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Abstract

Laminin-332 is a heterotrimeric basement membrane component comprised of the a3, ß3, and c2 laminin chains. Laminin-
332 modulates epithelial cell processes, such as adhesion, migration, and differentiation and is prominent in many
embryonic and adult tissues. In skin, laminin-332 is secreted by keratinocytes and is a key component of hemidesmosomes
connecting the keratinocytes to the underlying dermis. In mice, lack of expression of any of the three Laminin-332 chains
result in impaired anchorage and detachment of the epidermis, similar to that seen in human junctional epidermolysis
bullosa, and death occurs within a few days after birth. To bypass the early lethality of laminin-332 deficiency caused by the
knockout of the mouse laminin c2 chain, we expressed a dox-controllable human laminin c2 transgene under
a keratinocyte-specific promoter on the laminin c2 (Lamc2) knockout background. These mice appear similar to their wild-
type littermates, do not develop skin blisters, are fertile, and survive .1.5 years. Immunofluorescence analyses of the skin
showed that human laminin c2 colocalized with mouse laminin a3 and ß3 in the basement membrane zone underlying the
epidermis. Furthermore, the presence of ‘‘humanized’’ laminin-332 in the epidermal basement membrane zone rescued the
alterations in the deposition of hemidesmosomal components, such as plectin, collagen type XVII/BP180, and integrin a6
and ß4 chains, seen in conventional Lamc2 knockout mice, leading to restored formation of hemidesmosomes. These mice
will be a valuable tool for studies of organs deficient in laminin-332 and the role of laminin-332 in skin, including wound
healing.
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Introduction

Skin provides a protective barrier from infection, injury, and

water loss. The skin is composed of two primary layers: the

epidermis, the outermost layer of skin; and the dermis, which lies

just beneath the epidermis. The epidermis and dermis are

separated by a thin sheet of specialized extracellular matrix called

the basement membrane zone (BMZ). In addition to providing

tissue boundaries and structural support, components of the

basement membrane influence cell attachment, proliferation,

differentiation, and migration. A defect in the structure or

expression of any one of the components of the BMZ can cause

tissue separation and blister formation.

Junctional epidermolysis bullosa (JEB) is one of the major forms

of epidermolysis bullosa, a group of genetic skin blistering diseases.

In the most severe cases, infants do not survive beyond their first

year of life. JEB is most often (88%) caused by the absence of

laminin (Lm)-332, due to mutations in one of the three Lm-332

chains, the a3, ß3, or c2 chains [1–6]. Lm-332 is normally

secreted by skin keratinocytes and is a critical component of the

BMZ between the epidermis and the dermal layer [7–9]. Lm-332

serves as an adhesion molecule through interactions with the

hemidesmosomal component integrin a6ß4 and the anchoring

fibrillar component collagen VII. Most of the Lm-332 mutations

that cause JEB are nonsense mutations that cause premature stop

codons and result in a complete loss of Lm-332 [10–12].

Lm-332 has a wide tissue distribution, being deposited in

epithelial basement membranes of brain, gastrointestinal tract,

heart, kidney, liver, lung, trachea, skin, spleen, thymus, salivary

gland, mammary gland, ovary, prostate, and testis [7,13–19]. In

addition to skin blistering, people with JEB experience blistering of

the mucous membranes of the mouth and gastrointestinal tract,

affecting nutrition. Mice with a targeted deletion of Lama3 (laminin

a3) [20] or Lamc2 (laminin c2) [21] genes or a spontaneous

disrupting insertion of an intracisternal A particle (IAP) element in
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the Lamb3 (laminin ß3) gene [22] die within a few days after birth,

presumably due to the skin blistering (dehydration) or involvement

of the oral and gastroesophageal mucosa (malnutrition). Un-

fortunately, because of the early lethality, these mice have limited

experimental utility to study the role of Lm-332 in the de-

velopment or repair of various tissues.

Here we generated novel tetracycline operator-regulated human

laminin c2 transgenic mice (TetO-HuLamC2), which were used in

conjunction with mice carrying a keratinocyte-specific reverse

tetracycline transactivator (K14-rtTA) transgene [23–25] to drive

the expression of human laminin c2 in keratinocytes and other

keratinized stratified epithelia of Lamc2 KO mice. Expression of

the human laminin c2 transgene specifically in the skin, tongue,

and roof palate prevented the lethality of the Lamc2 KO mice by

enabling hemidesmosome formation, thus inhibiting blister

formation in the skin and oral mucosa. All other tissues remained

deficient in Lm-332, and yet appeared to develop grossly normal,

suggesting that Lm-332 is not essential for the development of

most tissues. However, this mouse could be a valuable tool to study

the role of Lm-332 in repair of a variety of tissues after injury.

