activity. Thus, membrane and protein traffic
pathways are likely to depend to a large extent on the
particular cell types, developmental stages and

physiologic conditions analyzed in a given study, sug-
gesting that existing models of cellular traffic may in
some cases be too superficial.

Essential permanent transport and dedicated
transient traffic crossroads

Differentiation and tissue morphogenesis are intercon-
nected processes that follow a hard-wired sequence of
events. How do cells organize their protein and mem-
brane traffic according to morphogenetic programs, and
what kinds of signals control the spatial and temporal
constitution of the intracellular transport machinery?
DTT pathways are induced locally, and ensure spa-
tially and temporally targeted delivery of membrane
material and cargo. However, the initiation, regulation
and composition of DTTs are not well understood.
Recently, Caviglia and colleagues reported new insights
into one particular DTT route. They studied the



formation of tubular connections in the tracheal system
in Drosophila, which consists of a network of epithelial
tubes.”>* The tracheal network transports oxygen to tis-
sues. It originates from segmentally repeated invagina-
tions of the embryonic ectoderm that extend and
undergo a series of branching events.”*>> Tracheal tubes
consist of an epithelial monolayer that surrounds a
lumen lined by apical extracellular matrix (cuticle) that
prevents tracheal tubes from collapsing.

In the tracheal system, tubular connections (anasto-
moses) are built between pre-existing lumenized
branches. These connections are made by specialized tip-
cells called fusion cells (FCs; Fig. 3). FCs migrate toward
each other, and, upon contact, form a new adherens
junction at the contact site. The fusion cells then repolar-
ize and form a secondary apical domain at the cell-cell
contact site. The original primary apical side of each tip
cell faces the invading stalk cell lumen, where the 2 cell
types are connected via adherens junctions. The stalk cell
‘invades’ the tip cell (resembling a finger poking into a
balloon), bringing the primary FC apical membrane very
close to the secondary apical membrane domain at the
contact between the 2 tip cells.”* The subsequent intra-
cellular fusion of the 2 apical membrane domains leads
to the formation of a luminal connection between the
adjacent branches (Fig. 3).
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Caviglia et al. investigated the mechanism of intracel-
lular membrane fusion in the tip cells and identified lyso-
some-related secretory organelles (LROs) essential for
lumen fusion. LROs are pleomorphic organelles in sev-
eral specialized cell types (including, among others cyto-
toxic T-cells, endothelial cells and pigment cells>®) and
have cell specific origin membranes. These compart-
ments store specific cargo and acquire specific structural
proteins/luminal environments. In response to external
stimuli LROs release their cargo by fusing with the
plasma membrane in a spatiotemporally, tightly regu-
lated manner."™”” Interestingly, early findings identified
Rab geranylgeranyl transferases important for successful
LRO maturation and secretion.”® Later, individual Rab
proteins were associated with specific LRO maturation
and traffic steps.”>*”* However, only recently Azous
et al. published a comprehensive screen aimed to identify
all Rabs that regulate granule secretion in mast cells. The
authors identified 30 Rabs involved in exocytosis, includ-
ing Rabs that affect selectively secretion triggered by a
Ca®" ionophore. Among these Rabs responsible to con-
trol Ca®"-induced release is Rab39A.°" Interestingly, in
tracheal fusion cells Caviglia and colleagues found Arl3-
dependent recruitment of Rab39 and Muncl3-4/Stac-
cato, a Ca’*-binding protein,®* onto Rab7- and LAMP1-
positive LROs. Active Rab7 and Rab39 are known to

