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Heme oxygenase-1 (HO-1), which is induced under a 
condition of hyperlipidemia, functions as an intrinsic 
protective factor against atherosclerotic lesion formation, 
possibly by inhibiting lipid peroxidation and influencing 
the nitric oxide pathway,10 and HO-1 induction has been 
reported to suppress oxidative stress and prevent vulnerable 
plaque formation.11 Datla et al showed that HO-1 overex-
pression inhibits NADPH oxidase activity in VSMC.12

Recently, 5-aminolevulinic acid (ALA) itself has been 
reported to have the potential to modulate metabolic 
disease.13 ALA is synthesized from glycine and succinyl-
coenzyme A (succinyl-CoA) in mitochondria and is metab-
olized to heme, which induces the antioxidant HO-1.14

We hypothesized that exogenous ALA intake would 
augment HO-1 induction and attenuate atherosclerotic 
plaque progression via regulation of NOX. Hence, the aim 
of this study was to determine the anti-atherosclerotic 
effect of ALA via the antioxidant effect of exogenous HO-1 
induction in vivo.

T he pathogenesis of atherosclerosis involves several 
pathophysiological steps based on several inflamma-
tory pathways. Oxidative stress has been implicated 

in the pathogenesis of various cardiovascular diseases 
including atherosclerosis.1–3 Indeed, all risk factors for 
cardiovascular disease, including hypertension, hypercho-
lesterolemia, diabetes mellitus and cigarette smoking, as 
well as cardiovascular disease itself, are associated with 
increased production of reactive oxygen species (ROS) in 
the vascular wall, a situation that eventually culminates in 
oxidative stress.4,5

Excessive production of ROS by NADPH oxidases 
(NOX) mediates oxidative stress associated with increased 
inflammation and is crucial for atherosclerotic disease.6 
Vendrov et al found that increased NOX4 expression is also 
correlated with the severity of atherosclerosis in human 
subjects.7 More recently Lozhkin et al reported that upregu-
lation of NOX4 in vascular smooth muscle cells (VSMC) 
also contributes to inflammation during aging and in 
atherosclerosis.8 Additionally, several antioxidant agents 
have been shown to attenuate plaque formation in animal 
studies.9
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Background:  Recently, 5-aminolevulinic acid (ALA) has been reported to modulate inflammatory development via an antioxidant 
effect. Hence, the aim of this study was to determine the anti-atherosclerotic effect of ALA.

Methods and Results:  Low-density lipoprotein (LDL) receptor knockout mice were fed the following diets for 24 weeks: normal diet 
(n=6); 1.25% cholesterol diet (high-cholesterol diet, HCD; n=7); HCD+ALA (46 mg/kg/day; n=10); and HCD+ezetimibe (5 mg/kg/day; 
n=10). At 40 weeks, HCD+ALA had reduced LDL cholesterol (320±68 vs. 379±49 mg/dL), triglyceride (141±44 vs. 195±49 mg/dL) 
and oxidized LDL (380±40 vs. 422±64 pg/mL) compared with HCD only. En face lesion area for the entire aortic surface was 
significantly smaller in mice that received HCD+ALA than in mice that received only HCD (32±5% vs. 39±4%, P<0.05). ALA intake 
exogenously increased tissue heme oxygenase-1 (HO-1) level in plaque composite tissue of the carotid arterial wall compared with 
HCD only (18±8 vs. 12±3 pg/μL, P<0.05), and HO-1-positive plaque showed modest NADPH oxidase 4 expression.

Conclusions:  ALA intake induces exogenous production of HO-1 at plaque sites, and improves lipid profiles and attenuation of 
atherosclerotic plaque progression in vivo.
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Japan). At the end of the breeding period, whole blood 
samples were taken from the inferior vena cava and again 
analyzed for serum total cholesterol, LDL-C, TG, total 
bilirubin, AST and ALT as well as oxidized LDL. Oxidized 
LDL was measured using a Mouse Oxidized Low Density 
Lipoprotein (OxLDL) enzyme-linked immunosorbent assay 
(ELISA) kit (KT-32067, Kamiya Biomedical Company, 
Seattle, WA, USA).