Materials and Methods

Ethics Statement
All procedures using mice were approved by the Washington

University School of Medicine Animal Studies Committee (pro-

tocol number: 20100104) and were performed in accordance with

the Animal Welfare Act and the Guide for the Care and Use of

Laboratory Animals. The mice were housed in a in a pathogen-

free barrier facility within the Clinical Sciences Research Building

of Washington University School of Medicine. Veterinary care

was provided by the Division of Comparative Medicine at

Washington University School of Medicine. Mice were provided

Figure 1. Schematic diagrams of the Lamc2 allele and
transgenes used in these studies and genotyping. (A) Lamc2
null allele is generated by Cre recombinase, which removes exon 8 and
the Neo-TK insert. Primer locations are indicated. (B) The K14-rtTA
transgene contains a human keratin 14 (K14) promoter driving the
reverse tetracycline transactivator (rtTA) and a SV40 poly A signal
sequence. (C) The TetO-HuLamC2 transgene contains seven copies of
the tetracycline operator (tetO) with a CMV minimal promoter driving
the human laminin c2 cDNA and a bovine growth hormone polyA
signal sequence. The binding of doxycycline (Dox) to the rtTA promotes
recruitment and binding to the tetO and activation of the promoter. (D)
PCR analysis of genomic tail DNA of the Lamc2 allele was performed
using primers P1, P2, and P3. The mutant allele was detected with
primer pair P1–P3, and the wild-type (WT) allele was detected using
primer pair P2–P3. The K14-rtTA transgene was detected using K14- and
rtTA-specific primers. The human laminin c2 transgene was detected
using primers specific to human laminin c2. Mice that were a knockout
for the Lamc2 allele and carried both the K14-rtTA and the TetO-
HuLamC2 transgenes (#9) were ‘‘rescued’’ Lamc2 KO mice.
doi:10.1371/journal.pone.0045546.g001

Figure 2. Rescued Lamc2 KO mice appear normal at birth and
live to adulthood. Images of newborn Lamc2 Het (A), Lamc2 KO (B),
rescued Lamc2 KO (C), and Lamc2 WT (D), and adult Lamc2 WT (E) and
rescued Lamc2 KO (F) are shown. Newborn Lamc2 KO mice are
occasionally smaller, have blistered feet (arrow), and a smaller milk
pouch (B). Lamc2 KO mice that carry both the K14-rtTA and TetO-
HuLamC2 transgenes (C) look similar to littermate controls (A and D).
Rescued Lamc2 KO mice live to adulthood (F) and have similar length
and weight as Lamc2 WT littermates (E).
doi:10.1371/journal.pone.0045546.g002

Rescue of Laminin c2 KO Mice
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with a surplus of food and water, and cages were changed twice

a week. Mice were killed by carbon dioxide narcosis. This method

was approved by the Washington University Animal Studies

Committee and is consistent with the recommendations of the

Panel on Euthanasia of the American Veterinary Medical

Association.

Generation of ‘‘Rescued’’ Lamc2 Knockout Mice
Lamc2 knockout [21] and K14-rtTA transgenic [23–25] mice

have been previously described. Genotyping was performed by

PCR using mouse laminin c2-specific primers (WT forward/P1

59-CGGCTTGCTGACTTGTATCC-39, Lamc2 KO forward/P2

59-AGCTAATACGGGTTCAGCC-39, and reverse/P3 59-

TGTAACCAGAAGCACATTCC-39) or K14-rtTA-specific pri-

mers (K14 forward 59-GTCCGATGGGAAAGTGTAGCCTG-

39 and rtTA reverse 59-TTTCTTCTTTAGCGACTTGATGC-

39), respectively (Figure 1A, B).

TetO-HuLamC2 transgenic mice were generated by microin-

jection of the isolated transgene (Figure 1C) into the pronuclei of

C57BL/6NTac single-celled embryos. The full-length human

laminin c2 cDNA with a bovine growth hormone polyadenylation

signal sequence was placed under the control of the (TetO)7-CMV

promoter (a gift from Jeffrey Whitsett, University of Cincinnati).

