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Background: Translatomics data, particularly genome-wide ribosome profiling and polysome profiling, provide
multiple levels of gene regulatory information that can be used to assess general transcription and translation, as
well translational efficiency. The increasing popularity of these techniques has resulted in multiple algorithms to
detect translational regulation, typically distributed in the form of command line tools that require a basic level
of programming ability. Additionally, due to the static nature of current software, dynamic transcriptional and
translational comparative analysis cannot be adequately achieved. In order to streamline hypothesis generation,
investigators must have the ability to manipulate and interact with their data in real-time.

Results: To address the lack of integration in current software, we introduce RIVET, Ribosomal Investigation and
Visualization to Evaluate Translation, an R shiny based graphical user interface for translatomics data exploration and
differential analysis. RIVET can analyze either microarray or RNA sequencing data from polysome profiling and
ribosome profiling experiments. RIVET provides multiple choices for statistical analysis as well as integration of
transcription, translation, and translational efficiency data analytics and the ability to visualize all results dynamically.

Conclusions: RIVET is a user-friendly tool designed for bench scientists with little to no programming background.
RIVET facilitates the data analysis of translatomics data allowing for dynamic generation of results based on

user-defined inputs and publication ready visualization. We expect RIVET will allow for scientists to efficiently
make more comprehensive data observations that will lead to more robust hypothesis regarding translational
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Background

Regulation of gene expression is a multi-tiered process
critical for maintaining cellular homeostasis. Upon disrup-
tion of regulatory mechanisms, gene expression can be-
come disrupted at the level of transcription, cytoplasmic
export, RNA stability, RNA localization, and at the level of
mRNA translation leading to aberrant protein expression.
Translational control of mRNA can be achieved globally,
via cellular mechanisms that modulate the levels of
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protein production from all mRNA, or in a targeted
process, through mechanisms that promote or inhibit the
specific translation of a subset of mRNAs [1]. Aberrant
translation of mRNA has been shown to play an import-
ant role in many diseases, particularly in cancers and can-
cers refractory to treatment [2, 3].

Two commonly used approaches to study genome-wide
translational control are polysome profiling and ribosome
profiling (reviewed in [4]). Polysome profiling captures
both transcriptional and translational regulation by isolat-
ing cytoplasmic RNA and enriching for actively translating
mRNA bound to ribosomes. Enrichment of actively trans-
lated mRNA is performed by separation of ribosome-
bound mRNA using sucrose-gradient ultracentrifugation
followed by fractionation of mRNA pertaining to the
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quantity of bound ribosomes followed by RNA-seq or
microarray analysis for transcriptional quantitation
(Fig. 1b). Cytoplasmic mRNA preserved prior to
ribosome-enrichment as well as polyribosome enriched
mRNA fractions are then used to measure active tran-
scription by performing microarray analysis or sequencing
on total RNA (Fig. 1a). Thereby, each mRNA in the cell
will have measurements for transcriptional changes as well
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experimental conditions. And, as polysome profiling al-
lows for an exact enrichment of mRNA corresponding to
the number of bound ribosomes, changes that shift the
level of translation of a particular mRNA can also be ex-
amined through density-based segmentation of the poly-
some fractions [5] (Fig. 1b). An alternate technique,
ribosome profiling, also utilizes a multi-omics approach to
capture both transcriptional and translational effects,

as translational changes occurring due to varied however, exclusively quantifies mRNA using an RNA
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Fig. 1 Genome-wide translatome assays. a. Schematic of polysome profiling and ribosome profiling. Cytoplasmic mRNA is first isolated and
subjected to density ultracentrifugation in both methods where mRNAs bound to ribosomes are separated based on weight and velocity. A
sample of cytoplasmic mRNA is maintained for downstream analysis. b. In polysome profiling, ribosome-bound mRNAs are further fractionated
based on ribosomal RNA content and segregated into fractions based on bound number of ribosomes. Collected fractions of ribosome-bound
mRNAs can be pooled based on ribosome number to analyze different levels of translation. The cytoplasmic sample and polysome sample or
samples are then subjected to microarray analysis or RNA sequencing. c. In ribosome profiling, ribosome-bound mRNAs are subjected to RNase
treatment prior to ultracentrifugation, which digests naked mRNA leaving 23-27 nt fragments of ribosome-protected mRNA. These fragments
are size-selected and amplified. The cytoplasmic sample and footprint sample are then subjected to RNA sequencing
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sequencing platform (Fig. 1c). Additionally, ribosome pro-
filing differs from polysome profiling in that nuclease di-
gestion is performed with ribosome-enriched mRNA,
degrading unbound mRNA and leaving a ribosome pro-
tected RNA footprint of ~ 30 nts. Nuclease digestion al-
lows for additional analysis of location of the ribosome on
mRNA. For differential expression analysis, only a tran-
scription and translational fraction of mRNA can be cap-
tured utilizing ribosome profiling [6]. Both techniques are
schematized in Fig. 1.