Mice were killed and the aortas and bilateral carotid 
arteries were carefully removed and stored at −80°C.

Atherosclerotic Plaque Area
Aortas were excised at 40 weeks (24 weeks after the start 
of each treatment), and plaque volume was determined on 
oil red O staining. In brief, the thoracic ascending and 
abdominal aorta was removed from the heart. After cutting 
off minor branching arteries, the aorta was fixed in formal 
sucrose (4% paraformaldehyde, 5% sucrose, 20 mM EDTA, 
pH 7.4). After the adventitial and adipose tissue had been 
removed, each of the aortas was cut open longitudinally. 
For neutral lipid visualization, sections were rinsed in 60% 
isopropanol and incubated in a saturated, filtered solution 
of oil red O in 60% isopropanol for 1 h. The stained aorta 
was pinned open, and the ratio of the intimal surface 
stained with oil red O in the arch and thoracic regions was 
measured morphometrically (Win ROOF version 5.5; 
Mitsuya-Shoji, Tokyo, Japan).

Tissue HO-1
At 40 weeks, left carotid arteries (along with the common 
carotid to bifurcation of internal and external carotid 
arteries; approximately 2 cm in length) were excised and 
immediately stored at −80°C. To measure HO-1, the tissue 
samples were homogenized in 0.3 mL radio-immunopre-
cipitation assay (RIPA) lysis buffer with addition of 3 μL 
Halt Protease inhibitor cocktail (100×; Thermo Fisher 
Scientific, Tokyo, Japan) for 30 min and then homogenized 
(NS-310E3, 30,000 rpm for 20 s, Microtec, Tokyo, Japan) 
followed by disruption in an ultrasonic cell disruptor 
(Bioruptor, 3 times for 30 s each time with intervals of 30 s, 
Cosmo Bio, Tokyo, Japan) at 4°C. Thirty min later, the 
supernatant was ultracentrifuged (100,000×g, 10 min, twice, 
Tomy MX-301, Tomy Seiko, Tokyo, Japan) at 4°C. The 
supernatant was used to determine HO-1.

Tissue HO-1 concentration was measured in the carotid 
artery atherosclerotic plaque composition and in the liver 
using an HO-1 Mouse SimpleStep ELISA kit (Abcam 
204524, Cambridge, MA, USA).

Methods
Animals
Inbred female low-density lipoprotein (LDL) receptor 
knockout mice were housed under specific pathogen-free 
conditions in an environmentally controlled clean room 
under a 12-h light/dark schedule with lights on at 8:30 p.m. 
in a temperature- and humidity-controlled room (22±1°C 
and 55±5%, respectively). The experiments were performed 
from 9 a.m. to 4 p.m. The animal experimental protocol 
was in accord with the ARRIVE guidelines. This study was 
conducted according to the guidelines of the Institutional 
Review Board for the Care of Animal Subjects of the 
National Defense Medical College. The Institutional 
Review Board for the Care of Animal Subjects of the 
National Defense Medical College approved this study 
(ethics approval no. 15049).

Experiment Protocol
Four groups of LDL receptor knockout mice (n=33 in 
total) were fed the following diets until 40 weeks of age 
(Figure 1): a normal diet until 16 weeks of age, after which 
3 groups were then switched to the following diets for 24 
weeks, while 1 group continued on the normal diet (CLEA 
Rodent Diet-2 [CE-2], n=6): a 1.25% cholesterol diet 
(high-cholesterol diet [HCD]: 82.7% CE-2, 15% beef tallow, 
1.25% cholesterol, 1.046% α-cornstarch, n=7); an HCD+ 
ALA diet (82.7% CE-2, 15% beef tallow, 1.25% cholesterol, 
1.0% α-cornstarch, 0.046% ALA [purity >98%, SBI pharma, 
Tokyo, Japan], n=10); and an HCD+ezetimibe diet 
(82.7% CE-2, 15% beef tallow, 1.25% cholesterol, 1.041% 
α-cornstarch, 0.005% ezetimibe; CLEA Japan, Tokyo, 
Japan, n=10). All of the diets were purchased from CLEA 
Japan (Tokyo, Japan). The mice were able to access each 
diet any time until 40 weeks of age. Body weight was 
measured every month and average diet intake volume was 
measured every week. The dose of ALA was set to 50 mg/
kg/day, a dose that has been reported to have a sufficient 
metabolic benefit without any adverse effect,15–18 and that 
of ezetimibe was set to 5 mg/kg/day.19,20