TetO-HuLamC2 transgenic mice were identified by PCR using

human laminin c2-specific primers (forward 59-AGGCTGTC-

CAACGAAATGGG-39 and reverse 59-GGAGCTGTGATCCG-

TAGACCA-39). Each of the 16 TetO-HuLamC2 founder lines

were bred to K14-rtTA transgenic mice, and 1mg/ml doxycycline

(dox) was provided in the drinking water containing 5% sucrose to

induce expression of the human laminin c2 in TetO-HuLamC2+/
K14-rtTA+ double-transgenic offspring. The expression and

deposition of the human laminin c2 in the epidermal BMZ of

double-transgenic offspring was examined by immunofluorescence

using a human-specific anti-laminin c2 antibody (Millipore,

Billerica, MA). The offspring of two founders were maintained

because they expressed the human laminin c2 transgene in the

desired fashion.

To generate ‘‘rescued’’ Lamc2 KO mice, TetO-HuLamC2 and

K14-rtTA transgenic mice were bred with Lamc2 heterozygous

mice, and the offspring were intercrossed to obtain mice that

carried both TetO-HuLamC2 and K14-rtTA transgenes on

a Lamc2 KO background (TetO- Lamc2 KO/K14-rtTA+/TetO-

HuLamC2+; Figure 1D). Dox was administered at conception and

continuously throughout life. Both male and female rescued Lamc2

KO mice were fertile, which allowed interbreeding of rescued

mutants to maintain the line.

Histology and In Situ Hybridization
Mice were asphyxiated with CO2 and various tissues were fixed

in 10% buffered formalin and paraffin embedded. The 5-mm
sections were stained with hematoxylin and eosin (H&E) for

Figure 3. Human laminin c2 is expressed by keratinocytes and
deposited into the basement membrane. Skin tissue sections from
adult Lamc2 WT (A–C) and rescued Lamc2 KO mice (D–F) were
subjected to in situ hybridization for human laminin c2 mRNA using
a digoxigenin-labeled RNA probe (A and D) or immunostaining for
human (B and E) or mouse (C and F) laminin c2 using species-specific
laminin c2 antibodies and TRITC-conjugated secondary antibodies. Blue
staining in panels A and D represents positive hybridization. Sections
were counterstained with tartrazine yellow for contrast. The lack of
staining in panels A and B show that the absence of human laminin c2
expression in Lamc2 WT mice. The lack of staining in panel F shows the
absence of mouse laminin c2 in the rescued Lamc2 KO mice.
doi:10.1371/journal.pone.0045546.g003

Figure 4. Human laminin c2 colocalizes with mouse laminin a3
and ß3 chains in rescued Lamc2 KO skin. Frozen skin tissue
sections from adult rescued Lamc2 KO mice were subjected to
immunofluorescence staining for human laminin c2 (A and B), mouse
laminin a3 (C), and mouse laminin ß3 (D) using species-specific anti-
laminin c2 antibodies. Merged images are shown (E and F). Yellow color
in panels E and F indicates colocalization.
doi:10.1371/journal.pone.0045546.g004

Rescue of Laminin c2 KO Mice
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Figure 5. Human laminin c2 transgene expression is restricted in the rescued Lamc2 KO mice. Whole mount E18 rescued Lamc2 KO
embryonic tissue sections were stained with hematoxylin and eosin (H&E) (A) or for human laminin c2 using an anti-human laminin c2 antibody
followed by TRITC-conjugated antibody (B and D). Slides were mounted with mounting media containing DAPI to allow visualization of nuclei (C and
E). Human laminin c2 was only detected in the mouth (B) and skin (D).
doi:10.1371/journal.pone.0045546.g005

Figure 6. Expression of human laminin c2 under the K14 promoter prevented blistering of rescued Lamc2 KOmice. The paws (A, D, G),
skin (B, E, H), and mouth (C, F, I) of Lamc2 KO (A–C), rescued Lamc2 KO (D–F), and Lamc2 WT (G–I) newborn mice were examined. Skin blistering was
most evident on the paws of Lamc2 KO (A), but epidermal detachment (B) and separation of the oral mucosa of the roof palate and tongue (arrows in
C) were detected microscopically after H&E staining. Blistering was not observed in the rescued Lamc2 KO (D–F) or Lamc2 WT (G–I) mice.
doi:10.1371/journal.pone.0045546.g006

Rescue of Laminin c2 KO Mice
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histologic analysis by light microscopy. Images were acquired

using a Nikon Optiphot II microscope and a Zeiss AxioCam HRc

digital camera.