Datasets derived from translational control experiments
have the ability to provide multiple layers of information
regarding mRNA regulation including transcriptomic and
translatomic data. Further, these experiments allow for
examination of translation independent from transcrip-
tion, also known as translational efficiency. Recently, with
the upsurge in the use of ribosome profiling, there has
been a corresponding increase in algorithms that detect
translational efficiency that can be applied to ribosome
profiling and RNA sequencing-based polysome profiling
data [7-10]. However, these algorithms model discrete
data based on negative binomial distributions, and there-
fore should not be applied to continuous based microarray
data, which is prohibitive to the analysis of publicly avail-
able genome-wide polysome profiling microarray datasets.
Additionally, these packages rarely implement compre-
hensive data visualization tools and require the use of
R-packages and/or command-line interfaces, restricting
use to scientists proficient in programming [10]. The
inability to easily perform differential analysis and
visualization for both polysome and ribosome profil-
ing highlight the need for a user-friendly tool that
can adapt to both polysome profiling and ribosome
profiling data sets.

Here we present RIVET, an R shiny graphical user
interface to identify mRNA regulation occurring in the
transcriptome, translatome, and to identify those genes
that are regulated at the level of translation independent
of transcription. RIVET is a comprehensive user inter-
face (UI) that takes in a user-defined matrix of RNA-seq
counts data or microarray data, normalizes the data and
performs differential expression analysis with several op-
tions for statistical packages, followed by comprehensive
data visualization. RIVET is based on limma [11] and
edgeR [12] statistical modeling packages and utilizes
ggplot2 [13] graphical environment. To perform differ-
ential analysis for translational efficiency, the user can
choose to utilize a log, ratio of polysome to total [6, 14]
or heavier polysome to lighter polysomes [15, 16] or a
statistical model incorporating an interaction between
condition and polysome to total [17, 18]. RIVET differs

from other bioinformatics tools that it provides
normalization, differential expression detection at the
level of transcription and translation including
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translation occurring within multiple polyribosome frac-
tions, and publication-ready visualizations. RIVET sim-
plifies the process of analyzing translatome-based
genome-wide data allowing users to gain critical insights
from data quickly and interactively.

Implementation

Rivet Ul architecture

The RIVET UI (http://ruggleslab.shinyapps.io/RIVET) is
comprised of 5 components split into modules:
normalization, transcription, polysome, translational
efficiency, and translational regulation (Fig. 2). In order to
use RIVET, users begin with the normalization module
and input a matrix of counts data from RNA sequencing
experiments or a background-corrected normalized
matrix of microarray data. Based on input data, a multidi-
mensional scaling (MDS) plot is automatically generated
for the user to ascertain sample quality and potential
batch effects. The user can then select the number of
polysome fractions to analyze and segregate samples into
control and experimental groups and transcription and
translation groups. Following sample segregation, differen-
tial expression analysis is automatically performed, using
either limma or edgeR, based on user preference (Fig. 2a).
Upon completion of all tasks in the normalization module,
the user can toggle between the transcription module, the
polysome module, the translational efficiency module, or
the translational regulation module.

The transcription module focuses on transcription in
isolation of translation, generating a volcano plot visualiz-
ing effect size of differential analysis at the transcriptional
level. The user can choose thresholds to consider for most
differentially expressed mRNAs through which a
downloadable spreadsheet of selected mRNAs is gener-
ated (Fig. 2b). The translation module focuses on transla-
tion alone, generating either a volcano plot, in the case of
one polysome fraction, or a heatmap in the case of
multiple polysome fractions (Fig. 2c). The translational ef-
ficiency module takes both transcription and translation
into account, generating a scatter plot visualizing different
types of translational regulation and a downloadable
spreadsheet corresponding to genes regulated in different
ways (e.g. transcription alone, transcription and transla-
tion, translation alone). The user can choose to analyze
translational efficiency using either the log2 ratio method
or the interaction term method [17, 18](Fig. 2d). All mod-
ules allow for download of user-selected differential ex-
pression and dynamically-created visualizations.

