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Background: Machine learning models have been developed for numerous medical

prognostic purposes. These models are commonly developed using data from single

centers or regional registries. Including data from multiple centers improves robustness

and accuracy of prognostic models. However, data sharing between multiple centers is

complex, mainly because of regulations and patient privacy issues.

Objective: We aim to overcome data sharing impediments by using distributed ML and

local learning followed by model integration. We applied these techniques to develop

1-year TAVI mortality estimation models with data from two centers without sharing

any data.

Methods: A distributed ML technique and local learning followed by model integration

was used to develop models to predict 1-year mortality after TAVI. We included two

populations with 1,160 (Center A) and 631 (Center B) patients. Five traditional ML

algorithms were implemented. The results were compared to models created individually

on each center.

Results: The combined learning techniques outperformed the mono-center models.

For center A, the combined local XGBoost achieved an AUC of 0.67 (compared to a

mono-center AUC of 0.65) and, for center B, a distributed neural network achieved an

AUC of 0.68 (compared to a mono-center AUC of 0.64).

Conclusion: This study shows that distributed ML and combined local models

techniques, can overcome data sharing limitations and result in more accurate models for

TAVI mortality estimation. We have shown improved prognostic accuracy for both centers

and can also be used as an alternative to overcome the problem of limited amounts of

data when creating prognostic models.

Keywords: transcatheter aortic valve implantation (TAVI), outcome prediction, prognosis, mortality prediction,

inter-center cross-validation, machine learning, distributed learning, aortic valve disease
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INTRODUCTION

Transcatheter Aortic Valve Implantation (TAVI) is a consolidated
procedure for aortic stenosis treatment. To support patient
selection, traditional risk stratification models, either for general
cardiac surgery or TAVI specific, are used for mortality
estimation (1, 2). Other models, exploiting more complex
algorithms, have shown higher accuracies when compared to
traditional logistic regression-based models (3, 4). Nevertheless,
mortality estimation models have shown limited prediction
accuracy when tested on other center’s populations than
the one used to generate the models (5–8). This can be
explained by the different distribution in the populations,
given by different patient selection or practice variation
among institutions.

Mitigating the models’ accuracy drop on different populations
is essential to obtainmodels with higher generalization capability.
For this purpose, model updating or fine-tuning have been used
successfully (9, 10). These techniques consist of making small
adjustments in the model, using data from a different population,
to make the models more robust for that specific population
and achieve higher accuracies. It is also known that machine
learning (ML) models usually benefit from a large amount
of data, allowing to learn complex non-linear interactions
among variables. Ideally, a single model would be developed
using data from multiple centers to optimize the model’s
accuracy. As a practical alternative, models can be iterated by
making small adjustments for each population. Sharing data
between centers, however, is a complex procedure because of
regulations dealing with patient’s privacy and, therefore, this
is not always possible in practice because of data protection
regulations such as the European General Data Protection
Regulation (11).

One possible approach to overcome the data sharing
limitation is by exploiting distributed ML techniques. These
techniques allow the training of models at multiple physical
locations, regardless of their geographical distance, with limited
or no data sharing. A popular distributed ML strategy, called
Cyclical Weight Transfer (CWT), consists of sharing a single
model across locations sequentially and cyclically for incremental
updates. At each location, the model is modified using the data
available at that center before sending it to the next location.
This approach has been used to train deep learning models with
medical images, achieving similar results as if the data was located
in a single location (12). A simpler approach is to combine
models trained locally at different locations. This can be achieved
by using stacking ensemble, where the prediction probabilities of
the models trained locally are used as features to fit a logistic
regression (LR) model (13, 14). With these approaches, the
models are expected to have a higher reliability and achieve better
generalization capability.

In this study, we exploited two techniques to deal with the data
sharing limitation to potentially improve the accuracy of models
for 1-year TAVI mortality prediction. To this end, we trained
multiple models based on CWT and stacking approaches across
two centers without data sharing.