Whole blood samples obtained on orbital sinus blood 
sampling were analyzed for serum total cholesterol, LDL 
cholesterol (LDL-C), triglyceride (TG), total bilirubin, 
aspartate transaminase (AST) and alanine transaminase 
(ALT) at 16 weeks, 24 weeks, 32 weeks and 40 weeks of 
age. Serum total cholesterol, LDL-C, TG, total bilirubin, 
AST and ALT were quantified using routine laboratory 
methods (Nagahama Life Science Laboratory, Shiga, 

Figure 1.    Experiment protocol. Sam-
pling of whole blood was carried out 
via the orbital sinus. ALA, 5-aminolev-
ulinic acid.
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immunohistochemical samples in which an atherosclerotic 
plaque had formed, the ratio of the HO-1-positive area and 
the ratio of the NOX4-positive area in the vessel wall area 
were measured morphometrically for quantitative analysis 
(Win ROOF version 5.5, Mitsuya-Shoji, Tokyo, Japan).

Statistical Analysis
Statistical analysis was done using 1-way ANOVA–
Bonferroni test. Data are presented as mean ± SD, with 
P<0.05 considered to be statistically significant.

Results
Mouse Body Weight and Serum Lipid Profile
The HCD diet augmented mouse body weight (33±5 g at 
40 weeks) compared with the normal diet (25±3 g at 40 
weeks) with time (Figure 2A). From the measurement of 
volume of consumed diet, ALA intake was determined to 

Histopathology
For histopathology, right carotid artery sections were fixed 
in 10% formalin and embedded in paraffin. One of 2 series 
of 5-μm-thick slices of paraffin-embedded tissue was placed 
on a slide for immunohistochemistry. Antigen retrieval 
was performed by heating in 10 mmol/L citrate buffer (pH 
6.0) followed by treatment with 0.6% H2O2 in methanol. 
The section was incubated with a primary antibody at 4°C 
overnight. After washing with phosphate-buffered salts, 
the section was incubated with a secondary antibody 
(goat anti-rabbit IgG HRP; Abcam 6721) at room tempera-
ture for 1 h. Finally, the section was washed and then 
immunostained with DAB solution (Abcam 64238). The 
primary antibodies were a rabbit polyclonal antibody to 
HO-1 (Abcam 13243) and a rabbit polyclonal antibody to 
NOX4/NADPH oxidase 4 (Bioss bs-3684R, Woburn, MA, 
USA). The other series of slices was deparaffinized and 
stained with hematoxylin and eosin (HE). Using the plaque 

Figure 2.    Change in (A) body weight, (B) total serum bilirubin, (C) aspartate aminotransferase (AST) and (D) alanine aminotrans-
ferase (ALT) in mice according to diet. *P<0.05, normal diet vs. the other groups. ALA, 5-aminolevulinic acid.
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ited the elevation of serum oxidized LDL (380±40 pg/mL), 
and the serum oxidized LDL level was not significantly 
different from that on the normal diet (345±60 pg/mL; 
Figure 3D).

