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Identifying Contextual and Spatial Risk Factors for Post-Acute Sequelae of SARS-CoV-2 Infection: 1 

An EHR-based Cohort Study from the RECOVER Program 2 

Abstract1  3 

Post-acute sequelae of SARS-CoV-2 infection (PASC) affects a wide range of organ systems among a 4 

large proportion of patients with SARS-CoV-2 infection. Although studies have identified a broad set of 5 

patient-level risk factors for PASC, little is known about the contextual and spatial risk factors for PASC. 6 

Using electronic health data of patients with COVID-19 from two large clinical research networks in New 7 

York City and Florida, we identified contextual and spatial risk factors from nearly 200 environmental 8 

characteristics for 23 PASC symptoms and conditions of eight organ systems. We conducted a two-phase 9 

environment-wide association study. In Phase 1, we ran a mixed effects logistic regression with 5-digit 10 

ZIP Code tabulation area (ZCTA5) random intercepts for each PASC outcome and each contextual and 11 

spatial factor, adjusting for a comprehensive set of patient-level confounders. In Phase 2, we ran a mixed 12 

effects logistic regression for each PASC outcome including all significant (false positive discovery 13 

adjusted p-value < 0.05) contextual and spatial characteristics identified from Phase I and adjusting for 14 

confounders. We identified air toxicants (e.g., methyl methacrylate), criteria air pollutants (e.g., sulfur 15 

dioxide), particulate matter (PM2.5) compositions (e.g., ammonium), neighborhood deprivation, and built 16 

environment (e.g., food access) that were associated with increased risk of PASC conditions related to 17 

nervous, respiratory, blood, circulatory, endocrine, and other organ systems. Specific contextual and 18 

spatial risk factors for each PASC condition and symptom were different across New York City area and 19 

Florida. Future research is warranted to extend the analyses to other regions and examine more granular 20 

contextual and spatial characteristics to inform public health efforts to help patients recover from SARS-21 

CoV-2 infection. 22 

Key Words 23 

SARS-CoV-2 infection; Long-COVID; Air pollution; Neighborhood deprivation; Built environment 24 

                                                           
1
 Abbreviations: PASC, post-acute sequelae of SARS-CoV-2 infection; COVID-19, the 2019 novel coronavirus 

disease; US, the United States; ZCTA5, 5-digit ZIP Code tabulation area; CRN, clinical research network; 
PCORnet, the National Patient-Centered Clinical Research Network; PM2.5, fine particulate matter with diameters 
that are 2.5 μm and smaller; CO, carbon monoxide; SO2, sulfur dioxide; NO2, nitrogen dioxide; SO�

��, sulfate; NH�
�, 

ammonium; NO�
�, nitrate; OM, organic matter; BC, black carbon; DUST, mineral dust; SS, sea-salt; O3, ozone; 

ACAG, The University of Washington at St. Louis Atmospheric Composition Analysis Group; CACES, The Center 
for Air, Climate, & Energy Solutions; US EPA, The United States Environmental Protection Agency; JHU CSSE, 
Johns Hopkins University, Center for Systems Science and Engineering Coronavirus Resource Center; CDC, The 
Centers for Disease Control and Prevention; NATA, National Air Toxics Assessment; USDA, US Department of 
Agriculture; HUD, Department of Housing and Urban Development; USPS, US Postal Service; NACIS, The North 
American Industry Classification System; NDVI, Normalized Difference Vegetation Index; NDI, Neighborhood 
Deprivation Index; ED: emergency department; VIF: variance inflation factor. 
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1. Introduction 25 

Post-acute sequelae of SARS-CoV-2 infection (PASC) refers to ongoing, relapsing, or new 26 

symptoms occurring after the acute phase of SARS-CoV-2 infection. Approximately one in five 27 

individuals aged 18-64 and one in four individuals aged 65 or older experience potential PASC symptoms 28 

and conditions following acute SARS-CoV-2 infection (Bull-Otterson et al., 2022). Studies have 29 

identified PASC symptoms and conditions that affect multiple organ systems, including shortness of 30 

breath (Al-Aly et al., 2021; Bell et al., 2021; Taquet et al., 2021; Wang et al., 2022), fatigue (Al-Aly et 31 

al., 2021; Bell et al., 2021; Cohen et al., 2022; Shoucri et al., 2021), cognitive dysfunction (Blomberg et 32 

al., 2021; Davis et al., 2021; Taquet et al., 2021), pulmonary diseases (Cohen et al., 2022), cardiovascular 33 

diseases (Davis et al., 2021), diabetes (Cohen et al., 2022), and mental health conditions (Cohen et al., 34 

2022; Taquet et al., 2021; Wang et al., 2022). As the number of individuals with SARS-CoV-2 infection 35 

keeps growing, understanding, treating, and preventing PASC conditions and symptoms have become a 36 

priority to help patients recover completely from SARS-CoV-2 infection. 37 

Incidence and severity of PASC symptoms and conditions vary significantly among COVID-19 38 

patients (Groff et al., 2021; Xie et al., 2021). A critical public health objective is to identify key factors 39 

that contribute to a higher risk of PASC symptoms and conditions following SARS-CoV-2 infection. 40 

Such evidence is important to help prioritize preventions and treatment strategies and improve health 41 

equity (Sudre et al., 2021; Yoo et al., 2022). Recent studies have identified a set of patient-level risk 42 

factors for PASC among COVID-19 patients, including female sex (Bliddal et al., 2021; Sudre et al., 43 

2021), higher body mass index (Bliddal et al., 2021; Sudre et al., 2021), older age (Carvalho-Schneider et 44 

al., 2021; Petersen et al., 2021), preexisting comorbidities (Su et al., 2022; Thompson et al., 2022), 45 

minority race/ethnicity (Halpin et al., 2021), and severity of acute SARS-CoV-2 infection (Carvalho-46 

Schneider et al., 2021; Sudre et al., 2021). However, little is known about the environmental 47 

characteristics associated with PASC. 48 

Disadvantaged contextual and spatial characteristics, such as air pollution, social vulnerability, 49 

and poor built environment, have long been recognized as risk factors for viral respiratory infections 50 

(Diez Roux, 2001; Pica & Bouvier, 2012; Smith et al., 1999). A growing body of evidence has 51 

established strong associations between contextual and spatial risk factors (e.g., exposures to air 52 

pollutants and chemicals) and increased risk of incidence and mortality of SARS-CoV-2 infection (H. Hu 53 

et al., 2021; Weaver et al., 2022; Wu et al., 2020; Zhou et al., 2021). Recent research examined a limited 54 

set of contextual and spatial risk factors for PASC. For example, one study examined the association 55 

between the Social Vulnerability Index (SVI) and PASC using a sample of 1,000 COVID-19 patients 56 

from a single health system and found no differences in the likelihood of PASC between patients with 57 
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higher and lower levels of SVI (Yoo et al., 2022). As individuals are exposed to multiple disadvantaged 58 

contextual and spatial factors simultaneously, more research is warranted to examine the totality of the 59 

environment using COVID-19 patients from geographically diverse regions. Leveraging two large cohorts 60 

of COVID-19 patients in New York City metropolitan area and Florida, we aimed to identify contextual 61 

and spatial risk factors for a broader set of PASC symptoms and conditions associated with SARS-CoV-2 62 

infection. 63 

2. Materials and methods 64 

2.1. Data Source and Setting 65 

We conducted a retrospective cohort study using electronic health record (EHR) data from two 66 

large clinical research networks (CRNs) of PCORnet, including INSIGHT and OneFlorida+. PCORnet is 67 

a network of healthcare systems that facilitates multi-site research using EHR data. The network utilizes a 68 

common data model that fosters interoperability across participating sites. The INSIGHT CRN collects 69 

data from five academic health systems in New York City, covering a diverse patient population in the 70 

New York City Metropolitan Area (Kaushal et al., 2014). The OneFlorida+ is a partnership of 14 71 

academic institutions and health systems across Florida, Georgia, and Alabama with longitudinal patient-72 

level EHR data for approximately 20 million patients (Shenkman et al., 2018). Using COVID-19 patients 73 

from two regions with different social and environmental conditions helped to demonstrate the 74 

heterogeneity of contextual and spatial characteristics associated with PASC conditions. 75 

2.2 Study Sample 76 

We identified COVID-19 positive patients as those with a positive SARS-CoV-2 PCR/antigen 77 

test or COVID-19 diagnosis (U07.1, U07.2, J12.81, B34.2, B97.2, B97.21, U04, and U04.9) between 78 

March 1st, 2020 and October 31st, 2021 in both CRNs. We included COVID-19-related diagnosis codes in 79 

addition to positive laboratory test results because patients could have received a positive SARS-CoV-2 80 

test outside CRN affiliated health systems or at home and only a diagnosis code was observed in EHR 81 

data. We identified COVID-19 negative patients as those with a negative PCR/antigen test, no positive 82 

tests, and/or no COVID-19-related diagnosis codes during the same period. We defined the date of first 83 

positive or negative PCR/antigen test or COVID-19 diagnosis as the index date.  84 