METHODS

Population
Models to predict 1-year modality were created with data from
a total of 1,791 patients who underwent TAVI procedures in
two distinct centers were included in this study. The Amsterdam
UMC—Location AMC (AMC) with 1,160 consecutive patients
(first dated October 2007 and last dated April 2018) and the
Catharina Hospital of Eindhoven (CZE) with 631 consecutive
patients (first dated January 2015 and last dated December 2018).
The 1-year mortality information was collected from a follow-
up study for the AMC and by the national census for the CZE.
Patients with missing outcome or with more than 50% of missing
data were excluded from the study. This study, considering also
where the data were located, was performed at the Amsterdam
UMC and the Eindhoven University of Technology for the CZE.

Pre-processing
Only variables that were available in both datasets were included
while missing values were imputed with the mean for numerical
variables and the mode for categorical variables. The measures
of central tendency used for imputation were calculated for each
center and used to impute it owns center’s data.

Additional pre-processing was applied to the data for the
development of the Neural Networks (NN) to facilitate its
convergence. The continuous variables were standardized by
removing their mean and by scaling them to unit variance while
one-hot encoding was applied for categorical features. These
steps are not required for the other classifiers.

Two approaches were evaluated to deal with the class
imbalance during training: class weighting and random over-
sampling. The first approach consists of assigning different
weights to balance the loss of the two classes during training. The
second approach consists of randomly oversampling the samples
of the minority class.

Model Development
In this study, we evaluated four distinct classifiers: Random
Forest (RF), Extreme Gradient Boosting (XGB) (15), CatBoost
(CATB) (16), and NN. Two NN architectures were evaluated: a
narrow and a wide. The narrow is composed by two layers of 8
and 4 neurons while the wide is composed by two layers with
100 and 40 neurons. The complete architectures are described in
the Supplementary Table 1. All experiments were performed on
Python 3.6.9 and scikit-learn library 0.21.3 (17). We used a CWT
approach to train the models with data from both centers in an
iterative fashion. Besides that, we also evaluated stacking models
trained individually for each center. For this, prediction outputs
frommodels trained on each center were used to train a LRmodel
and obtain a unique prediction output.

Cyclical Weight Transfer Approach
The CWT approach is slightly different for the NN and the
tree-based models. In CWT, as illustrated in Figure 1, the NN
weights are initialized by one center and sent to the other
center for updating the weights with the other center’s data.
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FIGURE 1 | Illustration of the development of a prognostic model using the

Cyclic Weight Transfer approach. The model is being trained by two different

centers in an iterative fashion. Each model version is trained and exchanged

between centers for n iterations or until a stopping criterion is reached.

FIGURE 2 | Example of a tree-based model (random forest) that is created by

two different centers (represented by different colors). (A) A predefined number

of trees is initially created by the first center. (B) The second center adds new

trees to the forest, without modifying the previous trees. (C) The random forest

training process is complete, with the same number of trees from each center.

This updating procedure continues until the stopping criteria
is reached. Dropout was included between layers to randomly
prevent some neurons from being updated by the training
center (18).

The tree-based models (RF, CATB, and XGB) were trained
by adding new trees, from each center, at every new iteration.
To this end, the models were exchanged iteratively between
centers resulting in the forest to grow. For example, as
illustrated in Figure 2, an initial model created with a

FIGURE 3 | Example of a stacking model. The models are trained

independently on each center and its prediction probabilities are used as

features to train a single logistic regression model.

single tree for the first center is sent to the second center,
where a new tree is added. This exchanging iterative process
continues until the stopping criterion is reached: a maximum
number of iterations (500) or the validation error stopped
decreasing for both centers after 10 epochs. Although the
trees created by one center are never modified by the other,
the model is iteratively being updated by the addition of
new trees from each center. For the XGB and CATB, the
previous trained trees are taken in consideration when fitting
new trees.