Data input

Typical polysome and ribosome profiling experiments
utilize microarrays or RNA sequencing to quantify both
transcriptional data as well as ribosome-enriched data.
Data input for RIVET, from microarrays or RNA
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from both transcription and translation modules, so should be performed following both transcription and translation module parameter input if
default settings are undesired for final analysis. b. Module Description. RIVET is divided into 5 modules. The normalization module offers options
for statistical parameters as well as MDS plot for quality control and a downloadable spreadsheet of all mMRNAs with fold-changes and p-values.
The transcription module offers a dynamic volcano plot that where the user can select thresholds for fold-change and p-value that will update
the plot with colored significant mRNAs. The translation module and translational efficiency module offer a volcano plot or heatmap depending
on number of input polysome fractions as well as sliders to select significance thresholds. In addition, the translational efficiency module allows
for user to select which method to use to analyze for translational efficiency: log2ratio or interaction. The translational regulation module allows

the user to examine types of translational regulation in the form of a scatter plot and barplot. The download spreadsheet feature labels all
selected mRNAs with the type of translational regulation. All modules allow for download of visuals as well as statistical analysis download
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sequencing, must be in matrix format with samples as
columns and genes as rows; most RNA sequencing pipe-
lines and microarray pipeline output data in RIVET
ready to use format. Data from microarrays must be
background corrected prior to input into RIVET. Most
publicly deposited microarray data can be easily down-
loaded as a matrix of data with background correction

and data normalization already performed. Examples of
appropriately formatted data can be found in Additional
file 1: Table S1 If the user needs to perform background
correction and normalization for raw microarray CEL
files, we refer the user to the GenePattern suite of graph-
ical user interface tools that can be utilized to generate a
spreadsheet of expression values as RIVET input. In brief,
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to use GenePattern to create RIVET input files, the user
should provide a zip archive of Affymetirx CEL files from
microarray experiments. If microarray files are derived
from 3" biased IVT Affymetrix arrays, the user can use the
ExpressionFileCreator module to upload zip file of arrays.
Default parameter settings using RMA background cor-
rection and quantile normalization will output a GCT for-
matted file that can be uploaded to RIVET. If microarray
files are derived from Affymetrix 1.1, 2.0, 2.1 ST arrays,
exon arrays, HTA 2.0 arrays, the module AffySTExpres-
sionFileCreator can be used with a zip archive of Affyme-
trix CEL files and default user settings. For more
information see the GenePattern software website, gene-
pattern.broadinstitute.org [19].

Because RIVET RNA sequencing-based statistical ana-
lyses utilize statistics that assume negative binomial dis-
tributions or perform normalization that requires
discrete counts data, RNA sequencing data must be in-
put as a raw counts matrix;, TPM, RPKM, FPKM
normalization cannot be handled by RIVET statistical
analysis. Appropriate RNA sequencing counts table are
generated by commonly used RNA-seq pipelines includ-
ing STAR [20] or HT Seq [21].

Sample selection and user-defined analysis choices

The normalization module of RIVET is split into a side-
bar panel allowing the user to choose multiple parame-
ters for defining statistical analysis and experimental
design, as well as a main panel containing information
regarding sample categorization and a quality control
MDS plot. Matrix-formatted data can be uploaded into
RIVET via the sidebar upload feature. When provided
with an input counts table, RIVET automatically gener-
ates an MDS plot for quality control purposes in the
main page under the plot module. Within the main page
samples module, RIVET provides the user with an inter-
face to label samples based on experiment and control
as well as whether samples were generated from tran-
scriptional or translational data (Additional file 2: Figure
S1B). To group samples, the user is presented with
drop-down menus containing the names of samples as
defined by the column headers in the input matrix and
must choose how to categorize each sample according
to experiment type. Additionally, when inputting poly-
some data, the user has the option to define additional
translational categories depending on the number of
polysome fractions in the experiment. When more than
one translational fraction is defined, the software will dy-
namically generate additional experiment and control in-
put boxes to further categorize polysome samples. For
most polysome and ribosome profiling experiments, the
default box allowing for input of 1 experiment sample
type and 1 control is appropriate. In order to run statis-
tical analysis, the user must complete all prompts in the
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main panel of the samples module; default values in all
other options in the sidebar panel are sufficient to
complete the run.