This study focused on PASC symptoms and conditions among adult patients. Patients were 85 

included if they were 20 years or older, had at least one clinical encounter 3 years to 7 days before the 86 

index date (baseline period), and had at least one encounter 31-180 days after the index date (follow-up 87 

period). This requirement was necessary to observe symptoms and conditions in the pre-test period and 88 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 13, 2022. ; https://doi.org/10.1101/2022.10.13.22281010doi: medRxiv preprint 

https://doi.org/10.1101/2022.10.13.22281010
http://creativecommons.org/licenses/by-nc-nd/4.0/


5 

 

allow us to identify patients with incident new conditions and symptoms after SARS-CoV-2 infection. 89 

We were also able to account for baseline demographics (e.g., age and gender) and comorbidities as 90 

confounders in the analysis. We further restricted patients to those with a 5-digit residential zip-code in 91 

EHR data. We cross-walked 5-digit zip code to 5-digit zip-code tabulation areas (ZCTA5) and only 92 

included patients from a ZCTA5 with at least ten patients. eFigures 1&2 in the appendix represented the 93 

catchment areas of our sample in New York and Florida. 94 

2.3. Defining PASC 95 

We included 23 PASC symptoms and conditions that were identified from our previous study 96 

based on existing literature, input from clinical experts, and data-driven analytics (Zang et al., 2022). A 97 

detailed description of methods of identifying these PASC symptoms and conditions was reported 98 

separately (Zang et al., 2022). These symptoms and conditions are categorized into the following eight 99 

organ systems: nervous system (encephalopathy, dementia, cognitive problems, sleep disorders, and 100 

headache), skin (hair loss and pressure ulcer of skin), respiratory system (pulmonary fibrosis, dyspnea, 101 

and acute pharyngitis), circulatory system (pulmonary embolism, thromboembolism, chest pain, and 102 

abnormal heartbeat), blood (anemia), endocrine (malnutrition, diabetes mellitus, fluid disorders, and 103 

edema), digestive system (constipation and abdominal pain), and general signs and symptoms (malaise 104 

and fatigue and joint pain). We examined contextual and spatial characteristics associated with having at 105 

least one PASC condition or symptom in each organ system as well as characteristics associated with 106 

each individual PASC condition and symptom. 107 

2.4. Contextual and Spatial Characteristics 108 

We integrated a variety of contextual and spatial measures from multiple sources to characterize 109 

patients’ exposures to their surrounding natural, built, and social environments before acute SARS-CoV-2 110 

infection. Table 1 presents a summary of these contextual and spatial factors, along with the 111 

corresponding data sources. To account for the heterogeneous spatiotemporal scales of these factors, area- 112 

and time-weighted averages were generated to aggregate them at the ZCTA5 level. We considered a total 113 

of 259 factors covering three domains of contextual and spatial characteristics with ten categories. A 114 

complete list of factors is in the appendix (eTable 1). 115 

  116 
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Table 1 Summary of ZCTA5-level contextual and spatial characteristics 117 

Notes: BG: Census Block Group; CT: Census Tract; CS: Cross-sectional; ACAG: Atmospheric Composition Analysis 118 

Group; CACES: Center for Air, Climate, & Energy Solutions; EPA: Environmental Protection Agency; NATA: 119 

National Air Toxics Assessment; HUD: Department of Housing and Urban Development; USDA: US Department of 120 

Agriculture; FARA: Food Access Research Atlas; NASA: National Aeronautics and Space Administration; MODIS: 121 

Moderate Resolution Imaging Spectroradiometer; ACS: American Community Survey; CBP: Census Business Pattern; 122 

UCR: Uniform Crime Reporting. 123 

 124 

2.4.1. Natural Environment 125 

Natural environment factors include compositions of particulate matter with diameters that are 126 

2.5 μm and smaller (PM2.5 compositions), criteria air pollutants, and air toxicants. These factors could 127 

increase the risk of developing PASC by directly leading to certain conditions (e.g., respiratory diseases) 128 

or making individuals more susceptible to SARS-CoV-2 infection (e.g., exacerbate infection severity) 129 

(Weaver et al., 2022). 130 

Data on PM2.5 compositions were obtained from the University of Washington at St. Louis 131 

Atmospheric Composition Analysis Group (ACAG) (van Donkelaar et al., 2019). ACAG estimated 132 

annual PM2.5 and its compositions at a spatial resolution of 0.01 degree in longitude and latitude. The 133 

estimates were derived using data from a chemical transport model (GEOS-Chem) and satellite 134 

observations of aerosol optical depth statistically fused by geographically-weighted models that have been 135 

extensively cross-validated (van Donkelaar et al., 2019). 136 

 Data Source and 
Validation Study 

Year 
Original Spatial/ 
Temporal Scale 

# of 
Measures 

Example 
Measures 

Natural Environment 
    PM2.5 
compositions  

ACAG 
2015-
2017 

0.01°/1-month 7 
Sulfate, nitrate, 
ammonium, etc. 

    Criteria air 
pollutants 

CACES 2015 BG/1-year 6 
PM2.5, O3, PM10, NO2, 
CO, SO2 

    Air toxicants EPA NATA 2014 CT/1-year 140 
Acrolein, propylene 
oxide 

Built Environment      

    Vacant land US HUD 
2015-
2019 

CT/3-month 18 
Average days 
addresses vacant 

    Walkability 
National 

Walkability Index 
2015 BG/CS 1 Walkability Index 

    Food Access  USDA FARA 
2015, 
2019 

CT/1-year 43 
Percent of low-access 
population at 1 mile  

    Green Space NASA MODIS 
2015-
2019 

1000m/1-monoth 1 
Normalized difference 
vegetation index 

Social Environment     
    Neighborhood 
Deprivation  

ACS 
2015-
2019 

ZCTA5/5-year 1 
Neighborhood 
deprivation index 

    Social Capital CBP 
2015-
2019 

ZCTA5/1-year 10 
Religious, civic, and 
social organizations 

    Crime and Safety UCR 
2015-
2016 

County/1-year 32 
Burglary rate, 
aggravated assault rate  
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We obtained criteria air pollutants, such as PM10 and carbon monoxide, from the Center for Air, 137 

Climate, & Energy Solutions (CACES) (S. Y. Kim et al., 2020). These measures were derived at the 138 

census block group level using data from the US Environmental Protection Agency (EPA) regulatory 139 

monitors, land use, and satellite-derived estimates of air pollution with well-validated land use regression 140 

models (S. Y. Kim et al., 2020). Finally, we obtained air toxicant measures from the National Air Toxics 141 

Assessment (NATA) conducted by EPA based on a national emissions inventory of outdoor air toxics 142 

sources (Logue et al., 2011). We used the most recent NATA data released in 2018 representing air 143 

conditions in 2014 at the census tract level. These measures represent long-term exposures rather than 144 

acute exposures to hazardous air pollutants (H. Hu et al., 2021; Petroni et al., 2020). Previous research 145 

indicates that spatial distribution of these air pollutants may have remained relatively unchanged 146 

(Chakraborty, 2021). 147 

2.4.2. Built Environment 148 

Built environment factors, including vacant land, walkability, food access, and green space, were 149 

considered. These are important determinants to various symptoms and conditions that may be associated 150 

with SARS-CoV-2 infection. For example, better access to healthy food mitigates the risk of developing 151 

diabetes associated with SARS-CoV-2 infection (Kirby et al., 2021). Green space in neighborhood could 152 

reduce the risk of developing respiratory conditions (Tischer et al., 2017). 153 

We obtained census-tract level vacant land measures in the period of 2015-2019 from the US 154 

Department of Housing and Urban Development (Garvin et al., 2013). We used the National Walkability 155 

Index developed by EPA, which measures walkability on a scale from 1 to 20 for each census block 156 

group, with 1 indicating the least walkable block group and 20 indicating the most walkable block group 157 

(Watson et al., 2020). Food access measures were obtained from the US Department of Agriculture 158 

(USDA)’s Food Environment Atlas (United States Department of Agriculture, 2019). We used 43 food 159 

access measures at the census-tract level of 2015 and 2019. Finally, we obtained the Normalized 160 

Difference Vegetation Index (NDVI) as a measure of green space in a neighborhood (Rhew et al., 2011). 161 

NDVI is a validated measure based on remote-sensing spectral data from NASA Moderate Resolution 162 

Imaging Spectroradiometer. 163 

2.4.3. Social Environment 164 

We measured neighborhood deprivation, social capital, and crime and safety for neighborhood 165 

social environment (Table 1 and eTable 1). These measures represent important socioeconomic 166 

conditions that are associated with individuals’ health and various conditions.  167 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 13, 2022. ; https://doi.org/10.1101/2022.10.13.22281010doi: medRxiv preprint 

https://doi.org/10.1101/2022.10.13.22281010
http://creativecommons.org/licenses/by-nc-nd/4.0/


8 

 

The Neighborhood Deprivation Index (NDI) was used to characterize neighborhood 168 

socioeconomic status. NDI is a weighted average of 20 measures that represent seven domains of 169 

neighborhood deprivation, including poverty, occupation, housing, employment, education, racial 170 

composition, and residential stability. We extracted ZCTA5-level data for all 20 measures from the 171 

American Community Survey five-year estimates of 2015-2019 and derived NDI for New York, New 172 