For detection of human laminin c2 transgene expression by in

situ hybridization, a 648-bp fragment corresponding to nucleotides

2482–3129 of the human laminin c2 gene was amplified by PCR

using the full-length human laminin c2 cDNA as the template.

The resulting PCR product was subcloned into the pCRII-TOPO

vector using the TOPO TA cloning kit (Invitrogen, Carlsbad, CA)

as per the manufacturer’s recommendations. Following vector

linearization, sense and antisense digoxigenin (DIG)-labeled probe

were generated using the DIG RNA Labeling Mix (Roche,

Branchburg, NJ) and T7 or SP6 RNA polymerases. Hybridization

of the DIG-labeled probes to 5-mm tissue sections was performed

as previously described [26], and DIG was detected using the

alkaline phosphate-conjugated anti-DIG antibody (Roche) and the

BM purple alkaline phosphate substrate solution (Roche) as per

the manufacturer’s recommendations. Slides were counterstained

with tartrazine yellow for contrast. The sense DIG-labeled probe

was used as a negative control (data not shown).

Immunofluorescence
Immunofluorescence analyses were performed using 5-mm

frozen, non-fixed sections. Primary antibodies included: mouse

laminin chains a3 and c2 (a gift from Guerrino Meneguzzi,

INSERM U634, France), and ß3 (a gift from George Plopper,

Rensselaer Polytechnic Institute), human-specific laminin c2
(Millipore), integrin chains a6 (Millipore) and ß4 (BD Biosciences),

collagen XVII/BP180 (a gift from Zhi Liu, Medical College of

Wisconsin), and skin markers K10, K14, loricrin (Covance,

Princeton, NJ), envoplakin and plectin (Santa Cruz Biotechnology,

Santa Cruz, CA). After washing, slides were incubated with FITC-

or TRITC-conjugated secondary antibodies (Jackson ImmunoR-

esearch Laboratories, West Grove, PA). Slides were mounted with

Vectashield mounting media with DAPI (Vector Laboratories,

Burlingame, CA).

Electron Microscopy
Skin was prepared for electron microscopy by immersion in

1.5% glutaraldehyde/1.5% paraformaldehyde (Tousimis Re-

search Corporation, Rockville, MD) in Dulbecco’s serum-free

media (SFM) containing 0.05% tannic acid for one hour followed

by an extensive rinse in SFM, then post-fixation in 1% OsO4 for

Figure 7. Adult tissues of rescued Lamc2 KOmice appear grossly similar to Lamc2WT controls. Paraffin-embedded tissue sections of adult
Lamc2 WT (A–H) and rescued Lamc2 KO (A’–H’) mice were stained with H&E. Despite a lack of laminin c2 expression, the brain (A, A’), heart (B, B’),
intestine (C, C’), kidney (D, D’), liver (E, E’), lung (F, F’), spleen (G, G’), and stomach (H, H’) appear grossly similar between the Lamc2 WT and rescued
Lamc2 KO mice.
doi:10.1371/journal.pone.0045546.g007

Rescue of Laminin c2 KO Mice
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1 hour. The samples were washed in SFM then dehydrated in

a graded series of ethanol to 100%, rinsed in propylene oxide, and

infiltrated in Spurrs epoxy over a total time of two hours,

accelerated via microwave energy. Samples were polymerized at

70uC over 18 hours [27].

Results

Keratinocyte-targeted expression of human laminin c2
prevents the early lethality of Lamc2 KO mice
Lamc2 KO mice exhibit blistering of the skin and oral mucosa,

and die within a few days after birth [21]. To determine whether

expression of laminin c2 specifically under a keratinocyte pro-

moter is sufficient to rescue the early lethality of Lamc2 KO mice,

we generated a new transgenic mouse line carrying the human

LAMC2 cDNA under the control of TetO-CMV regulatory

element (TetO-HuLamC2, Figure 1C) to use in conjunction with

mice expressing the reverse tetracycline transactivator under the

control of the human keratinocyte 14 promoter (K14-rtTA,

Figure 1B) [24,25,28] Each of these mouse lines was independently

bred to Lamc2 heterozygous mice (Figure 1A) to obtain Lamc2Het/

TetO-HuLamC2+ and Lamc2 Het/K14-rtTA+ mice, respectively.

Then, these mice were crossed to obtain mice that carried both

TetO-HuLamC2 and K14-rtTA transgenes on a Lamc2 KO

background (Lamc2 KO/K14-rtTA+/TetO-HuLamC2+). Dox

was administered at conception and continuously throughout life.