In order to provide an example of user-defined ana-
lysis input, we will use a simplified experimental design
from Geter et al. [2] (GSE107590). In this study, the au-
thors silenced the expression of elF4E (experiment) in
Tamoxifen-resistant breast cancer cells compared to a
non-silencing control (control) using biological dupli-
cates. The authors performed polysome profiling on ex-
periment and control samples where a sample from
cytoplasmic RNA (total) was utilized to quantify tran-
scription in each condition. In addition, mRNAs bound
to 2-3 ribosomes (light) and 4—6 ribosomes (heavy) in
each condition were enriched so that in total there were
12 samples (Additional file 2: Figure S1A). Samples iso-
lated from total mRNA would be entered into the Tran-
scription category with control samples replicate 1 and 2
entered into the control box and experiment samples
replicate 1 and 2 entered into the experiment box. The
number of polysome fractions can also be changed to
automatically allow for additional inputs for associated
samples (Additional file 2: Figure S1B).

Pipeline architecture

Upon input of a matrix of expression values and com-
pletion of required parameters, RIVET automatically car-
ries out two work flows simultaneously, the first
workflow generates normalized data to be used in the
statistical model, the second workflow will generate a
targets matrix and contrasts matrix defined based on
user input labels for experiment and control, as well as,
user input sample groupings (Fig. 3). The first workflow
will normalize counts data utilizing the dge object for
edgeR statistical analysis or voom normalization (limma
package) as indicated by the user. The second work flow
will produce a targets dataframe and contrasts dataframe
in the following manner: 1) a targets object will be gen-
erated based on user defined sample groupings from the
main page of the normalization module and the column
headings of the matrix of reordered sample labels. The tar-
gets object will contain information regarding the assign-
ment of samples to a particular label class. In the example
above regarding elF4E silencing vs control tamoxifen resist-
ant cells, the sample classes would be as follows: NS.tran-
scription, E4.transcription, NS.translationl, E4.translationl,
NS.translation2, FE4.translation.2. Samples would be
assigned as follows: NS.transcripion: replicate 1 control
transcription, replicate 2 control transcription, E4.transcrip-
tion: replicate 1 experiment transcription, replicate 2 ex-
periment transcription, NS.translationl: replicate 1 control
translation heavy polysome, replicate 2 control translation
heavy polysome, 4E.translationl: replicate 1 experiment
translation heavy polysome, replicate 2 experiment
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Fig. 3 Control flow of statistical analysis performed by RIVET. Flow diagram of user input and RIVET analysis. The RIVET framework takes 3 forms
of user input (circles on flow diagram): uploaded normalized microarray matrix or RNA sequencing counts matrix, user-defined control and
experiment samples in both transcription and translational fractions, names of the experiment and control groups. Three object types are created
using the three user-inputs: 1) counts matrix and sample groups are used to generate a reordered matrix of genes by samples. 2) The reordered
matrix and user-defined experiment and control names are used as input to generate a targets dataframe required by both edgeR and limma as
part of defining the experimental design. 3) User-defined experiment and control names are used to generate a contrasts dataframe defining the
contrasts as experiment-control for translation and transcription samples. Allow flow streams converge on the user selection of microarray vs.
RNA sequencing. If microarray, the reordered matrix, targets frame, and contrasts frame are used as input to limma. If RNA sequencing, the user is
prompted to select between limma or edgeR statistical analysis choices. If limma is chosen, the reorder-matrix is voom normalized and used as
input along with the targets frame and contrasts frame into a limma. If edgeR is chosen, the reordered matrix is DGE normalized and input along

with targets frame and contrasts frame into edgeR

translation heavy polysome, NS.translation2: replicate 1
control translation light polysome, replicate 2 control trans-
lation light polysome, 4E.translation2: replicate 1 experi-
ment translation light polysome, replicate 2 experiment
translation light polysome (Table 1) 2) In tandem, a con-
trasts matrix will be defined based on user-defined labels of
control and experiment in the samples submodule of the
normalization module. The contrasts matrix for the above
example would compare the means for 1) NS vs 4E
transcripton, 2) NS vs 4E translation heavy, 3) NS vs
4E translation light (Table 2). Statistical analysis will
utilize normalized data, the targets frame, and con-
trasts frame as input.