Jersey, and Florida using an established method (Walker et al., 2020). Ten social capital measures were 173 

constructed based on the North American Industry Classification System (NACIS) codes using the 2015-174 

2019 Census Business Pattern data at the ZCTA5-level (Rupasingha et al., 2006). Finally, we obtained 175 

county-level crime and safety measures from the Uniform Crime Reporting Program (Table 1 and eTable 176 

1). 177 

2.5. Covariates 178 

We examined a comprehensive set of patient characteristics as potential confounders using EHR 179 

data. These included patient age (20-39 [ref.], 40-54, 55-64, 65-74, 75-84, and 85+); gender (female 180 

[ref.], male. and other/missing); race (White [ref.], Black, Asian, and other or missing); ethnicity 181 

(Hispanic [ref.], Non-Hispanic, and Missing); year-month indicators of COVID-19 positive testing 182 

(March 2020 through October 2021); baseline comorbidities; and indicators for the institutions 183 

contributing data. We used a revised list of Elixhauser comorbidities for pre-existing comorbidities, 184 

including alcohol abuse, anemia, arrythmia, asthma, cancer, chronic kidney disease, chronic pulmonary 185 

disorders, cirrhosis, coagulopathy, congestive heart failure, COPD, coronary artery disease, dementia, 186 

type 1 diabetes, type 2 diabetes, end stage renal disease on dialysis, hemiplegia, HIV, hypertension, , 187 

inflammatory bowel disorder, lupus or systemic lupus erythematosus, mental health disorders, multiple 188 

sclerosis, Parkinson's disease, peripheral vascular disorders, pregnant, pulmonary circulation disorder, 189 

rheumatoid arthritis, seizure/epilepsy, severe obesity (BMI >= 40 kg/m2), and weight loss. Each 190 

comorbidity was identified using ICD-10-CM diagnosis codes. We also adjusted for hospitalization status 191 

for SARS-CoV-2 infection as a proxy for COVID-19 severity. Hospitalized patients were those with a 192 

hospitalization encounter in the day prior through the 16 days following the index test date whereas non-193 

hospitalized patients were those with only an ambulatory or ED encounter in the day prior through the 16 194 

days following the index test date. 195 

2.6. Statistical Analysis 196 

For all COVID-19 positive patients, we calculated the incidence of having at least one PASC 197 

condition in each organ system (e.g., having at least one nervous PASC condition), as well as incidence of 198 

each individual PASC condition. To calculate incidence of PASC for each organ system, we first included 199 
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patients without any diagnosis of PASC conditions in that organ system during the baseline period (i.e., 3 200 

years to 7 days before the index date). Among these patients, for each organ system we identified those 201 

with at least one diagnosis of PASC conditions during the follow-up period (i.e., 31-180 days after the 202 

index date). The incidence of PASC condition of each organ system was then calculated by dividing the 203 

number of patients in step 1 by the number of patients in step 2. Incidence of each individual PASC 204 

condition was calculated using same method by including patients without any diagnosis of a given PASC 205 

condition during the baseline period and identifying those with at least one diagnosis of that PASC 206 

condition during the follow-up period. 207 

We derived all the 259 contextual and spatial measures for ZCTA5s in New York, New Jersey, 208 

and Florida, and merged them with EHR data of INSIGHT and OneFlorida+ CRNs. We excluded 209 

measures with five or fewer unique non-zero and non-missing values, indicating little variations in these 210 

measures across ZCTA5s in our sample. This approach led to the exclusion of 63 measures in INSIGHT 211 

sample and 55 in OneFlorida+ sample (eTable 2). The remaining 196 measures in INSIGHT and 204 in 212 

OneFlorida+ were included in our analysis. We standardized all continuous measures to account for 213 

different scales of these measures and easier interpretation. 214 

We performed a two-phase environment-wide association study based on multiple regressions 215 

using all COVID-19 positive patients (H. Hu et al., 2021; Lin et al., 2019). We started with a data 216 

engineering process including deriving contextual and spatial measures and data linkage as mentioned 217 

above. Then in the Phase 1 analysis, we ran a single regression model for each PASC outcome (including 218 

23 individual PASC conditions and 8 PASC groups by organ system). Each regression included one 219 

contextual or spatial factor while controlling for all covariates described above. We used mixed effects 220 

logistic regressions with a random intercept for each ZCTA5. We used the false discovery rate (FDR) 221 

adjusted p values (q values) to account for multiple testing. A contextual or spatial factor was considered 222 

significant if the q-value is < 0.05.  223 

In Phase 2, we ran a single mixed effects logistic regression with ZCTA5 random intercepts for 224 

each PASC outcome including all the significant contextual and spatial factors identified in Phase 1, 225 

adjusting for the same set of patient level covariates. We calculated the variance inflation factor (VIF) for 226 

each PASC outcome to examine multicollinearity among all significant contextual and spatial factors and 227 

excluded factors with a VIF of 10 or higher. We identified contextual and spatial risk factors for each 228 

PASC outcome as those with a statistically significant adjusted odds ratio > 1 (P < 0.05).    229 

Contextual and spatial characteristics could be risk factors among all patients, regardless of 230 

COVID-19 status. For example, COVID-19 negative patients could also develop respiratory conditions 231 
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after long-term exposures to air pollutants. We therefore performed an additional analysis to examine the 232 

excessive risk of contextual and spatial characteristics for PASC symptoms and conditions among 233 

COVID-19 positive patients compared with negative patients. For each PASC outcome, we included both 234 

COVID-19 positive and negative patients and ran a single mixed effects logistic regression. Each 235 

regression included all the significant contextual and spatial risk factors identified from Phase 2 analysis, 236 

an indicator of COVID-19 status, an interaction term between each contextual and spatial risk factor and 237 

COVID-19 status, all other covariates, and ZCTA5 random intercepts. We identified contextual and 238 

spatial factors with excessive risk for COVID-19 positive patients if the interaction term between this 239 

factor and COVID-19 status > 1 and was statistically significant (P < 0.05). All analyses were done using 240 

R. 241 

This study was approved by the Institutional Review Boards of Weill Cornell Medicine (21-10-242 

95-380) and University of Florida (IRB202001831). 243 

3. Results 244 

3.1. Patient Characteristics 245 

 We included 65,472 COVID-19 patients from the INSIGHT CRN and 35,023 from the 246 

OneFlorida+ CRN (Table 2). OneFlorida+ had a higher proportion of patients under 65 than INSIGHT 247 

(78% vs 70%, P<0.001). Both CRNs had more female patients (60% or higher) than male patients (40% 248 

or lower). INSIGHT included a lower proportion of Black patients (18% vs 31%, P < 0.001) but a higher 249 

proportion of Hispanic patients (25% vs 17%, P < 0.001). A higher proportion of COVID-19 patients 250 

were hospitalized in OneFlorida+ than INSIGHT (25% vs 19%, P < 0.001). More patients from INSIGHT 251 

tested positive for SARS-CoV-2 in early waves of the pandemic than patients from OneFlorida+. Nearly 252 

30% of INSIGHT patients tested positive in March to June 2020, as compared to 12% in OneFlorida+. 253 

Overall, patients from OneFlorida+ had a higher burden of baseline comorbidities compared with patients 254 

from INSIGHT (Table 2). 255 

Table 2 Baseline Characteristics of COVID-19 Positive Patients from INSIGHT and OneFlorida+ 256 

Demographics and baseline comorbidities INSIGHT  
(N = 65,427) 

OneFlorida+ 
(N = 35,023) P value 

Demographics    
    Age categories, N (%)      
            20-<40 years 15,958 (24.4) 11,692 (33.4) < 0.001 

40-<55 years 15,969 (24.4) 9,015 (25.7) < 0.001 
55-<65 years 14,086 (21.5) 6,507 (18.6) < 0.001 
65-<75 years 11,136 (17.0) 4,254 (12.1) < 0.001 
75-<85 years 6,117 (9.3) 2,489 (7.1) < 0.001 
85+ years 2,161 (3.3) 1,066 (3.0) 0.03 
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    Sex, N (%)      
Female 39,212 (59.9) 22,818 (65.2) < 0.001 
Male 26,215 (40.1) 12,205 (34.8) < 0.001 

Race, N (%)      
Asian 2,972 (4.5) 477 (1.4) < 0.001 
Black or African American 11,887 (18.2) 10,783 (30.8) < 0.001 
White 28,052 (42.9) 17,460 (49.9) < 0.001 
Other1 15,836 (24.2) 5,773 (16.5) < 0.001 
Missing2 6,680 (10.2) 530 (1.5) < 0.001 

Ethnicity, N (%)      
Hispanic 16,508 (25.2) 5,971 (17.0) < 0.001 
Non-Hispanic 39,493 (60.4) 23,216 (66.3) < 0.001 
Other/Missing2 9,426 (14.4) 5,836 (16.7) < 0.001 

Hospitalized for COVID-19, N (%)      
Yes 12,698 (19.4) 8,742 (25.0) < 0.001 

Index date, N (%)      
March 2020 – June 2020 19,017 (29.1) 4,157 (11.9) < 0.001 
July 2020 – October 2020 9,684 (14.8) 9,035 (25.8) < 0.001 
November 2020 – February 2021 23,139 (35.4) 9,343 (26.7) < 0.001 
March 2021 – June 2021 10,817 (16.5) 3,916 (11.2) < 0.001 
July 2021 – October 2021 2,770 (4.2) 8,572 (24.5) < 0.001 