Newborn Lamc2 KO offspring that carried neither transgene

(Figure 2B) or carried only one of the transgenes (not shown)

exhibited blistered skin (most notably on their paws), a smaller

milk pouch, and they died within a few days after birth. These

observations are consistent with previously reported findings of

conventional Lamc2 KO mice [21]. In contrast, the vast majority

(.95%) of Lamc2 KO offspring that carried both TetO-HuLamC2

and K14-rtTA transgenes (Figure 2C) appeared similar to Lamc2

Het (Figure 2A) and Lamc2 WT (Figure 2D) littermates at birth,

and survived into adulthood (.1 year) (Figure 2F) with similar

weight and length as Lamc2 WT (Figure 2E) and Lamc2 Het (not

shown) mice. However, occasionally Lamc2 KO/K14-rtTA+/
TetO-HuLamC2+ mice were smaller than Lamc2 Het or Lamc2

WT mice at birth, and they remained runted as adults with no

apparent affect on lifespan (data not shown). The runted

phenotype was also observed in Lamc2 KO mice (Figure 2B;

[21], indicating that driving the expression of the human laminin

c2 transgene under the K14 promoter did not alter this rare

phenotype.

To simplify the nomenclature for the remaining of the paper,

‘‘Lamc2 KO’’ will refer to Lamc2 KO mice that carry neither

transgene or carry only one of the transgenes, and therefore do not

express either the mouse or the human laminin c2; ‘‘rescued Lamc2

Figure 8. Alterations in Lm-332 expression do not alter skin differentiation. Frozen skin sections of Lamc2 KO (A–C), rescued Lamc2 KO (D–
F), and Lamc2 WT (G–I) newborn mice were immunostained for skin differentiation markers loricrin (A, D, G), K10 (B, E, H), and K14 (C, F, I). No
significant differences were detected in the staining patterns of these skin differentiation markers in Lamc2 KO, the rescued Lamc2 KO, and Lamc2WT
mice. The epidermis of each of these mice displayed loricrin in the granular layer, K10 in the spinous layer, and K14 in the basal layer.
doi:10.1371/journal.pone.0045546.g008

Rescue of Laminin c2 KO Mice

PLOS ONE | www.plosone.org 6 September 2012 | Volume 7 | Issue 9 | e45546



KO’’ will refer to Lamc2 KO mice that carry both TetO-

HuLamC2 and K14-rtTA transgenes and thus express only the

human laminin c2; and ‘‘Lamc2 WT’’ will refer to mice that are

wild-type at the mouse laminin c2 allele and could carry neither

transgene or carry only one of the transgenes, but not both

transgenes, and thus only express the endogenous mouse laminin

c2. Both male and female rescued Lamc2 KO mice were fertile,

which allowed interbreeding to maintain the line.

The human laminin c2 transgene is expressed in the skin
and oral mucosa of rescued Lamc2 KO mice
The 2.3-kb fragment of the human K14 promoter has been

shown to drive the expression of reporter genes and various

transgenes in keratinocytes and other stratified epithelia of

transgenic mice [23–25]. To examine the expression of the

human laminin c2 transgene, in situ hybridization and immuno-

fluorescence analyses were performed using a human-specific

laminin c2 DIG-labeled RNA probe and a human-specific laminin

c2 antibody, respectively, on skin sections from adult rescued

Lamc2 KO mice. The human laminin c2 transgene was not

expressed by Lamc2 WT mice that only carried the TetO-

HuLamC2 transgene and not the K14-rtTA transgene (Figure 3A,

3B) or Lamc2 WT mice that only carried the K14-rtTA transgene

and not the TetO-HuLamC2 transgene (not shown). On the other

hand, the human laminin c2 transgene was expressed by basal

keratinocytes of rescued Lamc2 KO mice (Figure 3D) and

deposited into the epidermal BMZ (Figure 3E). The lack of

staining of mouse laminin c2 in the rescued Lamc2 KO mice

(Figure 3F) confirmed the absence of endogenous laminin c2 in

these mice.