For generation of translational efficiency data, user in-
put data will be used in a similar manner but contrasts
frame along with statistical model will be different. The
statistical model will be defined as follows:

~ 0 + type + treatment + type:treatment.

In the above statistical model, type defines polysome or
cytosolic RNA and treatment defines the experimental
conditions tested. The contrasts matrix will define

translational efficiency as the interaction of type and treat-
ment. If the user chooses to utilize log, ratio, a matrix of
ratios will be calculated grouped by [polysome/total] control
and [polysome/total]experiment. The matrix will then be
used as input to normalization and contrasts matrix will
be defined as previous.

Upon completion of statistical analysis, a matrix is
generated containing the log, fold-change for experi-
ment standardized to control of every mRNA, as well as
p-values and adjusted p-values for all comparisons.
These statistics are generated for both transcription and
for each polysome fraction within this matrix and is
available for download as a tab-delimited text file at the
bottom of the normalization sidebar menu.

Transcription and translational analysis

As the full statistical analysis results are provided in the
normalization module, the transcription and translation
modules allow users to define a threshold of significance
for differential analysis in real time, with complementary
dynamic visualization of data based on the threshold
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Table 1 RIVET-Generated Targets Frame
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criteria chosen. Within the transcription module, users
use sliders provided in the sidebar panel to control the
threshold of log fold-change, p-value cutoff, or adjusted
p-value cutoff. A volcano plot is generated in the main
panel automatically with default settings of >1 log-fold
change and p-value < 0.05. Based on user-defined thresh-
olds, the number of significant genes, highlighted in blue
on the plot, will automatically adjust (Fig. 2b). Once the
user is satisfied with threshold criteria, a tab-delimited text
file of selected genes with log-fold change, p-value, and
adjusted p-value can be downloaded.

The user interface layout of the translation module is
similar to that of transcription with slider options to
choose log fold change and p-value / adjusted p-value
significance thresholds. If provided with one transla-
tional fraction, a volcano plot is also generated display-
ing user-defined significant genes. However, if more than
one polysome fraction is provided, the list of significant
genes per each fraction is concatenated and the log-fold
change of each mRNA across polysome fractions is dis-
played as a heatmap (Fig. 2c). In this way, the user can
view the dynamics of each mRNA’s log-fold change
across polysome fractions to ascertain modulations in
the level of translation of each mRNA due to treatment.
Both heatmap and text file can be downloaded of this
analysis.

Table 2 RIVET-Generated Contrasts Frame

E4.transcription-
NS.transcription

E4 translation.2-
NS.translation.2

E4 translation.1-
NS.translation.1

NS.transcription -1 0 0
E4.transcription 1 0 0
NS.translation.1 0 -1 0
E4.translation. 0 1 0
NS.translation2 0 0 -1
E4translation2 0 0 1

Translational efficiency analysis

Within the translational efficiency module, the user can
utilize the sidebar menu to choose what method to de-
termine translation efficiency: log, ratio or interaction
(defined above). Thresholds for fold-change as well as
p-value or adjusted p-value are included in this panel.
The main panel includes either a volcano plot for a sin-
gle polysome fraction or heatmap for multiple polysome
fractions. When the user selects a log-fold change
threshold, the log-fold change refers to the ratio of
polysome/totalexperiment V8. polysome/totalconerol.  The
visualization of multiple polysome fractions for transla-
tional efficiency, displayed as a heatmap, is the log fold
change of polysomecperiment and polysomeconeol as
translational efficiency is a way to select for mRNAs
with greater change in translation than transcription,
however, the fold-change in polysomes is more biologic-
ally relevant The genes displayed in the heatmap are
those that are defined as having significant differences in
translational efficiency due to treatment (Fig. 2d).