Baseline comorbidities, N (%)      
Alcohol Abuse 1,153 (1.8) 1,436 (4.1) < 0.001 
Anemia 7,027 (10.7) 7,765 (22.2) < 0.001 
Arrythmia 8,036 (12.3) 5,413 (15.5) < 0.001 
Asthma 6,468 (9.9) 4,705 (13.4) < 0.001 
Cancer 5,499 (8.4) 3,445 (9.8) < 0.001 
Chronic Kidney Disease 6,011 (9.2) 4,265 (12.2) < 0.001 
Chronic Pulmonary Disorders 9,548 (14.6) 7,599 (21.7) < 0.001 
Cirrhosis 749 (1.1) 595 (1.7) < 0.001 
Coagulopathy 3,006 (4.6) 2,653 (7.6) < 0.001 
Congestive Heart Failure 4,731 (7.2) 4,093 (11.7) < 0.001 
COPD 2,641 (4.0) 2,935 (8.4) < 0.001 
Coronary Artery Disease 7,790 (11.9) 4,690 (13.4) < 0.001 
Dementia 1,294 (2.0) 1,722 (4.9) < 0.001 
Diabetes Type 1 575 (0.9) 889 (2.5) < 0.001 
Diabetes Type 2 11,799 (18.0) 7,767 (22.2) < 0.001 
End Stage Renal Disease on Dialysis 1,741 (2.7) 1,156 (3.3) < 0.001 
Hemiplegia 558 (0.9) 842 (2.4) < 0.001 
HIV 917 (1.4) 368 (1.1) < 0.001 
Hypertension 23,868 (36.5) 14,315 (40.9) < 0.001 
Hypertension and Type 1 or 2 Diabetes 

Diagnosis 
9,623 (14.7) 0 (0.0) < 0.001 

Inflammatory Bowel Disorder 670 (1.0) 486 (1.4) < 0.001 
Lupus or Systemic Lupus 

Erythematosus 
468 (0.7) 430 (1.2) < 0.001 

Mental Health Disorders 5,380 (8.2) 6,942 (19.8) < 0.001 
Multiple Sclerosis 352 (0.5) 177 (0.5) 0.53 
Parkinson's Disease 314 (0.5) 264 (0.8) < 0.001 
Peripheral vascular disorders  3,776 (5.8) 3,613 (10.3) < 0.001 
Pregnant 2,032 (3.1) 2,187 (6.2) < 0.001 
Pulmonary Circulation Disorder 787 (1.2) 1,205 (3.4) < 0.001 
Rheumatoid Arthritis 1,002 (1.5) 802 (2.3) < 0.001 
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Seizure/Epilepsy 941 (1.4) 1,383 (3.9) < 0.001 
Severe Obesity (BMI>=40 kg/m2) 4,206 (6.4) 4,563 (13.0) < 0.001 
Weight Loss 1,828 (2.8) 2,809 (8.0) < 0.001 

Notes: BMI, body mass index (calculated as weight in kilograms divided by height in meters squared). 1 
257 

Other race includes native Hawaiian or other pacific islander, American Indian or Alaska Native, multiple 258 

race, and all other races. 2 Missing race and ethnicity includes refuse to answer, no information, unknown, 259 

and missing values. 260 

 261 

3.2. Incidence of PASC Conditions and Symptoms 262 

Table 3 presents incidence of PASC symptoms and conditions in both INSIGHT and 263 

OneFlorida+ cohorts among all COVID-19 positive patients. Patients from INSIGHT had higher 264 

incidence of conditions related to nervous, respiratory, circulatory, digestive, and general signs and 265 

symptoms, and lower incidence of conditions related to blood and endocrine. Incidence of conditions 266 

related to skin was similar between two CRNs. The differences in incidence of individual PASC 267 

conditions varied. Conditions with higher relative differences between INSIGHT and OneFlorida+ 268 

included fluid and electrolyte disorders (0.5% vs 4.3%, P<0.001), hair loss (1.2% vs 0.6%, P<0.001), 269 

pressure ulcer of skin (0.6% vs 1.1%, P<0.001), and acute pharyngitis (1.3% vs 1.9%, P<0.001). 270 

Table 3 Incidence of New Conditions and Symptoms among COVID-19 Patients from INSIGHT 271 

and OneFlorida+ 272 

PASC conditions and symptoms INSIGHT 
(%) 

OneFlorida+ 
(%) P value 

Nervous      
Encephalopathy  1.6 2.1 < 0.001 
Dementia 0.8 1.1 < 0.001 
Cognitive problems  3.5 3.4 0.49 
Sleep disorders  3.5 3.0 < 0.001 
Headache 3.3 3.8 < 0.001 

    Any nervous condition 9.6 8.1 < 0.001 
Skin 

  
 

Hair loss 1.2 0.6 < 0.001 
Pressure ulcer of skin 0.6 1.1 < 0.001 

    Any skin conditions 1.8 1.7 0.13 
Respiratory 

  
 

Pulmonary fibrosis 2.6 2.5 0.17 
Dyspnea  11.4 9.1 < 0.001 
Acute pharyngitis 1.3 1.9 < 0.001 

    Any respiratory condition 13.1 10.4 < 0.001 
Circulatory 

  
 

Pulmonary embolism  0.7 1.0 < 0.001 
Thromboembolism  1.2 1.3 0.16 
Chest pain  5.6 5.1 0.005 
Abnormal heartbeat  5.0 4.6 0.02 

    Any circulatory condition 8.9 8.4 < 0.001 
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Blood 
  

 
Anemia 3.9 4.7 < 0.001 

Endocrine 
  

 
Malnutrition  1.3 1.9 < 0.001 
Diabetes mellitus  3.0 2.5 < 0.001 
Fluid disorders  0.5 4.3 < 0.001 
Edema  6.1 7.6 < 0.001 

    Any endocrine condition 8.8 9.1 0.25 
Digestive 

  
 

Other constipation  3.3 2.8 < 0.001 
Abdominal pain  7.8 8.2 0.07 

    Any digestive condition 9.3 8.7 0.008 
General signs and symptoms 

  
 

Malaise and fatigue 4.6 5.0 0.03 
Joint pain 9.7 7.4 < 0.001 

    Any general signs and symptoms 13.0 9.5 < 0.001 
 273 

3.3. Contextual and Spatial Risk Factors for PASC Conditions and Symptoms 274 

 Figures 1 presents contextual and spatial factors that were significantly (q < 0.05) associated with 275 

having at least one PASC condition or symptom in each organ system from the Phase 1 analysis using 276 

COVID-19 patients from INSIGHT. One air toxicant factor was associated with respiratory PASC. A 277 

large group of air toxicant factors had significant associations with PASC related to endocrine, nervous, 278 

skin, and general signs and symptoms. In addition, food access had statistically significant associations 279 

with PASC related to endocrine, nervous, skin, and general signs and symptoms. Food access, green 280 

space, neighborhood deprivation, social capital, and vacant land were associated with PASC conditions 281 

and symptoms of endocrine, nervous, skin, and general signs and symptoms.  282 

 Figures 2 presents Phase 1 results using COVID-19 patients from OneFlorida+. Blood and skin 283 

PASC were each associated with a single air toxicant factor. Similar with INSIGHT, a large set of criteria 284 

air pollutant and air toxicant characteristics were associated with endocrine and nervous PASC.  Many 285 

criteria air pollutants and air toxicants were associated with circulatory, digestive, and respiratory PASC. 286 

A smaller set of built and social environment characteristics were associated with of circulatory, 287 

digestive, endocrine, and respiratory PASC conditions and symptoms among OneFlorida+ patients.  288 

Figures 3&4 present significant contextual and spatial risk factors from Phase 2 analysis. Among 289 

COVID-19 patients from INSIGHT, we found that a higher level of air toxicants was associated with 290 

PASC conditions related to nervous, skin, and respiratory. Higher levels of methyl methacrylate in the air 291 

were associated with an increased risk of developing at least one nervous PASC condition (adjusted odds 292 

ratio [aOR]: 1.04, 95% confidence interval [CI]: 1.01-1.06). Higher neighborhood deprivation was 293 

associated with an increased risk of developing PASC of endocrine (aOR: 1.08, 95% CI: 1.02-1.15). 294 
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Using COVID-19 patients from OneFlorida+, we found that PM2.5 compositions were associated with 295 

increased risk of developing PASC conditions of nervous, circulatory, endocrine, digestive, and general 296 

signs. For example, a higher level of ammonium was associated with an increased risk of developing 297 

circulatory PASC (aOR: 1.10, 95% CI: 1.01-1.20). Many air toxicants were associated with an increased 298 

risk of PASC conditions affecting many organ systems, including nervous, skin, respiratory, blood, 299 

endocrine, digestive, and general signs. Average days addresses no-stat was associated with an increased 300 

risk of developing endocrine and digestive PASC.  301 

3.4. Contextual and Spatial Risk Factors for Individual PASC Symptoms and Conditions 302 

We also identified contextual and spatial risk factors for each individual PASC condition using 303 

the same analytic strategies (eFigures 3-6). Using COVID-19 patients from INSIGHT, we found that 304 

higher level of neighborhood deprivation was associated with increased risk of headache (aOR: 1.09, 95% 305 