The deposition of the human laminin c2 transgene in the

rescued Lamc2 KO (Figure 3E) was similar to that of mouse

Figure 9. Localization of hemidesmosomal components is restored in rescued Lamc2 KO mice. Frozen skin sections of Lamc2 KO (A–D),
rescued Lamc2 KO (E–H), and Lamc2 WT (I–L) newborn mice were immunostained for skin hemidesmosomal components plectin (A, E, I), BP180/Col
XVII (B, F, J), and integrin chains a6 (C, G, K) and ß4 (D, H, L). The immunostaining pattern for all hemidesmosomal proteins in the Lamc2 KO mice
appeared discontinuous, whereas the staining patterns in rescued Lamc2 KO and Lamc2 WT mice appeared more linear.
doi:10.1371/journal.pone.0045546.g009

Rescue of Laminin c2 KO Mice
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laminin c2 of Lamc2 WT mice (Figure 3C). Furthermore, the

human laminin c2 colocalized in the epidermal BMZ with

endogenous mouse laminin a3 (Figure 4E) and ß3 chains

(Figure 4F), suggesting that the human laminin c2 trimerized

with the mouse laminin a3 and ß3 chains to form a ‘‘humanized’’

Lm-332 molecule which became deposited in the epidermal BMZ.

Since mice that do not express Lm-332 die within a few days

after birth, we determined when during embryonic development

the human laminin c2 transgene began to be expressed. Whole

embryo tissue sections of rescued Lamc2 KO mice from various

stages of embryonic development were subjected to in situ

hybridization and immunofluorescence. The human laminin c2
transgene expression was detected by in situ hybridization in the

mouth (tongue and palate) of rescued Lamc2 KO mice as early as

E14, but the laminin c2 protein was not detected by immunoflu-

orescence in the mouth until E16 (data not shown). The human

laminin c2 was detected in both the mouth and skin of rescued

Lamc2 KO mice at E18 (Figure 5). We did not detect human

laminin c2 in any other tissue at any stage of embryonic

development or in the adult. These data confirm that the lethality

of Lamc2 KO mice can be attributed to the lack of Lm-332

expression in either the skin and/or oral mucosa.

Expression of the Human Laminin c2 Transgene by
Rescued Lamc2 KO Mice Prevents Blistering of the Skin
and Oral Mucosa
Histopathological examination of the skin of newborn Lamc2

KO mice that do not express human laminin c2 showed blistering

of the paws (Figures 2B and 6A) and a separation of epidermal

layer from the dermis (Figure 6B). Similar separation was detected

in the roof palate and tongue of Lamc2 KO mice (Figure 6C).

Driving the expression of the human laminin c2 transgene under

the control of the K14 promoter prevented epidermal detachment

(Figure 6D, 6E) and mucosal epithelial separation (Figure 6F) of

Lamc2 KO mice. Images of the paws, skin, and oral mucosa of

Lamc2 WT mice are shown for comparison (Figure 6G–I). These

data show that the expression of the human laminin c2 transgene

by rescued Lamc2 KO mice prevents blistering of the skin and oral

mucosa.

Most Tissues of Adult Rescued Lamc2 KO Mice Lack Lm-
332 but Still Appear Grossly Normal
Lm-332 is a prominent laminin isoform in adult tissues [7,13–

19]. However, the K14 promoter drove the expression of the

human laminin c2 transgene only in the skin, tongue, and roof

palate of the rescued Lamc2 KO mice (Figure 5). Despite a lack of

Lm-332 expression in most tissues of rescued Lamc2 KO mice,

histological examination of the brain, heart, intestine, kidney, liver,

lung, spleen, and stomach showed that each of these tissues of

rescued Lamc2 KO mice (Figure 7A’–H’) appeared grossly similar

to those of Lamc2WTmice (Figure 7A–H). These data suggest that

Lm-332 is not essential for the development of those tissues.

Deposition of a ‘‘Humanized’’ Lm-332 did not Affect
Epidermal Differentiation
Human laminin c2 was detected in the epidermal BMZ of