B  Tracheal fusion stages:

|. apical membrane expansion,
secretory lysosome maturation
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Figure 3. Overview of membrane trafficking steps during tracheal tube fusion. (A) Scheme depicting a fusion tip cell (blue) invaded by a
stalk cell (gray). The primary (1°) and secondary (2°) apical membranes are in magenta, adherens junctions in bright green, actin/micro-
tubule track in dark green, ER in blue, Golgi apparatus in light green, LROs in orange, late endosomes in dark red, early endosomes in
light red and recycling endosomes in yellow. Broken lines represent hypothetical trafficking steps; continuous lines represent experi-
mentally validated steps. Endocytic compartments (a) donate membrane material to apical membranes (b) or mature to give rise to late
endosomes (c). Arl3 is recruited to Rab7- and Lamp1- positive compartments, and Arl3 effectors recruit Munc13-4/Staccato and Rab39.
Dynein and kinesin (KIF) motor proteins are effectors of Rab7 and/or Rab39, and link LROs to the actin/microtubule track (d). Once the

apical plasma membrane domains are reached, Ca*"

-bound Munc13-4/Staccato promotes SNARE-dependent membrane fusion (e).

Ca*"-enriched microdomains are established by localized release from Sec 31-positive ER portions close to the fusing membranes. (B)
Stages of lumen fusion in the wild type (I-ll). (C) In the absence of Stac or Rab39, LROs fail to form. As a consequence the 2 apposed api-
cal membranes fail to fuse, although fusion cells are still able to expand their apical domains. (Modified after Caviglia et al. NCB, 2016).
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Figure 4. (A) novel strategy to impede intracellular protein/membrane traffic. A,B Homologous recombination strategy for generating
TevP-rab and TEV-rab alleles. A and B are the genomic regions with the recombination points and the exogenous DNA inserted, which
is indicated in each case. A" and B’ are the proteins generated. TevP-rab1 (A,A") and TEV-rab1 (B,B’) are shown as an example. 5" and 3’
UTRs, gray; rab1 coding regions, green; TevP, pink; YFP, yellow; V5, magenta; MYC, cyan; HR stands for ‘Homology Region’. C,D Sketch
depicts endosomal maturation without processing (C) and upon TEV-Rab7 cleavage by TevP-Rab5 (D). TevP cleavage of TEV-Rabs dis-
connects the Rab-GTPase domain from membranes. Early endosomes (EE) are in light-orange, intermediate endosomes (IE) in orange
and late endosomes (LE) in red. TevP (pink star) tagged Rab5, and YFP (yellow) tagged TEV-Rab7 are depicted. E Larval fat body protein
lysates from wild type (lanes 1 and 2), TEV-Rab1 (lane 3), TEV-Rab1;TevP-Rab5 (lane 4), TEV-Rab5 (lane 5), TEV-Rab5;TevP-Rab5 (lane 6),
TEV-Rab9 (lane 7), TEV-Rab9;TevP-Rab5 (lane 8) probed for MYC (top), V5 (middle) and Tubulin (bottom). Note, TEV-Rab1 and TEV-Rab5
are cleaved by TevP-Rab5 whereas TEV-Rab9 is not. This result indicates that one traffic step requires Rab1 and Rab5 in close vicinity.
Note that expression of TevP-Rab5 in a TEV-Rab5 background leads to complete degradation of TEV-Rab5 (lane 6).

bind effectors, including Dynein®> and kinesin-3
KIF1A®* motor proteins, which link LROs to microtu-
bules®® and can initiate transport along microtubules
toward the apical plasma-membrane. In addition, the
authors describe the appearance of local transient intra-
cellular Ca®" sparks specific to the tip cell type that
mediates lumen fusion, by triggering the fusion of LROs
to each apical plasma membrane domain, thus creating a
connection between pre-existing lumina. Thus, in tip
cells the Rab machinery may act to position the mem-
brane fusion machinery in the right place to mediate the
connection of growing lumina.

Experimental challenges

Intracellular transport is tightly regulated. However, the
plasticity of such regulative networks is hardly assessed
and comprehensive expression studies of endogenous
Rabs show large spatial, temporal and quantitative
differences. Therefore experimental setups need to be
evaluated and standardised. Available genetic tools
yielded many important findings. However, misexpres-
sion and perturbation of multiple pathways may blur
results and make interpretations difficult. Therefore,
here we propose novel strategies to manipulate Rab



dependent transport with a high spatio-temporal
resolution.