CI: 1.02-1.16), chest pain (aOR: 1.07, 95% CI: 1.01-1.07), diabetes (aOR: 1.10, 95% CI: 1.02-1.20), and 306 

joint pain (aOR: 1.06, 95% CI: 1.01-1.11). A set of air toxicants were associated with an increased risk 307 

for encephalopathy, cognitive problems, chest pain, and other PASC conditions. Using COVID-19 from 308 

OneFlorida+ identified a broader set of air toxicants and PM 2.5 compositions associated with an increased 309 

risk for multiple PASC conditions. For example, nitrate and ammonium were associated with an 310 

increased risk of headache, dyspnea, acute pharyngitis, and abdominal pain. Certain built environment 311 

and food access factors were also associated with certain PASC conditions in OneFlorida+ sample. Low 312 

food access of housing unit without vehicle access was associated with increased risk of fatigue (aOR: 313 

1.08, 95% CI: 1.02-1.14). 314 

3.5. Excessive Risk of Contextual and Spatial Characteristics for PASC Symptoms and Conditions 315 

Analyses including COVID-19 negative patients and interaction terms between contextual and 316 

spatial risk factors and COVID-19 status identified several characteristics with excessive risk for PASC 317 

among COVID-19 positive patients relative to negative patients (odds ratio of the interaction term > 1 and 318 

P < 0.05). For example, we found that 1,2-epoxybutane was associated with excessive risk for respiratory 319 

PASC among COVID-19 positive patients compared with negative patients (aOR: 1.07, P < 0.001). For 320 

individual PASC symptoms and conditions, ethylene dibromide was associated with excessive risk for 321 

encephalopathy among COVID-19 positive patients compared with negative patients (aOR: 1.13, P < 322 

0.001). Full results of these analyses are available in the appendix (eTables 3-6).  323 

  324 
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Figure 1 Significant Contextual and Spatial Factors Associated with PASC Groups in Phase 1 325 
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Analysis Using INSIGHT Sample  326 
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Notes: Figure represent significant neighborhood and environmental characteristics identified from mixed effects logistic 327 

regressions where a PASC condition is the outcome and each neighborhood and environmental characteristic is the key 328 

independent variable. All regressions controlled for patient-level covariates. A neighborhood or environmental characteristic is 329 

considered significant if the false discovery rate adjusted p value is < 0.05. 330 

Figure 2 Significant Contextual and Spatial Factors Associated with PASC Groups in Phase 1 Analysis Using 331 

OneFlorida+ Sample 332 

Notes: Figure represent significant neighborhood and environmental characteristics identified from mixed effects logistic 333 

regressions where a PASC condition is the outcome and each neighborhood and environmental characteristic is the key 334 

independent variable. All regressions controlled for patient-level covariates. A neighborhood and environmental characteristic is 335 

considered significant if the false discovery rate adjusted p value is < 0.05. 336 

 337 

 338 

  339 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 13, 2022. ; https://doi.org/10.1101/2022.10.13.22281010doi: medRxiv preprint 

https://doi.org/10.1101/2022.10.13.22281010
http://creativecommons.org/licenses/by-nc-nd/4.0/


18 

 

Figure 3 Contextual and Spatial Risk Factors for PASC Conditions by Organ System using 340 

INSIGHT Sample 341 

Notes: NDI: Neighborhood Deprivation Index. ORs were estimated from mixed effects logistic regressions with 342 

ZCTA5 random intercept. Each regression includes all significant neighborhood and environmental characteristics 343 

identified from phase 1 analysis for each PASC outcome, controlling for all patient-level covariates.  344 
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Figure 4 Contextual and Spatial Risk Factors for PASC Conditions by Organ System using 345 

OneFlorida+ Sample 346 

Notes: NDI: Neighborhood Deprivation Index. ORs were estimated from mixed effects logistic regressions with 347 

ZCTA5 random intercept. Each regression includes all significant neighborhood and environmental characteristics 348 

identified from phase 1 analysis for each PASC outcome, controlling for all patient-level covariates.  349 

 350 

4. Discussions 351 

 To our knowledge, this is the first study examining contextual and spatial risk factors for a 352 

comprehensive set of PASC symptoms and conditions. Using large and diverse COVID-19 patient 353 

samples from two CRNs, we identified ZCTA5-level risk factors from nearly 200 variables for 23 PASC 354 

conditions of eight organ systems. Risk factors for PASC symptoms and conditions were primarily 355 

concentrated on air toxicants, overall neighborhood deprivation, and PM2.5 compositions (e.g., nitrate and 356 

ammonium). A few built environment characteristics, such as food access, were also associated with 357 

PASC symptoms and conditions. Our findings indicated significant heterogeneity in contextual and 358 

spatial risk factors for PASC between the New York City area and Florida. 359 
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Disadvantaged contextual and spatial characteristics can increase the risk for PASC through 360 

multiple direct and indirect pathways. Long-term exposure to air pollution can directly cause various 361 

symptoms and conditions of central nervous system, respiratory, endocrine, and other organ systems. The 362 

association between air pollution and respiratory conditions has been well established. PM2.5 is associated 363 

with increased risk of incident asthma, COPD, and other respiratory diseases (Tiotiu et al., 2020; Z. 364 

Zhang et al., 2021). Growing numbers of studies also demonstrate associations between air pollution and 365 

nervous conditions. Air pollution is associated with metabolic abnormalities and oxidative stress in the 366 

brain (H. Kim et al., 2020; Thomson, 2019). Air pollution-induced dysfunction of the insulin signaling 367 

system can reduce cognitive function and increase the risk of dementia (H. Kim et al., 2020; Paul et al., 368 

2020). People living in neighborhoods of greater deprivation often have fewer financial resources, lower 369 

health literacy, and higher food insecurity, leading to the development of diabetes and other conditions 370 

(M. D. Hu et al., 2021; Kurani et al., 2021). Previous studies found that COVID-19 patients are 371 

disproportionately from areas with disadvantaged neighborhood conditions (Y. Zhang et al., 2021). 372 

Addressing neighborhood and environmental vulnerability is important to help patients recover from 373 

SARS-CoV-2 infection. 374 

Compared with the robust evidence on direct health effects of contextual and spatial risk factors, 375 

the interactions between these characteristics and SARS-CoV-2 infection are understudied and may be of 376 

great importance to address. Early evidence indicated that air pollution can modify individuals’ 377 

susceptibility to SARS-CoV-2 infection and disease severity (Chen et al., 2022; Pica & Bouvier, 2012; 378 

Weaver et al., 2022). This may be mediated by upregulation of proteins critical to viral entry and by 379 

immune system suppression from oxidative stress, epithelial damage, and pulmonary inflammation (van 380 

der Valk & In 't Veen, 2021; Weaver et al., 2022). Studies found that exposure to particulate matter can 381 

increase the expression of angiotensin-converting enzyme 2 (ACE2) and other proteins critical to SARS-382 

CoV-2 entry into host cells (Hoffmann et al., 2020; Sagawa et al., 2021). Upregulation of proteins 383 

necessary for viral entry may lead to higher viral load and elevate the risk of severe COVID-19. 384 

Immunological impairment prior to COVID-19 infection, induced by long-term exposure to PM, NO2, 385 

and other air pollutants, may also increase the risk of COVID-19 infection and/or its severity (Weaver et 386 

al., 2022). Severe COVID-19 is associated with high inflammation and elevated levels of inflammatory 387 

cytokines, both are important pathophysiologic factors for PASC symptoms and conditions (Mehandru & 388 

Merad, 2022; Nalbandian et al., 2021). Our analyses provided important evidence to this question. Results 389 

indicated that certain contextual and spatial characteristics, particularly air toxicants, were associated with 390 

excessive risk for PASC symptoms and conditions among COVID-19 positive patients compare with 391 

negative patients. 392 
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We found considerable heterogeneity of contextual and spatial risk factors for PASC between 393 

New York City and Florida. This could be due to different neighborhood and environmental 394 

characteristics between two regions. For example, food access may be easier for patients in New York 395 

area because of the public transportation and urbanity compared with Florida. Therefore, low food access 396 

among households without vehicle access was found to be a risk factor for PASC among patients from 397 

Florida but not in New York area. A recent study also reported different levels of O3 pollution between 398 

New York and Florida and found different associations between O3 pollution and COVID-19 infection 399 

(Razzaq et al., 2020). The differential burden of preexisting comorbidities among patients in Florida may 400 

also account for the heterogeneous findings. Patients with a higher burden of pre-existing chronic 401 

conditions may be more susceptible to air pollution induced adverse health effects and therefore are at a 402 

higher risk for PASC (To et al., 2015). Other potential explanations may include variations in vaccination 403 

rate, healthcare utilization pattern, and differing courses of pandemic in these two regions. More research 404 

is needed to extend the analyses to other regions and understand reasons for heterogeneity in contextual 405 

and spatial risk factors for PASC. 406 

This study has several major strengths. We were able to account for simultaneous exposure to 407 

multifaceted disadvantaged environmental risk factors by examining a very comprehensive set of 408 

contextual and spatial characteristics. Lack of detailed patient level data has been considered a major 409 

limitation in previous studies examining environmental risk factors and COVID-19 related outcomes 410 