Examination of types of translational regulation

A variety of biological mechanisms underlie translational
regulation. Comparing mRNA expression levels in tran-
scription and translation can help characterize this regula-
tion. These types of regulation include translational
buffering, where changes in mRNA expression at the level
of transcription are not reflected in translation; changes in
transcription that are directly reflected in translation;
changes occurring that are opposite in magnitude in tran-
scription and translation; and lastly, changes occurring at
the level of translation and not transcription.

User defined thresholds for significance at the tran-
scription and translation level are used to determine the
category of regulation assigned to each mRNA in the
translational regulation module. If the user chooses to
navigate to the translational regulation module directly
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following completion of the normalization tab, the mod-
ule will use the default thresholds (p-value < 0.05) to se-
lect mRNAs to highlight on the scatter plot. Our tool
allows users to toggle between the different types of
translational regulation: transcription alone, translation
alone, transcription and translation, and opposite. This
provides users the ability to view mRNAs that are regu-
lated in all types of translational regulation, and to re-
ceive a quantification of the number of genes regulated
at each level as a bar plot (Fig. 2e). All figures as well as
a list of mRNAs selected for each type of translational
regulation can be downloaded in the sidebar panel.

Results

We used RIVET to re-analyze previously published data-
sets to demonstrate the it’s utility in analyzing data gen-
erated by three commonly used platforms: microarray,
polysome profiling, and ribosome profiling.

Microarray data

Data from Silvera et al. was used as a microarray analysis
test set [3]. This study compared the effects of treatment
with two mTOR inhibitors, PP242 and RADO0O1, with and
without irradiation on the selective translation of mRNAs
in an inflammatory breast cancer cell line. To reduce the
complexity of the dataset, we used only PP242 treated
samples and DMSO control samples subsampled from the
spreadsheet of RMA background corrected and filtered
data downloaded from GEO accession GSE92598. Data
was uploaded into RIVET in the normalization module
using the microarray option for downstream analysis. The
RIVET-generated MDS plot revealed that the greatest sep-
aration in this dataset was between polysome-derived
samples and cytoplasmic samples which can be typical of
microarray-derived polysome experiments [22] (Fig. 4a).
Comparison of the transcription and polysome derived
volcano plots (log2 fold-change > 1; p-value < 0.05), PP242
effects are largely at the level of transcription compared to
translation (Fig. 4b). Interestingly, when examining all
types of regulation in the translational efficiency module,
most genes appear to be translationally buffered; i.e. genes
are regulated at the level of transcription without corre-
sponding changes occurring in translation (Fig. 4c). Quan-
tification of significant genes in transcription, translation,
and all regulation can be handled by examining the num-
ber of genes produced in transcription and translation
spreadsheets as well as counting the number of items per
category in the all regulation spreadsheet.

Polysome profiling data

To demonstrate the utility of RIVET in polysome profil-
ing, we used data generated by Geter et al. [2]. Unlike
most studies, the authors of this study combined fractions
4-6 to study heavily translated mRNAs and fractions 2-3
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to study poorly translated mRNAs from the polysome gra-
dient. The goal of the study was to identify the effects of
elF4E reduction in tamoxifen-resistant breast cancer cells
compared to a normal control. In total, there were two
biological replicates per sample type yielding 12 samples
in total. Following differential expression analysis by
RIVET, a number of interesting biological observations
were made. When examining elF4E-mediated regulation
occurring in translation, each mRNA was either upregu-
lated or downregulated across the polysome gradient,
which could be easily seen in the translation module with
the heatmap visualization (Fig. 5a). Homodirectionality of
fold-change across the polysome gradient suggests 1)
many genes are regulated at the level of transcription lead-
ing to large changes that occur at the level of translation
2) changes occurring in translation are large and inde-
pendent of effects in transcription.

Using RIVET, these two models can be easily verified
using the translational efficiency module. With default
thresholds (log2 fold change > 1; p-value< 0.05) for both
transcription and translation, the user can discern from
the all-regulation scatter plot that most changes are
transcriptional and these changes are being reflected in
translation. If the fold-change threshold is increased to
examine the largest effect size, the scatter plot demon-
strates that most genes are both transcriptionally and
translationally regulated (Fig. 5¢). Though transcriptional
changes lead to the largest effects in translation in this
dataset, as has been observed in many studies, small ef-
fects in translation can affect biology dramatically. And
these small changes in translation tend to be in
translationally-regulated mRNAs that can be uniquely
identified using polysome profiling [5]. To examine the
dynamics of this particular subset of mRNAs, the user
can use both the translation and the translational effi-
ciency module. The heatmap graphic will highlight the
dynamics of each mRNA that is regulated at the level of
translational efficiency across the polyribosome gradi-
ent. Immediately apparent in the heatmap are the
heterodirectionality of fold-changes across the gradi-
ent, suggesting shifts in translation from heavier to
lighter polyribosome fractions (Fig. 5b). Therefore, the
dynamic features of RIVET allow users to gain clearer
and more robust biological insight from data than
would be possible using static methods.