The center with the largest amount of data was used to
start the training process. The hyperparameters and architectures
were empirically optimized. Information regarding the values for
which the hyperparameter optimization was performed can be
found in the Supplementary Table 2.

Stacking Approach
Stacking has been successfully applied in previous studies
(19, 20). At the initiation of the process, the models were
trained locally at each center. To this, the hyperparameters
were optimized via grid search with 5-fold cross-validation.
The evaluated hyperparameters are presented in the
Supplementary Table 3. After both centers had their models
trained, they were used to compute the probability output
for all samples (training and testing). The probability output
from both center’s training set was used as features (2 features
in total; the probability from center A and the probability
from center B) to train an LR model. The probability output
from the test samples was used to evaluate the LR model.
With this approach, represented in Figure 3, the models and
probability outputs from both centers were exchanged only
once. Different classifiers were not stacked together (i.e., the
NN from center A was only combined with the NN from
center B).
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TABLE 1 | Descriptive statistics of the study group, mean ± SD or N (%).

Variable Instances Center A Center B

Survived

(n = 1,039)

Non-survived

(n = 121)

Survived

(n = 564)

Non-survived

(n = 67)

Sex Male 587 (56%) 61 (50%) 303 (54%) 46 (69%)

Female 452 (44%) 60 (50%) 261 (46%) 21 (31%)

Age (year) 81 ± 7 83 ± 7 81 ± 6 80 ± 6

Chronic obstructive pulmonary disease No 755 (73%) 66 (55%) 464 (83%) 48 (71%)

Yes 282 (27%) 55 (45%) 98 (17%) 19 (28%)

Diabetes No 720 (69%) 79 (65%) 241 (75%) 47 (70%)

Yes 313 (30%) 42 (35%) 142 (25%) 20 (30%)

Body mass index (kg/m2) 28 ± 5 27 ± 6 27 ± 4 26 ± 4

Creatinine (µmol/L) 98 ± 41 120 ± 56 108 ± 62 116 ± 46

Smoking No 479 (46%) 59 (49%) 392 (70%) 51 (76%)

Former 456 (44%) 49 (40%) 41 (7%) 4 (6%)

Yes 104 (10%) 13 (11%) 131 (23%) 12 (18%)

Beta blockers class of medicine No 596 (57%) 80 (66%) 498 (88%) 53 (79%)

Yes 437 (42%) 40 (33%) 66 (12%) 14 (21%)

Hemoglobin (mmol/L) 7.8 ± 1 7.7 ± 1 7.9 ± 1.0 7.5 ± 0.9

QRS complex time (msec) 104 ± 26 107 ± 27 110 ± 29 121 ± 33

Aortic valve area (cm2) 0.8 ± 0.2 0.8 ± 2 0.7 ± 0.2 0.7 ± 0.2

Aortic valve peak gradient (mmHg) 68 ± 23 64 ± 26 77 ± 24 71 ± 32

Aortic valve mean gradient (mmHg) 43 ± 16 44 ± 19 46 ± 16 39 ± 20

Previous myocardial infarction No 851 (82%) 91 (75%) 387 (79%) 36 (69%)

Yes 187 (18%) 30 (25%) 105 (21%) 16 (31%)

New York Heart Association (NYHA) functional classification 1 28 (3%) 1 (1%) 9 (3%) 4 (9%)

2 220 (21%) 17 (14%) 59 (20%) 5 (12%)

3 473 (46%) 82 (68%) 184 (61%) 24 (57%)

4 76 (7%) 21 (17%) 49 (16%) 9 (21%)

Previous devices (such as pacemaker) No 937 (90%) 104 (86%) 417 (89%) 36 (75%)

Yes 102 (10%) 17 (14%) 52 (11%) 12 (25%)

Internal Evaluation
To evaluate the value of creating models using data from 2
centers, we compared these models with the models that were
trained on the data from only 1 center. These mono-center
models were trained locally and tested on its own data. The
optimization and evaluation of these models was the same as the
used for the stacked approach, with hyperparameter optimization
via grid search and evaluation with a 5-fold cross-validation
scheme. These models have already been developed in a previous
study (7).