(Weaver et al., 2022). Compared with previous ecologic studies relying on data aggregated at the county 411 

level, we were able to adjust for detailed patient level characteristics (e.g., demographics and pre-existing 412 

comorbidities) as potential confounders. We compared findings between two large COVID-19 patient 413 

cohorts in New York City area and Florida and demonstrated significant heterogeneity in contextual and 414 

spatial risk factors for PASC. This finding provides important implications for public health efforts to 415 

address social risk factors and help patients recover from SARS-CoV-2 infection.  416 

Limitations of this study include: (1) we used contextual and spatial characteristics at ZCTA5 417 

level, which may not be granular enough to estimate individuals’ exposure to risk factors. This is 418 

particularly an issue in New York City where each ZCTA5 may cover a broad geographic area and a 419 

higher number of residents. (2) Similar with many previous studies, we focused on long-term exposure to 420 

air toxicants instead of acute short-term exposure to these risk factors before SARS-CoV-2 infection. 421 

However, previous evidence indicated that distribution of these air pollutants may have remained 422 

relatively unchanged (Chakraborty, 2021). (3) Some important potential confounders, such as vaccination 423 

status, were not adjusted due to data limitations. (4) We only included patients who sought care from the 424 

health systems affiliated with the two CRNs 31-180 days after SARS-CoV-2 infection. These patients 425 
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may not be representative of patients in these two regions. (5) Patients who always tested negative might 426 

have had a positive test that was not captured in EHR (e.g., self-test at home). Thus, it is possible that 427 

some patients in the negative group may be tested positive at some point. 428 

5. Conclusion  429 

 We found that multiple contextual and spatial risk factors, especially certain air pollutants and 430 

toxicants, are significantly associated with an increased risk of PASC conditions that impact multiple 431 

organ systems. These risk factors for PASC symptoms and conditions differed in the New York City area 432 

compared to Florida. Targeting interventions to reduce the burden of PASC among patients with 433 

disadvantaged contextual and spatial characteristics will help to reduce disparities of COVID-19 434 

pandemic. 435 

Acknowledge:  436 

 437 

This research was funded by the National Institutes of Health (NIH) Agreement OTA HL161847-01 438 

(contract number EHR-01-21) as part of the Researching COVID to Enhance Recovery (RECOVER) 439 

research program. 440 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 13, 2022. ; https://doi.org/10.1101/2022.10.13.22281010doi: medRxiv preprint 

https://doi.org/10.1101/2022.10.13.22281010
http://creativecommons.org/licenses/by-nc-nd/4.0/


23 

 

 

References 

Al-Aly, Z., Xie, Y., & Bowe, B. (2021). High-dimensional characterization of post-acute sequelae of 

COVID-19. Nature, 594(7862), 259-264. https://doi.org/10.1038/s41586-021-03553-9  

Bell, M. L., Catalfamo, C. J., Farland, L. V., Ernst, K. C., Jacobs, E. T., Klimentidis, Y. C., Jehn, M., & 

Pogreba-Brown, K. (2021). Post-acute sequelae of COVID-19 in a non-hospitalized cohort: 

Results from the Arizona CoVHORT. PLoS One, 16(8), e0254347. 

https://doi.org/10.1371/journal.pone.0254347  

Bliddal, S., Banasik, K., Pedersen, O. B., Nissen, J., Cantwell, L., Schwinn, M., Tulstrup, M., 

Westergaard, D., Ullum, H., Brunak, S., Tommerup, N., Feenstra, B., Geller, F., Ostrowski, S. R., 

Gronbaek, K., Nielsen, C. H., Nielsen, S. D., & Feldt-Rasmussen, U. (2021). Acute and persistent 

symptoms in non-hospitalized PCR-confirmed COVID-19 patients. Sci Rep, 11(1), 13153. 

https://doi.org/10.1038/s41598-021-92045-x  

Blomberg, B., Mohn, K. G., Brokstad, K. A., Zhou, F., Linchausen, D. W., Hansen, B. A., Lartey, S., 

Onyango, T. B., Kuwelker, K., Saevik, M., Bartsch, H., Tondel, C., Kittang, B. R., Bergen, C.-R. 

G., Cox, R. J., & Langeland, N. (2021). Long COVID in a prospective cohort of home-isolated 

patients. Nat Med, 27(9), 1607-1613. https://doi.org/10.1038/s41591-021-01433-3  

Bull-Otterson, L., Baca, S., Saydah, S., Boehmer, T. K., Adjei, S., Gray, S., & Harris, A. M. (2022). Post–

COVID Conditions Among Adult COVID-19 Survivors Aged 18–64 and≥ 65 Years—United 

States, March 2020–November 2021. Morbidity and Mortality Weekly Report, 71(21), 713.  

Carvalho-Schneider, C., Laurent, E., Lemaignen, A., Beaufils, E., Bourbao-Tournois, C., Laribi, S., 

Flament, T., Ferreira-Maldent, N., Bruyere, F., Stefic, K., Gaudy-Graffin, C., Grammatico-

Guillon, L., & Bernard, L. (2021). Follow-up of adults with noncritical COVID-19 two months 

after symptom onset. Clin Microbiol Infect, 27(2), 258-263. 

https://doi.org/10.1016/j.cmi.2020.09.052  

Chakraborty, J. (2021). Convergence of COVID-19 and chronic air pollution risks: Racial/ethnic and 

socioeconomic inequities in the U.S. Environmental Research, 193. https://doi.org/ARTN 110586 

10.1016/j.envres.2020.110586  

Chen, Z., Sidell, M. A., Huang, B. Z., Chow, T., Eckel, S. P., Martinez, M. P., Gheissari, R., Lurmann, F., 

Thomas, D. C., Gilliland, F. D., & Xiang, A. H. (2022). Ambient Air Pollutant Exposures and 

COVID-19 Severity and Mortality in a Cohort of COVID-19 Patients in Southern California. Am 

J Respir Crit Care Med. https://doi.org/10.1164/rccm.202108-1909OC  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 13, 2022. ; https://doi.org/10.1101/2022.10.13.22281010doi: medRxiv preprint 

https://doi.org/10.1101/2022.10.13.22281010
http://creativecommons.org/licenses/by-nc-nd/4.0/


24 

 

Cohen, K., Ren, S., Heath, K., Dasmarinas, M. C., Jubilo, K. G., Guo, Y., Lipsitch, M., & Daugherty, S. 

E. (2022). Risk of persistent and new clinical sequelae among adults aged 65 years and older 

during the post-acute phase of SARS-CoV-2 infection: retrospective cohort study. BMJ, 376, 

e068414. https://doi.org/10.1136/bmj-2021-068414  

Davis, H. E., Assaf, G. S., McCorkell, L., Wei, H., Low, R. J., Re'em, Y., Redfield, S., Austin, J. P., & 

Akrami, A. (2021). Characterizing long COVID in an international cohort: 7 months of symptoms 

and their impact. EClinicalMedicine, 38, 101019. https://doi.org/10.1016/j.eclinm.2021.101019  

Diez Roux, A. V. (2001). Investigating neighborhood and area effects on health. Am J Public Health, 

91(11), 1783-1789. https://doi.org/10.2105/ajph.91.11.1783  

Garvin, E., Branas, C., Keddem, S., Sellman, J., & Cannuscio, C. (2013). More Than Just An Eyesore: 

Local Insights And Solutions on Vacant Land And Urban Health. Journal of Urban Health-

Bulletin of the New York Academy of Medicine, 90(3), 412-426. https://doi.org/10.1007/s11524-

012-9782-7  

Groff, D., Sun, A., Ssentongo, A. E., Ba, D. M., Parsons, N., Poudel, G. R., Lekoubou, A., Oh, J. S., 

Ericson, J. E., Ssentongo, P., & Chinchilli, V. M. (2021). Short-term and Long-term Rates of 

Postacute Sequelae of SARS-CoV-2 Infection: A Systematic Review. JAMA Netw Open, 4(10), 

e2128568. https://doi.org/10.1001/jamanetworkopen.2021.28568  

Halpin, S. J., McIvor, C., Whyatt, G., Adams, A., Harvey, O., McLean, L., Walshaw, C., Kemp, S., 

Corrado, J., Singh, R., Collins, T., O'Connor, R. J., & Sivan, M. (2021). Postdischarge symptoms 

and rehabilitation needs in survivors of COVID-19 infection: A cross-sectional evaluation. J Med 

Virol, 93(2), 1013-1022. https://doi.org/10.1002/jmv.26368  

Hoffmann, M., Kleine-Weber, H., Schroeder, S., Kruger, N., Herrler, T., Erichsen, S., Schiergens, T. S., 

Herrler, G., Wu, N. H., Nitsche, A., Muller, M. A., Drosten, C., & Pohlmann, S. (2020). SARS-

CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven 

Protease Inhibitor. Cell, 181(2), 271-280 e278. https://doi.org/10.1016/j.cell.2020.02.052  

Hu, H., Zheng, Y., Wen, X., Smith, S. S., Nizomov, J., Fishe, J., Hogan, W. R., Shenkman, E. A., & Bian, 

J. (2021). An external exposome-wide association study of COVID-19 mortality in the United 

States. Sci Total Environ, 768, 144832. https://doi.org/10.1016/j.scitotenv.2020.144832  

Hu, M. D., Lawrence, K. G., Bodkin, M. R., Kwok, R. K., Engel, L. S., & Sandler, D. P. (2021). 