Aortic Atherosclerotic Plaque Area
Intake of the HCD-only diet for 24 weeks resulted in the 
development of lipid-rich atherosclerotic plaque in the aorta 
(Figure 4A). Plaque was dominantly seen at the aortic arch 
and bifurcating sites of several major branches. The ratio 
of en face lesion area for the entire aortic surface reached 
0.39±0.04 in the HCD-only group, but the HCD+ALA 
group had a decreased ratio of 0.32±0.05. Ezetimibe 
supplementation prevented atherosclerotic plaque accumu-
lation and the ratio was 0.12±0.05, as low as that in mice 
fed a normal diet (Figure 4B).

Antioxidant Effect
HCD intake for 24 weeks resulted in compensatory induc-
tion of endogenous HO-1 production in the carotid artery, 
and HO-1 was recruited to plaque, which was often seen at 
the bifurcation site of the common carotid artery. HO-1 

be 46 mg/kg/day. ALA supplementation (46 mg/kg/day) as 
well as ezetimibe supplementation (5 mg/kg/day) had no 
influence on the body weight increase caused by HCD 
intake (31±4 g and 34±7 g, respectively). ALA supplemen-
tation also had no adverse effect, as indicated by the serum 
total bilirubin, AST and ALT being maintained in the 
normal range during the experiment (Figure 2B–D).

The HCD-only diet increased serum total cholesterol 
and LDL-C after 8 weeks of feeding (at 24 weeks of age) as 
shown in Figure 3. Ezetimibe supplementation completely 
inhibited the elevation of serum total cholesterol and 
LDL-C (Figure 3A,C). ALA supplementation for 24 weeks 
resulted in a significant decrease in serum LDL-C 
(320±68 mg/dL) at 40 weeks of age (Figure 3C). Until 32 
weeks of age, TG remained in the normal range in all 4 
groups, but HCD and HCD+ALA increased serum TG at 
40 weeks of age. The HCD+ALA group, however, had a 
small increase in TG (141±44 mg/dL) compared with that 
in the HCD-only group (195±49 mg/dL; Figure 3B).

HCD and HCD+ezetimibe resulted in an increase in 
serum oxidized LDL at 40 weeks of age (422±64 pg/mL and 
402±59 pg/mL, respectively). ALA supplementation inhib-

Figure 3.    Change in (A) total choles-
terol, (B) triglyceride, (C) low-density 
lipoprotein (LDL) cholesterol and (D) 
oxidized LDL in mice according to diet. 
*P<0.05; HCD vs. normal diet group 
and HCD+ezetimibe group, **P<0.05; 
HCD vs. the other groups, ***P<0.05. 
ALA, 5-aminolevulinic acid.
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atherosclerotic plaque tissue.

Histopathology
On HE staining of the carotid artery in HCD-only mice, 
typical atherosclerotic plaque consisting of thickened intima 
with foam cell formation was seen. These pathology findings 
were in accordance with human atherosclerotic grade 3 
histology showing pathologic intimal thickening with extra-
cellular lipids underneath a layer of foam cell macrophages 
(Figure 6A).21

In line with the quantitative HO-1 results, expression of 
immunoreactive HO-1 was markedly enhanced at carotid 
atherosclerotic lesions in the HCD+ALA mice, particularly 
in lesions in medial and intimal smooth muscle cells 

level in carotid tissue of HCD mice was 2-fold higher 
than in the normal diet mice at 40 weeks (12±3 pg/μL vs. 
6.5±2 pg/μL, P<0.05, Figure 5A). ALA supplementation 
exogenously increased HO-1 in the carotid plaque-rich 
bifurcation site (18±8 pg/μL, Figure 5A) compared with the 
HCD-only group (Figure 5A). The HCD+ezetimibe group 
had less HO-1 production, probably due to smaller plaque 
formation.