rescued Lamc2 KOmice at E18 (Figure 5). By E18.5, the epidermis

develops a fully differentiated stratified epithelium. To determine

whether deposition of a ‘‘humanized’’ Lm-332 in the epidermal

BMZ of rescued Lamc2 KO mice alters epidermal differentiation,

newborn skin sections were stained for loricrin (Figure 8A, D, G),

K10 (Figure 8B, E, H), and K14 (Figure 8C, F, I). No significant

differences were detected in either staining intensity or distribution

of these markers in the epidermal layer of the rescued Lamc2 KO

mice (Figure 8D–F) as compared to Lamc2 WT mice (Figure 8G–

I). The epidermis of both of these mice displayed loricrin in the

granular layer, K10 in the spinous layer, and K14 in the basal

Figure 10. Expression of human laminin c2 facilitates assembly
of hemidesmosomes in rescued Lamc2 KO mice. Transmission
electron microscopic images of newborn skin of Lamc2 KO (A), rescued
Lamc2 KO (B), and Lamc2 WT (C) mice are shown. Hemidesmosomes of
newborn Lamc2 KO skin are poorly formed, devoid of lamina densa and
anchoring filaments, and containing few anchoring fibrils (A). In
contrast, rescued Lamc2 KO (B) and Lamc2 WT (C) mice had well-
organized hemidesmosomes with electron dense plaques, anchoring
filaments, anchoring fibrils, and darkened areas of lamina densa
abutting the hemidesmosomes (arrows). All images are of the same
magnification. Bar represents 500 nm.
doi:10.1371/journal.pone.0045546.g010
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layer. These data suggest that substitution of mouse laminin c2
with human laminin c2 chain does not alter epidermal differen-

tiation. Surprisingly, the complete absence of Lm-332 in the

epidermal BMZ also did not impact epidermal differentiation. The

skin of Lamc2 KO mice (Figure 8A–C) displayed a pattern of

expression and localization of loricrin, K10, and K14 similar to

that observed in Lamc2 WT mice (Figure 8G–I). These data

suggest that Lm-332 is not required for epidermal differentiation.

Expression of Human Laminin c2 by Keratinocytes
Restores Hemidesmosomes of Lamc2 KO Mice
Hemidesmosomes are cell-extracellular matrix adhesion struc-

tures on the basal surface of keratinocytes that maintain dermal-

epidermal adhesion and skin tissue integrity. Although Lm-332 is

not a component of hemidesmosomes, it facilitates their assembly.

To determine whether the expression of a ‘‘humanized’’ Lm-332

affects hemidesmosomal assembly, skin sections of newborn Lamc2

KO, rescued Lamc2 KO, and Lamc2 WT mice were immunos-

tained for hemidesmosomal components, plectin (Figure 9A, E, I),

type XVII collagen/BP180 (Figure 9B, F, J), and integrin chains

a6 (Figure 9C, G, K) and ß4 (Figure 9D, H, L). As seen previously

[21], Lamc2 KO mice exhibited reduced, discontinuous staining of

all hemidesmosomal components on the blister roof of Lamc2 KO

mice (Figure 9A–D). In contrast, the staining patterns of plectin,

collagen XVII, and integrin chains a6 and ß4 in the skin of

rescued Lamc2 KO mice (Figure 9E–H) were similar to that of

Lamc2 WT mice (Figure 9I–L). These data suggest that the

expression of the human laminin c2 transgene by rescued Lamc2

KO mice facilitated the organization of hemidesmosomal

components.

To examine the hemidesmosomes ultrastructurally, we exam-

ined the skin of newborn Lamc2 KO, rescued Lamc2 KO, and

Lamc2 WT mice by transmission electron microscopy. Separation

of the epidermal layer of Lamc2 KO mice was often seen. In areas

where the epidermis was still attached, the hemidesmosomes were

sparse and rudimentary, devoid of lamina densa and anchoring

filaments, and containing few anchoring fibrils (Figure 10A). This

is consistent with the findings of Meng et. al. [21]. In contrast,

rescued Lamc2 KO mice had organized hemidesmosomes with

electron dense plaques, anchoring filaments, anchoring fibrils, and

darkened areas of lamina densa abutting the hemidesmosomes

(Figure 10B). The hemidesmosomes appeared similar in structure

and density to those of Lamc2 WT mice (Figure 10C). These data

show that the expression of the human laminin c2 transgene by

rescued Lamc2 KO mice restored hemidesmosomes which were

absent in Lamc2 KO mice.

Discussion

Lm-332 has a wide tissue distribution and is expressed

throughout development and in the adult [7,13–19], suggesting

that it plays an important role in the development of many tissues.

People with JEB due to Lm-332 deficiency not only exhibit

blistering of the skin, mouth, and digestive tract, but often display

other symptoms such as hair loss, abnormalities of the fingernails,

toenails, and tooth enamel, joint deformities, and difficulty

breathing. This suggests that Lm-332 is also required for the

development and/or maintenance of tissues other than the skin.

Mice that lack the laminin c2 chain, which is specific to the Lm-

332 isoform, die within a few days after birth [21], limiting their

experimental utility to study the role of Lm-332 in the de-

velopment or maintenance/repair of various tissues. To bypass the

lethality of the Lamc2 KO mice, which was presumed to be due to

blistering of the skin and oral mucosa, we expressed a human

laminin c2 transgene under the control of a K14 promoter

previously shown to drive the expression of reporter genes/

transgenes in keratinocytes and other stratified epithelia [23–25].