Neighborhood Deprivation, Obesity, and Diabetes in Residents of the US Gulf Coast. Am J 

Epidemiol, 190(2), 295-304. https://doi.org/10.1093/aje/kwaa206  

Kaushal, R., Hripcsak, G., Ascheim, D. D., Bloom, T., Campion, T. R., Jr., Caplan, A. L., Currie, B. P., 

Check, T., Deland, E. L., Gourevitch, M. N., Hart, R., Horowitz, C. R., Kastenbaum, I., Levin, A. 

A., Low, A. F., Meissner, P., Mirhaji, P., Pincus, H. A., Scaglione, C., . . . Nyc, C. (2014). 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 13, 2022. ; https://doi.org/10.1101/2022.10.13.22281010doi: medRxiv preprint 

https://doi.org/10.1101/2022.10.13.22281010
http://creativecommons.org/licenses/by-nc-nd/4.0/


25 

 

Changing the research landscape: the New York City Clinical Data Research Network. J Am Med 

Inform Assoc, 21(4), 587-590. https://doi.org/10.1136/amiajnl-2014-002764  

Kim, H., Kim, W. H., Kim, Y. Y., & Park, H. Y. (2020). Air Pollution and Central Nervous System 

Disease: A Review of the Impact of Fine Particulate Matter on Neurological Disorders. Front 

Public Health, 8, 575330. https://doi.org/10.3389/fpubh.2020.575330  

Kim, S. Y., Bechle, M., Hankey, S., Sheppard, L., Szpiro, A. A., & Marshall, J. D. (2020). Concentrations 

of criteria pollutants in the contiguous U.S., 1979 - 2015: Role of prediction model parsimony in 

integrated empirical geographic regression. PLoS One, 15(2), e0228535. 

https://doi.org/10.1371/journal.pone.0228535  

Kirby, J. B., Bernard, D., & Liang, L. (2021). The Prevalence of Food Insecurity Is Highest Among 

Americans for Whom Diet Is Most Critical to Health. Diabetes Care, 44(6), e131-e132. 

https://doi.org/10.2337/dc20-3116  

Kurani, S. S., Lampman, M. A., Funni, S. A., Giblon, R. E., Inselman, J. W., Shah, N. D., Allen, S., 

Rushlow, D., & McCoy, R. G. (2021). Association Between Area-Level Socioeconomic 

Deprivation and Diabetes Care Quality in US Primary Care Practices. JAMA Netw Open, 4(12), 

e2138438. https://doi.org/10.1001/jamanetworkopen.2021.38438  

Lin, W., Jiang, R., Wu, J., Wei, S., Yin, L., Xiao, X., Hu, S., Shen, Y., & Ouyang, G. (2019). Sorption 

properties of hydrophobic organic chemicals to micro-sized polystyrene particles. Sci Total 

Environ, 690, 565-572. https://doi.org/10.1016/j.scitotenv.2019.06.537  

Logue, J. M., Small, M. J., & Robinson, A. L. (2011). Evaluating the national air toxics assessment 

(NATA): Comparison of predicted and measured air toxics concentrations, risks, and sources in 

Pittsburgh, Pennsylvania. Atmospheric Environment, 45(2), 476-484. 

https://doi.org/10.1016/j.atmosenv.2010.09.053  

Mehandru, S., & Merad, M. (2022). Pathological sequelae of long-haul COVID. Nat Immunol, 23(2), 

194-202. https://doi.org/10.1038/s41590-021-01104-y  

Nalbandian, A., Sehgal, K., Gupta, A., Madhavan, M. V., McGroder, C., Stevens, J. S., Cook, J. R., 

Nordvig, A. S., Shalev, D., Sehrawat, T. S., Ahluwalia, N., Bikdeli, B., Dietz, D., Der-

Nigoghossian, C., Liyanage-Don, N., Rosner, G. F., Bernstein, E. J., Mohan, S., Beckley, A. A., . 

. . Wan, E. Y. (2021). Post-acute COVID-19 syndrome. Nat Med, 27(4), 601-615. 

https://doi.org/10.1038/s41591-021-01283-z  

Paul, K. C., Haan, M., Yu, Y., Inoue, K., Mayeda, E. R., Dang, K., Wu, J., Jerrett, M., & Ritz, B. (2020). 

Traffic-Related Air Pollution and Incident Dementia: Direct and Indirect Pathways Through 

Metabolic Dysfunction. J Alzheimers Dis, 76(4), 1477-1491. https://doi.org/10.3233/JAD-200320  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 13, 2022. ; https://doi.org/10.1101/2022.10.13.22281010doi: medRxiv preprint 

https://doi.org/10.1101/2022.10.13.22281010
http://creativecommons.org/licenses/by-nc-nd/4.0/


26 

 

Petersen, M. S., Kristiansen, M. F., Hanusson, K. D., Danielsen, M. E., B, A. S., Gaini, S., Strom, M., & 

Weihe, P. (2021). Long COVID in the Faroe Islands: A Longitudinal Study Among 

Nonhospitalized Patients. Clin Infect Dis, 73(11), e4058-e4063. 

https://doi.org/10.1093/cid/ciaa1792  

Petroni, M., Hill, D., Younes, L., Barkman, L., Howard, S., Howell, I. B., Mirowsky, J., & Collins, M. B. 

(2020). Hazardous air pollutant exposure as a contributing factor to COVID-19 mortality in the 

United States. Environmental Research Letters, 15(9). https://doi.org/ARTN 0940a9 

10.1088/1748-9326/abaf86  

Pica, N., & Bouvier, N. M. (2012). Environmental factors affecting the transmission of respiratory 

viruses. Curr Opin Virol, 2(1), 90-95. https://doi.org/10.1016/j.coviro.2011.12.003  

Razzaq, A., Sharif, A., Aziz, N., Irfan, M., & Jermsittiparsert, K. (2020). Asymmetric link between 

environmental pollution and COVID-19 in the top ten affected states of US: A novel estimations 

from quantile-on-quantile approach. Environmental Research, 191. https://doi.org/ARTN 110189 

10.1016/j.envres.2020.110189  

Rhew, I. C., Vander Stoep, A., Kearney, A., Smith, N. L., & Dunbar, M. D. (2011). Validation of the 

normalized difference vegetation index as a measure of neighborhood greenness. Ann Epidemiol, 

21(12), 946-952. https://doi.org/10.1016/j.annepidem.2011.09.001  

Rupasingha, A., Goetz, S. J., & Freshwater, D. (2006). The production of social capital in US counties. 

The journal of socio-economics, 35(1), 83-101.  

Sagawa, T., Tsujikawa, T., Honda, A., Miyasaka, N., Tanaka, M., Kida, T., Hasegawa, K., Okuda, T., 

Kawahito, Y., & Takano, H. (2021). Exposure to particulate matter upregulates ACE2 and 

TMPRSS2 expression in the murine lung. Environ Res, 195, 110722. 

https://doi.org/10.1016/j.envres.2021.110722  

Shenkman, E., Hurt, M., Hogan, W., Carrasquillo, O., Smith, S., Brickman, A., & Nelson, D. (2018). 

OneFlorida Clinical Research Consortium: Linking a Clinical and Translational Science Institute 

With a Community-Based Distributive Medical Education Model. Acad Med, 93(3), 451-455. 

https://doi.org/10.1097/ACM.0000000000002029  

Shoucri, S. M., Purpura, L., DeLaurentis, C., Adan, M. A., Theodore, D. A., Irace, A. L., Robbins-Juarez, 

S. Y., Khedagi, A. M., Letchford, D., Harb, A. A., Zerihun, L. M., Lee, K. E., Gambina, K., 

Lauring, M. C., Chen, N., Sperring, C. P., Mehta, S. S., Myers, E. L., Shih, H., . . . Zucker, J. E. 

(2021). Characterising the long-term clinical outcomes of 1190 hospitalised patients with 

COVID-19 in New York City: a retrospective case series. BMJ Open, 11(6), e049488. 

https://doi.org/10.1136/bmjopen-2021-049488  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 13, 2022. ; https://doi.org/10.1101/2022.10.13.22281010doi: medRxiv preprint 

https://doi.org/10.1101/2022.10.13.22281010
http://creativecommons.org/licenses/by-nc-nd/4.0/


27 

 

Smith, K. R., Corvalan, C. F., & Kjellstrom, T. (1999). How much global ill health is attributable to 

environmental factors? Epidemiology, 10(5), 573-584. 

https://www.ncbi.nlm.nih.gov/pubmed/10468437  

Su, Y., Yuan, D., Chen, D. G., Ng, R. H., Wang, K., Choi, J., Li, S., Hong, S., Zhang, R., Xie, J., 

Kornilov, S. A., Scherler, K., Pavlovitch-Bedzyk, A. J., Dong, S., Lausted, C., Lee, I., Fallen, S., 

Dai, C. L., Baloni, P., . . . Heath, J. R. (2022). Multiple early factors anticipate post-acute 

COVID-19 sequelae. Cell, 185(5), 881-895 e820. https://doi.org/10.1016/j.cell.2022.01.014  

Sudre, C. H., Murray, B., Varsavsky, T., Graham, M. S., Penfold, R. S., Bowyer, R. C., Pujol, J. C., 

Klaser, K., Antonelli, M., Canas, L. S., Molteni, E., Modat, M., Jorge Cardoso, M., May, A., 

Ganesh, S., Davies, R., Nguyen, L. H., Drew, D. A., Astley, C. M., . . . Steves, C. J. (2021). 