Evaluation
The models were evaluated with stratified 20-fold cross-
validation. With this, each center split its own data in 20-folds,
leading to twenty iterations with different test sets. The testing
folds were kept unused until the final evaluation. The area under
the curve (AUC) of the receiver operating characteristic (ROC)
was used to evaluate each model. The average of the twenty
AUCs, as well as the standard deviation (std), was reported for
each center.

RESULTS

Among all 1,791 patients from two centers include on this study,
188 patients (10%) did not survive through the first year after
TAVI. The baseline characteristics of the patients from both
centers are summarized in Table 1.

The cyclical NN model with a narrow architecture achieved
the highest average ROC AUC of 0.66 (center A: 0.64 AUC,
center B: 0.68 AUC). This NN also achieved the highest score
for center A. The stacked models with the highest accuracies
achieved a ROC AUC of 0.65. This accuracy was achieved by
three models; CATB (center A: 0.64 AUC, center B: 0.65 AUC),
XGB (center A: 0.67 AUC, center B: 0.63 AUC) and the NN
with a narrow architecture (center A: 0.64 AUC, center B: 0.65
AUC). The stacked XGBoost achieved the highest individual
accuracy for center B. In Figure 4 we show the average ROC
of the models with highest AUCs and in Table 2 we present
all results.

The highest average accuracy for the mono-center models
was a ROC AUC of 0.64, achieved by CATB, RF and the NN
with narrow architecture. The highest individual accuracy was
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achieved by XGB for center A (AUC of 0.65) and CATB for center
B (AUC of 0.64).

DISCUSSION

Our proposed approaches of distributed and combined local
models to predict 1-year TAVI mortality with data from two
centers outperformed the models trained with each center
individually (mono-center). T approaches do not require the data
to be sent from center to center once each center process its own

FIGURE 4 | Average ROC curve (standard deviation) of the 20-fold

cross-validation for the distributed and combined local models. NN, neural

network; XGB, XGBoost.

data. Additionally, the centers benefited from training themodels
using these approaches, once their accuracies outperformed
the accuracies of the mono-centers models (trained locally
and independently). For both centers, the combined prediction
models outperformed the models using only the local data. These
approaches can be extended to multiple centers or different
problems, not being exclusive for TAVI.

Some recent studies presented ML models for TAVI
outcome prediction. In previous studies, Lopes et al. (3, 4)
developed pipelines for outcome prediction for individual
centers. Additionally, Al-Farra et al. (6) and Mamprin et al.
(7) showed the accuracy drop on the evaluation of previous
traditional risk scores or recent ML models when evaluated
on different populations. The importance of model updating
was highlighted by Lopes et al. (9) and Al-Farra et al. (10),
where NN and LR models were updated after the training
process was complete. They concluded that model updating
is of utmost importance when using the models on different
(external) populations.

This study suffered from some limitations. Some important
features, which have shown prognostic value in previous studies,
were not included in this study because these were not similarly
reported by both centers. Also, to be aligned with previous
studies, a simple imputation technique was used instead of
a multiple imputation. Additionally, although center A has
almost twice the number of patients from center B, the data
acquisition period is relatively large (11 years, compared to 4
years from center B). This might affect the accuracy of the
models since the TAVI procedures are constantly improving,
from patient selection to the procedure itself, and the effects
of these changes are not included in the models. Regarding
the distributed experiments, the hyperparameter optimization

TABLE 2 | Average area under the receiver operating characteristic curve and its standard deviation for all experiments.