Even though this K14 promoter has driven the expression of

transgenes in other tissues, such as esophagus and thymus [23–25],

we detected human laminin c2 only in the skin, tongue, and roof

palate. As anticipated, expression of human laminin c2 in the skin

and mouth was sufficient to rescue the early postnatal lethality of

Lamc2 KO mice. The human laminin c2 chain colocalized with

the mouse a3 and ß3 chains in the basement membrane, restored

hemidesmosomes, and prevented blistering of the skin and oral

mucosa. These data clearly point to sites of K14 expression (i.e.,

skin and oral mucosa) as sites highly relevant to the early lethality

of the Lamc2 KO mice. The exact mechanism of the early

postnatal death is still obscure.

Many other tissues (brain, esophagus, heart, intestine, kidney,

liver, lung, spleen, stomach, and thymus) that normally express

Lm-332 remained Lm-332 deficient in the rescued Lamc2 KO

mice. Despite lacking Lm-332, these tissues appeared grossly

normal (Figure 7) suggesting that Lm-332 is not essential for the

development of these tissues. However, it is possible that a lack of

Lm-332 may have caused slight abnormalities in tissue de-

velopment. For example, thorough examination of the lungs of

newborn Lamc2 KO mice revealed that the Lamc2 KO tracheal

hemidesmosomes are few and less organized and saccule size is

slightly increased compared to Lamc2 WT littermate controls [29].

Whether Lm-332 is required for later lung development could not

be examined as the Lamc2 KO mice die before alveolarization

occurs. Furthermore, recently a hypomorphic laminin c2 mouse,

due to a spontaneous insertion of murine leukemia virus long

terminal repeat, has been discovered that progressively develops

JEB-like signs of disease including skin blisters, loss of bone

mineralization, abnormal teeth, and decreased lung function

(lower pressure-volume curves) [30]. A more in-depth examination

of each tissue of the rescued Lamc2 KO mice is needed. In

addition, since Lm-332 modulates cellular functions involved in

wound healing, such as cell attachment, migration, proliferation,

and differentiation, it is possible that repair following injury of

these tissues may be affected without Lm-332.

JEB is an inherited skin blistering disorder most often caused by

nonsense mutations in the laminin a3, ß3, or c2 chains, resulting

in a complete loss of Lm-332 expression [10–12]. Recurrent or

persistent erosions of the epidermal surface render afflicted

individuals susceptible to serious infections, often resulting in

premature death. Wound healing occurs in patients with JEB,

albeit delayed and often with persistent granulation tissue.

Studying animal models of JEB due to Lm-332 deficiency may

provide insights into the pathogenic mechanisms by which JEB

wounds heal. However, mice that completely lack Lm-332 die

within a few days after birth [20–22], limiting their experimental

utility. Other mouse models of JEB include the Col17a1 KO that

had 20% survival into adulthood [31,32] and a spontaneous

laminin c2 hypomorphic mouse [30]. However, the ideal animal

model to study JEB blister/wound repair would recapitulate the

BMZ with an absence of Lm-332, which occurs in the majority of

JEB patients. The mice developed in this study can provide

a model of wound repair without Lm-332. By driving the

expression of a human laminin c2 transgene in a keratinocyte-

specific, dox-controllable manner, we can prevent the skin

blistering and early postnatal lethality of Lamc2 KO mice.

However, after dox withdrawal and subsequent loss of Lm-332

expression in the adult rescued Lamc2 KO mice, these mice can be

useful for studies of Lm-332 in skin, including wound healing and

possibly blister formation.

Rescue of Laminin c2 KO Mice
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In summary, we have generated dox-controllable human

laminin c2 transgenic mice, which were used in these studies to

rescue Lamc2 KO mice by driving expression via the K14

promoter in the skin and oral mucosa. The ‘‘humanized’’ Lm-332

was deposited in the basement membrane, restored hemidesmo-

somes, prevented blistering of the skin and oral mucosa, and

promoted survival of Lamc2 KO mice into adulthood. Because the

expression was limited to the skin and mouth, the rescued Lamc2

KOmice will be valuable for studies of Lm-332 deficiency in many

organs. In addition, the dox-controllable element of this system

will facilitate studies of Lm-332 in skin, including wound healing.
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