Ribosome profiling data

Ribosome profiling data (GSE35469) were obtained from
Hsieh et al. and examined the comparison of prostate
cancer (PC3) cells treated with or without PP242, a drug
targeting the mTORC1/2 complex [23]. The original
study design implemented 2 biological replicates and we
utilized PP242-treated or vehicle treated samples with
paired ribosome profiling and RNA sequencing samples
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polysomes and in red are cytoplasmic samples. b. Volcano plots with significant mRNAs highlighted in blue. The transcriptional volcano plot (top)
has more significant mMRNAs than the translational volcano plot (bottom). c. Translational regulation analysis. Highlighted mRNAs were selected to
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directions in transcription and translation as this type of regulation was not found in this dataset. A quantification of types of regulation is

to give a total of 6 samples. Using downloaded counts for
each sample, we analyzed 5,688 genes as input into the
RIVET differential analysis pipeline after filtering for genes
with greater than 256 reads in RNA sequencing samples
(as per methods described in Hsieh et al.). To ascertain
our ability to use RIVET to analyze ribosome footprinting
data, we compared the ability of the limma statistical
framework within RIVET to select consistently regulated
mRNAs to those found in Hsieh et al. using a log
fold-change threshold > 1.5 as described. We found that
~60% of translational efficient mRNAs in Hsieh et al,
were also identified by RIVET (Fig. 6a). As fold-changes in
Hsieh et al. overall were larger than those calculated by
RIVET, we calculated a compression score for RIVET
fold-changes, and transformed the 1.5-fold threshold by

this value yielding a new threshold of 1-fold for RIVET
data to allow for a more comparable fold-change compari-
son between studies. Using this fold-change setting in
RIVET we were able to recapitulate 90% of translationally
efficient mRNAs in Hsieh et al. and identify 84 additional
mRNAs. The rank of fold-changes for translational
efficiency were similar between Hsieh et al. and RIVET
(rho =0.88 Spearman correlation of rank differences)
(Fig. 6b). Differences between data are likely due to differ-
ences in selection criteria between analysis as Hsieh et al.
utilized a false-discovery rate correction for fold-change
thresholds as opposed to p-values for selected mRNAs as
described in supplemental Fig. 4 of their paper. Although
differences exist between methodologies, RIVET success-
fully identifies trends described in Hsieh et al. For example,
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a majority of mRNAs are down-regulated in translational
efficiency in agreement with Hsieh et al. (Fig. 6¢). Further,
when translational efficiency is examined utilizing the
translational regulation module in RIVET, most mRNAs
show little change at the level of transcription with robust
changes in translation as concluded by the Hsieh et al. (Fig.
6d). These data suggest that RIVET can be utilized to dis-
tinguish differential translation and translational regulation
in ribosome profiling data.

Comparison to other resources

Rivet has several advantages over currently available pack-
ages that carry out differential expression analysis in ribo-
some profiling and polysome profiling experiments,
summarized in Table 3. Like Riborex [8] and tRanslatome
[24], RIVET uses existing generalized linear model (GLM)
based frameworks, either limma or edgeR depending on

user selection. These GLMs have been shown to complete
more rapid analysis compared with similar GLM methods
such as Xtail [10], RiboDiff [9], and Babel [7, 8] . Moreover,
the use of limma or edgeR support the analysis of small
sample size (less than 3 biological replicates) unlike anota2-
seq, which require 3 biological replicates unless there are
more than 2 experimental conditions [17]. However, unlike
all other translatome tools, RIVET makes use of a graphical
user interface to make these statistical frameworks access-
ible to users with limited computer programming abilities.
Also, unlike other tools, RIVET offers the advantage of
allowing users to include analysis of multiple polysome
fractions which may be critical in capturing nuances in
translational regulation that have important impacts on
biology. Important to the use of legacy microarray poly-
some profiling data, RIVET, like anota2seq [17], can
analyze both continuous microarray data as well as RNA
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sequencing data in current polysome profiling and ribo-
some profiling methodologies. As an additional advantage,
as a simplification for the user, RIVET explicitly chooses
the appropriate normalization method for the data de-
pending on the platform. Finally, RIVET, leveraging mul-
tiple visualization packages such as ggplot2 and heatmap.2