Model Center A (n = 1,160) Center B (n = 631) Average of centers

Balanced class

weight

Random

oversampling

Balanced class

weight

Random

oversampling

Balanced class

weight

Random

oversampling

Cyclical XGBoost 0.58 ± 0.10 0.58 ± 0.10 0.62 ± 0.16 0.54 ± 0.15 0.60 ± 0.13 0.56 ± 0.13

CatBoost 0.62 ± 0.15 0.60 ± 0.14 0.61 ± 0.14 0.61 ± 0.16 0.62 ± 0.15 0.61 ± 0.15

Random forest 0.62 ± 0.11 0.61 ± 0.12 0.64 ± 0.13 0.64 ± 0.14 0.63 ± 0.12 0.63 ± 0.13

Neural network (wide) 0.62 ± 0.14 0.63 ± 0.14 0.67 ± 0.14 0.65 ± 0.17 0.65 ± 0.14 0.64 ± 0.16

Neural network (narrow) 0.64 ± 0.12 0.62 ± 0.13 0.68 ± 0.12 0.62 ± 0.15 0.66 ± 0.12 0.62 ± 0.14

Stacking XGBoost 0.67 ± 0.10 0.61 ± 0.08 0.63 ± 0.17 0.60 ± 0.13 0.65 ± 0.14 0.61 ± 0.11

CatBoost 0.64 ± 0.11 0.62 ± 0.10 0.65 ± 0.16 0.62 ± 0.13 0.65 ± 0.14 0.62 ± 0.12

Random forest 0.63 ± 0.10 0.60 ± 0.09 0.64 ± 0.15 0.63 ± 0.15 0.64 ± 0.13 0.62 ± 0.12

Neural network (wide) 0.64 ± 0.13 0.62 ± 0.13 0.64 ± 0.14 0.61 ± 0.11 0.64 ± 0.14 0.62 ± 0.12

Neural network (narrow) 0.64 ± 0.12 0.65 ± 0.13 0.66 ± 0.14 0.59 ± 0.14 0.65 ± 0.13 0.62 ± 0.14

Mono-center XGBoost 0.65 ± 0.11 0.59 ± 0.11 0.59 ± 0.17 0.56 ± 0.18 0.62 ± 0.14 0.58 ± 0.15

CatBoost 0.63 ± 0.11 0.59 ± 0.12 0.60 ± 0.15 0.64 ± 0.17 0.62 ± 0.13 0.62 ± 0.15

Random forest 0.65 ± 0.10 0.59 ± 0.11 0.62 ± 0.14 0.62 ± 0.16 0.64 ± 0.12 0.61 ± 0.14

Neural network (wide) 0.64 ± 0.11 0.62 ± 0.13 0.63 ± 0.15 0.61 ± 0.15 0.64 ± 0.13 0.62 ± 0.14

Neural network (narrow) 0.63 ± 0.12 0.58 ± 0.12 0.65 ± 0.16 0.60 ± 0.16 0.64 ± 0.14 0.59 ± 0.14

The rows are the classifiers on different setups (cyclical, stacking or internal validation) and the columns are different balancing techniques per center. Highest accuracies per center and

on average are highlighted in bold.
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process was reduced to a limited number of options and not
many optimizations were implemented since this was not the
subject of the study. Numerous additional settings could be
adjusted for cyclical training: for example, the NN could be
trained for multiple epochs or on mini-batches, weights could
be assigned to the loss to deal with different population sizes,
or even a combined loss could be taken into account when
back-propagating the loss.

CONCLUSION

In our study, we demonstrate two approaches to overcome
the data sharing limitations between medical centers. For both
centers, the combined models outperformed models in which
only patients from their own center was used: for the larger
center, the stacking approach showed the highest accuracy
and for the smaller center, the distributed approach achieved
the highest accuracy. The highest accuracy improvement was
achieved for the center with a smaller number of patients,
showing that when limited amounts of data are involved in
creating prognostic ML models, federated can be successful
option to generate a unique model in a cooperative fashion.
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