Closing remarks

What are the next aims? Although some principles apply
to all Rabs, such as GDP/GTP-switch regulation by
GEFs and GAPs, other paradigms may not apply gener-
ally (e.g., mechanisms of Rab membrane insertion and
extraction). A challenging task is to validate existing
molecular and mechanistic models for all members of
the Rab family. A second major challenge is to systemati-
cally chart the Rab machinery in each cell type. Many
Rabs are allocated, based on published findings in differ-
ent cell types, to specific organelles or traffic routes.
However, recent findings show cell-type specific comple-
ments of Rab proteins, consistent with the idea of a “Rab
code” that is characteristic of each cell type. Comprehen-
sive libraries of endogenously tagged rab alleles provide
a powerful tool to faithfully characterize cell type specific
transport routes and Rab codes.

Rab protein localization and loss of function rescue
strategies

Many Rabs are small proteins and their surface shows only
limited immunogenic activity. Therefore, antibodies that
specifically detect the intracellular localization of endoge-
nous Rab proteins are rare.”® As an alternative to antibod-
ies, expression of tagged transgenes (for instance YFP-
tagged wild-type rab alleles) can be used to study Rab pro-
tein localization. However, experiments using over- or
misexpression of Rab transgenes need to be interpreted
with great care. First, increased Rab levels or ectopic Rab
activity can lead to mutant phenotypes. Second, large
amounts of inactive cytosolic transgenic protein can mask
the localization of the limited pool of active Rab pro-
teins."''**” Genomic rescue constructs*' in mutant back-
grounds or manipulation of endogenous rab loci by
homologous recombination'* are powerful approaches
that allow targeting the introduced tag for controlled Rab
RNA and/or protein knock-down experiments.*>*®

Rab protein depletion

Mutagenesis, RNAi knock-down or nanobody approaches
reduce the entire cellular Rab protein pool. The expression
of dominant-negative alleles is another way to impede cel-
lular Rab function.” Dominant negative Rabs preferentially
bind GDP and outcompete the endogenous Rab pool for
the binding of regulatory elements. Therefore, the GTP-
bound Rab pool is depleted and all traffic controlled by the
affected Rab is jammed. However, overexpressed domi-
nant-negative Rabs may interfere not only with the tar-
geted Rab protein, but also with other Rabs, and therefore
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the effects may be to some extent ambiguous. Moreover, a
given Rab can be involved in multiple traffic steps and the
complete Rab depletion can result in phenotypes that may
reflect the perturbation of multiple traffic routes. In addi-
tion, the plasticity of the transport machinery may be able
to compensate for the affected traffic step.'®*®

Genetic tweezers to dissect Rab traffic steps

To manipulate individual traffic steps we propose a new
approach for local deactivation of Rab proteins. Particular
cellular membrane compartments and organelles are char-
acterized by distinct Rabs, and membrane maturation/dif-
ferentiation processes are characterized by a change in the
set of Rabs that decorate the corresponding membranes
(“Rab identity”). In consequence, for a period of time dif-
ferent Rabs share the very same membrane compartment
and therefore come in close spatial proximity. The idea is
to use that time frame and local proteolytic activity to per-
turb the membrane maturation sequence. Our experimen-
tal approach uses a 2-component system with one Rab
protein tagged with the Tobacco-etch virus Protease
(TevP, Fig. 4A) and a second Rab tagged with a TevP
cleavage site (TEV, Fig. 4B) inserted between the GTPase
domain and the membrane anchor. The correct genetic
combination of TevP-Rab and TEV-Rab allows blocking
one specific membrane traffic step without impeding Rab
functionality in other trafficking steps.

For instance, flies that express TevP-Rab5 and TEV-
Rab7 may show hampered endosomal maturation®”°
while Lysosome-ER transport, which depends on Rab9
and Rab7,”" should remain unperturbed (Fig. 4C-E). Sys-
tematically probing the functional relationships of Rabs
using TevP-Rab/TEV-Rab combinations may prove useful
to chart the sequence of Rabs required to shuttle particu-
lar protein cargo. In an analogous approach, a protein of
interest is tagged with TevP (TevP-cargo) and its intracel-
lular transport can be mapped using TEV-Rabs.
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