function from gplot, has the capability to provide
high-level and interactive data visualization to allow users
to gain insight from data and produce publication ready
graphs. tRanslatome incorporates data visualization with
statistical analysis, however, RIVET allows for the ability
for users to view visualizations interactively, alleviating the

Table 3 Comparison of RIVET with Translatome Differential Expression Tools

Software Rivet Xtail Anota2seq Babel RiboDiff tRanslatome Riborex
Novel Statistical Model X X X X

Utilizes existing statistical frameworks X X X
Visualization X X

GUI X

RNA seq & microarray X X X

Interactive X

Integration of all levels of analysis X X X

No Programming ability X

Statistical Choice X X X

Multiple Polysomes X
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need to run scripts multiple times to gain biological
insight. Limitations of this software include an inability to
utilize genomic location information provided in ribosome
footprinting data. RIVET is intended for differential ana-
lysis; for further exploration and visualization of ribosome
footprinting data at nucleotide resolution, we refer the
user to RiboGalaxy, a tool dedicated to ribosome foot-
printing analysis with a graphical user interface [25].

Conclusion

Translatome experiments including polysome profiling and
ribosome profiling have been used to explore changes in
gene expression at the level of both transcription and trans-
lation. Recently developed computational tools to examine
translatome experiment data provide differential analysis or
visualization of data but rarely both and lack an easy-to-use
graphical user interface. RIVET is comprehensive, perform-
ing differential analysis at the level of transcription, transla-
tion, and translational efficiency in combination with
interactive data visualization. RIVET can handle both
microarray and RNA sequencing platforms and provides
the user with the ability to analyze multiple translational
fractions. Utilizing the R shiny interface, RIVET provides
users without programming skills the ability to analyze
multi-omics data and visualize and downloadable publica-
tion quality results. To demonstrate the utility of RIVET for
all types of translational regulation studies, we re-analyzed
3 studies that examined translational regulation using
RNA-sequencing based ribosome footprinting and poly-
some profiling with multiple polysome fractions and poly-
some profiling with microarrays. In conclusion, RIVET is a
comprehensive, adaptable and user-friendly framework for
novel hypothesis generation and data exploration which will
help to drive forward the field of protein translation.

Availability and requirements
Project name: Ribosomal Investigation
Visualization to Evaluate Translation.

Project home page: https://ruggleslab.shinyapps.io/
RIVET/

Operating system: Platform independent

Programming Language: R/Rshiny

Other requirements: None

License: None

Any restrictions to use by non-academics: None

and

Additional files

Additional file 1: Table S1. Example of appropriately formatted
input data with genes as rows and samples as columns. (PDF 24 kb)

Additional file 2: Figure S1. Example data used for RIVET. A. Schematic
depicting types of data generated by a polysome profile experiment with
multiple polysome fractions. There are three types of experimental data:
Cytoplasmic RNA (total), Light polysome RNA, and heavy polysome RNA.
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Each type of data has two replicates and will contain both experiment
and control samples. B. Screen shot of sample upload submodule using
data from Geter et al. 1) Sample labels are provided, in this case NS
(control) and E4 (experiment). Note that all labels are in accepted R
notation, ie labels cannot begin with a number. 2) Transcription samples
are selected from the drop-down menu. In this case, samples are labeled
as follows: replicate_cell line_treatment_data-type’. Control and
Experiment transcription samples contain 2 replicates each. 3) The
user selects the number of polysome fractions to increase the number of
rows provided under the Translation section. “Conclusion”) Translation
samples are selected from the drop-down menu. Like transcription,
translation samples contain 2 replicates each. Each row corresponds
to a different polysome fraction, Heavy pertains to the top row, light
to the bottom row. (PDF 1085 kb)
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