Figure 5C shows HO-1 level in the liver. Liver HO-1 in 
the normal diet mice was regarded as basal HO-1 produc-
tion (32±4 pg/μL). Liver HO-1 level was not increased by 
HCD only (36±8 pg/μL) or by HCD+ALA (38±8 pg/μL). 
Taken together, these results indicate that exogenous 
HO-1 induction seemed to be specifically augmented in 

Figure 4.    Aortic plaque area in (A) representative photographs of the aorta on oil red O stain and (B) ratio of en face plaque area 
to the entire aortic surface in mice, according to diet. *P<0.05. Scale bar, 2 mm. ALA, 5-aminolevulinic acid; HCD, high-cholesterol 
diet.
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Figure 6.    (A) Hematoxylin and eosin (HE) staining and (B) heme oxygenase-1 (HO-1) immunostaining of the carotid arteries in 
mice according to diet. (A) A thickened intima with foam cells is seen in both the high-cholesterol diet (HCD) mice and the HCD+5-
aminolevulinic acid (HCD+ALA) mice. (B) Expression of immunoreactive HO-1 was markedly increased in medial and intimal 
smooth muscle cells, especially at the carotid atherosclerotic lesions of HCD+ALA mice (arrow). Scale bar, 0.3 mm.

Figure 5.    Heme oxygenase-1 (HO-1) 
in (A) the bifurcation site of the common 
carotid artery; (B) a plaque-poor site 
of the common carotid artery; and (C) 
in the liver, in mice according to diet. 
*P<0.05. ALA, 5-aminolevulinic acid; 
HCD, high-cholesterol diet.
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ALA is naturally synthesized from glycine and succinyl-
CoA and is finally metabolized to heme in mitochondria in 
the human body. Initially, ALA was developed industrially 
for plant fertilizer producing chlorophyll. An et al reported 
that ALA inhibits abscisic acid-induced stomatal closure 
by reducing H2O2 and calcium levels in guard cells, and that 
it simultaneously improves plant drought tolerance.22 This 
antioxidant mechanism as an inhibitor of H2O2-generating 
NADPH oxidase improved mitochondrial function in 
animals.

Cheng et al reported that HO-1 induction by cobalt 
protoporphyrin (CoPP) impeded lesion progression into 
vulnerable plaques, indicated by a reduction in necrotic 
core size and intraplaque lipid accumulation, whereas cap 
thickness and VSMC were increased.11 In their study, 
HO-1 protein level was 20-fold higher than in normal 

(Figure 6B). HCD+ezetimibe prevented plaque deposition 
in vessels and resulted in almost no HO-1-positive areas 
(Figure 6B).

Given that the core of the plaque consisted of foam cells, 
cells with stronger HO-1 expression had weaker expression 
of immunoreactive NOX4 (Figure 7). Quantitatively, there 
was an inverse relationship between the ratio of the HO-
1-positive area and the ratio of the NOX4-positive area 
(Figure 7, Bottom).

Discussion
In this study, ALA supplementation improved serum lipid 
profiles with augmentation of HO-1 induction and reduc-
tion of the atherosclerotic plaque area in the whole aorta 
in mice fed an HCD.

Figure 7.    Heme oxygenase-1 (HO-1) and 
NADPH oxidase (NOX)-4 immunostaining of 
carotid arteries from mice treated with (A,B) a 
high-cholesterol diet (HCD) and (C–E) an 
HCD+5-aminolevulinic acid (HCD+ALA) diet. 
Scale bar, 0.3 mm. (Bottom) Analytic result 
from the immunohistochemistry samples.
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positive controls without the use of statins because the 
condition of LDL receptor knockout would crucially affect 
the pharmacological mechanism of a statin, which inhibits 
Hydroxymethylglutaryl-CoA and upregulates the LDL 
receptor. We also considered that statins have pleiotropic 
effects including several antioxidant effects on atheroscle-
rosis, but the aim of this study was to elucidate the effect 
of HO-1 induced by ALA on atherosclerosis formation.

We evaluated local NOX4 expression in the plaque area 
as an essential antioxidant pathway of ALA, but NADPH 
oxidase subunits such as NOX2 and p22phox are also 
important for atherosclerotic plaque formation. Hence 
further studies are expected.

Conclusions
ALA exogenously induced the production of HO-1 at 
plaque sites, improving lipid profiles and attenuating 
atherosclerotic plaque progression in vivo.
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