Attributes and predictors of long COVID. Nat Med, 27(4), 626-631. 

https://doi.org/10.1038/s41591-021-01292-y  

Taquet, M., Dercon, Q., Luciano, S., Geddes, J. R., Husain, M., & Harrison, P. J. (2021). Incidence, co-

occurrence, and evolution of long-COVID features: A 6-month retrospective cohort study of 

273,618 survivors of COVID-19. PLoS Med, 18(9), e1003773. 

https://doi.org/10.1371/journal.pmed.1003773  

Thompson, E. J., Williams, D. M., Walker, A. J., Mitchell, R. E., Niedzwiedz, C. L., Yang, T. C., 

Huggins, C. F., Kwong, A. S. F., Silverwood, R. J., Di Gessa, G., Bowyer, R. C. E., Northstone, 

K., Hou, B., Green, M. J., Dodgeon, B., Doores, K. J., Duncan, E. L., Williams, F. M. K., Open, 

S. C., . . . Steves, C. J. (2022). Long COVID burden and risk factors in 10 UK longitudinal 

studies and electronic health records. Nat Commun, 13(1), 3528. https://doi.org/10.1038/s41467-

022-30836-0  

Thomson, E. M. (2019). Air Pollution, Stress, and Allostatic Load: Linking Systemic and Central 

Nervous System Impacts. J Alzheimers Dis, 69(3), 597-614. https://doi.org/10.3233/JAD-190015  

Tiotiu, A. I., Novakova, P., Nedeva, D., Chong-Neto, H. J., Novakova, S., Steiropoulos, P., & Kowal, K. 

(2020). Impact of Air Pollution on Asthma Outcomes. Int J Environ Res Public Health, 17(17). 

https://doi.org/10.3390/ijerph17176212  

Tischer, C., Gascon, M., Fernandez-Somoano, A., Tardon, A., Lertxundi Materola, A., Ibarluzea, J., 

Ferrero, A., Estarlich, M., Cirach, M., Vrijheid, M., Fuertes, E., Dalmau-Bueno, A., 

Nieuwenhuijsen, M. J., Anto, J. M., Sunyer, J., & Dadvand, P. (2017). Urban green and grey 

space in relation to respiratory health in children. Eur Respir J, 49(6). 

https://doi.org/10.1183/13993003.02112-2015  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 13, 2022. ; https://doi.org/10.1101/2022.10.13.22281010doi: medRxiv preprint 

https://doi.org/10.1101/2022.10.13.22281010
http://creativecommons.org/licenses/by-nc-nd/4.0/


28 

 

To, T., Feldman, L., Simatovic, J., Gershon, A. S., Dell, S., Su, J., Foty, R., & Licskai, C. (2015). Health 

risk of air pollution on people living with major chronic diseases: a Canadian population-based 

study. BMJ Open, 5(9), e009075. https://doi.org/10.1136/bmjopen-2015-009075  

United States Department of Agriculture. (2019). Food Environment Atlas. Retrieved 05/01 from 

https://www.ers.usda.gov/foodatlas/ 

van der Valk, J. P. M., & In 't Veen, J. (2021). The Interplay Between Air Pollution and Coronavirus 

Disease (COVID-19). J Occup Environ Med, 63(3), e163-e167. 

https://doi.org/10.1097/JOM.0000000000002143  

van Donkelaar, A., Martin, R. V., Li, C., & Burnett, R. T. (2019). Regional Estimates of Chemical 

Composition of Fine Particulate Matter Using a Combined Geoscience-Statistical Method with 

Information from Satellites, Models, and Monitors. Environ Sci Technol, 53(5), 2595-2611. 

https://doi.org/10.1021/acs.est.8b06392  

Walker, A. F., Hu, H., Cuttriss, N., Anez-Zabala, C., Yabut, K., Haller, M. J., & Maahs, D. M. (2020). 

The Neighborhood Deprivation Index and Provider Geocoding Identify Critical Catchment Areas 

for Diabetes Outreach. J Clin Endocrinol Metab, 105(9). https://doi.org/10.1210/clinem/dgaa462  

Wang, L., Foer, D., MacPhaul, E., Lo, Y. C., Bates, D. W., & Zhou, L. (2022). PASCLex: A 

comprehensive post-acute sequelae of COVID-19 (PASC) symptom lexicon derived from 

electronic health record clinical notes. J Biomed Inform, 125, 103951. 

https://doi.org/10.1016/j.jbi.2021.103951  

Watson, K. B., Whitfield, G. P., Thomas, J. V., Berrigan, D., Fulton, J. E., & Carlson, S. A. (2020). 

Associations between the National Walkability Index and walking among US Adults - National 

Health Interview Survey, 2015. Preventive Medicine, 137. https://doi.org/ARTN 106122 

10.1016/j.ypmed.2020.106122  

Weaver, A. K., Head, J. R., Gould, C. F., Carlton, E. J., & Remais, J. V. (2022). Environmental Factors 

Influencing COVID-19 Incidence and Severity. Annu Rev Public Health, 43, 271-291. 

https://doi.org/10.1146/annurev-publhealth-052120-101420  

Wu, X., Nethery, R. C., Sabath, M. B., Braun, D., & Dominici, F. (2020). Air pollution and COVID-19 

mortality in the United States: Strengths and limitations of an ecological regression analysis. Sci 

Adv, 6(45). https://doi.org/10.1126/sciadv.abd4049  

Xie, Y., Bowe, B., & Al-Aly, Z. (2021). Burdens of post-acute sequelae of COVID-19 by severity of 

acute infection, demographics and health status. Nat Commun, 12(1), 6571. 

https://doi.org/10.1038/s41467-021-26513-3  

Yoo, S. M., Liu, T. C., Motwani, Y., Sim, M. S., Viswanathan, N., Samras, N., Hsu, F., & Wenger, N. S. 

(2022). Factors Associated with Post-Acute Sequelae of SARS-CoV-2 (PASC) After Diagnosis 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 13, 2022. ; https://doi.org/10.1101/2022.10.13.22281010doi: medRxiv preprint 

https://doi.org/10.1101/2022.10.13.22281010
http://creativecommons.org/licenses/by-nc-nd/4.0/


29 

 

of Symptomatic COVID-19 in the Inpatient and Outpatient Setting in a Diverse Cohort. J Gen 

Intern Med. https://doi.org/10.1007/s11606-022-07523-3  

Zang, C., Zhang, Y., Xu, J., Bian, J., Morozyuk, D., Schenck, E., Khullar, D., Nordvig, A. S., Shenkman, 

E., Rothman, R. L., Block, J. P., Lyman, K., Weiner, M., Carton, T. W., Wang, F., & Kaushal, R. 

(2022). Understanding Post-Acute Sequelae of SARS-CoV-2 Infection through Data-Driven 

Analysis with Longitudinal Electronic Health Records: Findings from the RECOVER Initiative. 

https://doi.org/medRxiv doi: https://doi.org/10.1101/2022.05.21.22275420  

Zhang, Y., Khullar, D., Wang, F., Steel, P., Wu, Y., Orlander, D., Weiner, M., & Kaushal, R. (2021). 

Socioeconomic variation in characteristics, outcomes, and healthcare utilization of COVID-19 

patients in New York City. PLoS One, 16(7), e0255171. 

https://doi.org/10.1371/journal.pone.0255171  

Zhang, Z., Weichenthal, S., Kwong, J. C., Burnett, R. T., Hatzopoulou, M., Jerrett, M., van Donkelaar, 

A., Bai, L., Martin, R. V., Copes, R., Lu, H., Lakey, P., Shiraiwa, M., & Chen, H. (2021). A 

Population-Based Cohort Study of Respiratory Disease and Long-Term Exposure to Iron and 

Copper in Fine Particulate Air Pollution and Their Combined Impact on Reactive Oxygen 

Species Generation in Human Lungs. Environ Sci Technol, 55(6), 3807-3818. 

https://doi.org/10.1021/acs.est.0c05931  

Zhou, X., Josey, K., Kamareddine, L., Caine, M. C., Liu, T., Mickley, L. J., Cooper, M., & Dominici, F. 

(2021). Excess of COVID-19 cases and deaths due to fine particulate matter exposure during the 

2020 wildfires in the United States. Sci Adv, 7(33). https://doi.org/10.1126/sciadv.abi8789  

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 13, 2022. ; https://doi.org/10.1101/2022.10.13.22281010doi: medRxiv preprint 

https://doi.org/10.1101/2022.10.13.22281010
http://creativecommons.org/licenses/by-nc-nd/4.0/

