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ABSTRACT

Water is an essential nutrient that has primarily been considered in terms of its physiological necessity. But reliable access to water in sufficient
quantities and quality is also critical for many nutrition-related behaviors and activities, including growing and cooking diverse foods. Given growing
challenges to water availability and safety, including climate change, pollution, and infrastructure degradation, a broader conceptualization of water
and its diverse uses is needed to sustainably achieve global nutrition targets. Therefore, we review empirical and qualitative evidence describing
the linkages between water security (the reliable availability, accessibility, and quality of water for all household uses) and nutrition. Primary linkages
include water security for drinking, food production and preparation, infant and young child feeding, and limiting exposure to pathogens and
environmental toxins. We then identify knowledge gaps within each linkage and propose a research agenda for studying water security and
nutrition going forward, including the concurrent quantification of both food and water availability, accessibility, use, and stability. By making
explicit the connections between water security and nutritional well-being, we aim to promote greater collaboration between the nutrition and
water, sanitation, and hygiene sectors. Interdisciplinary policies and programs that holistically address the water–nutrition nexus, versus those that
focus on water and nutrition independently, are likely to significantly advance our ability to ensure equitable access to healthy foods and safe water
for all. Adv Nutr 2021;12:2525–2539.

Statement of Significance: We present the most comprehensive review of the intersections between water security and nutrition to date.
We also identify research opportunities that can mutually advance objectives in both sectors.
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Introduction
Water is an essential nutrient that is fundamental for
maintaining homeostasis. But the value of water extends
beyond its physiological necessity. Reliable access to water in
sufficient quantities and quality for a healthy life, or “water
security” (1), is critical for agricultural food production and
preparation, personal hygiene, and psychological well-being
(2, 3). In other words, water security creates an enabling
environment for good nutrition. Yet, few studies to date have
considered the role of water security in nutrition.

Water security is a multidimensional concept that in-
cludes water availability (whether water is in the physical
environment), accessibility (whether water can be acquired
through socially acceptable means), use (whether there is
enough safe and acceptable water for all needs), and stability
across time (Figure 1) (4). Water insecurity is a state
when 1 or more of these dimensions are compromised and
can manifest due to problems with water scarcity, excess
(e.g., flooding), or contamination. Experiential scales at the
household and individual level have gained prominence in
global public health as a useful way to quantify complex
lived experiences and explore how resource insecurities
shape behavior and well-being. For instance, the develop-
ment and broad implementation of experience-based food-
insecurity scales have exposed persistent nutrition inequities
that are masked by less granular data (e.g., calories per
capita estimated from food balance sheets) (5). The recent
development of validated metrics for comparably measuring
water security across diverse contexts (6, 7) has similar
potential to greatly expand our knowledge by allowing
for empirical assessment of the many plausible linkages
between water security, food security, diet, and health
(3, 8–10).

More than 2 decades ago, experts at the World Water
Congress warned that issues with water availability, namely
water scarcity and flooding, would become major constraints
to food production and exacerbate food insecurity (11).
As predicted, global hunger is currently on the rise and
is most acute in regions where historical rainfall patterns
are shifting due to climate change, resource management is
poor, and access to irrigation technologies is not equitable
across users (12). Similarly, early application of validated
experiential water-insecurity scales has demonstrated that
food and water insecurity often co-occur (13, 14), and that
water insecurity may precipitate future food insecurity (15).
These findings suggest that greater consideration of water
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insecurity is necessary for improving nutrition and health
globally (8, 16).

We therefore seek to synthesize available evidence on
the physiological importance of water and the myriad
intersections between water security and nutrition. We first
consider the role of water as a beverage and then examine
its function in the food supply chain, from production to
consumption. For each linkage, we present major findings
to date and guide readers toward foundational reports or
reviews that cover particular topics in greater depth. We
primarily draw on articles published within the prior decade,
but also consider older articles if the topic has been underre-
searched. Given that water insecurity is a global phenomenon
that occurs in both high- and low-income countries (6,
17), we did not impose a geographical restriction; relevant
contextual details about the study populations and local
water typologies are provided to inform generalizability
to other settings. We conclude by identifying policy and
programmatic approaches for improving water security and
nutrition synergistically.

Current Status of Knowledge
Water as an essential nutrient
As the largest constituent of the human body, water’s
critical role in health and well-being cannot be overstated:
without water, life cannot occur (18). It serves as a universal
solvent; aids in nutrient digestion, absorption, transport, and
metabolism; stores and dissipates heat for thermoregulation;
maintains osmotic gradients and action potentials; and
provides protection as a physical shock absorber (19).
Paradoxically, our body’s most important nutrient may be
the most overlooked and underresearched within the field of
nutrition (20–22).

Total body water accounts for >50% of body weight but
varies based on sex and body composition (e.g., adipose
tissue stores less water than lean body mass) (23). Water
is primarily lost through urine, respiration, sweat, and
feces. Fluid balance (i.e., euhydration) is maintained by
matching output with inputs, including direct fluid intake
and consumption of foods that contain water (24). Numerous
feedback mechanisms exist to ensure euhydration by modi-
fying excretion (e.g., antidiuretic hormone and aldosterone
increase reabsorption of water in nephrons) and regulating
thirst. Net water loss results in dehydration and repeated
episodes increase the risk of numerous morbidities, from
urolithiasis to chronic kidney disease (24, 25).

A 1–2% loss of body water (i.e., mild dehydration)
can cause fatigue and impair cognitive function (24, 26).
Dehydration reduces brain volume and has inconsistently
been found to be associated with worse mood and cognition,
although normal attention, memory, and other executive
functions can be restored following fluid restoration (27, 28).
Elderly individuals have a blunted thirst signal and are thus
at higher risk of dehydration (29). Young children and elderly
adults may also be more severely impacted by the effects of
dehydration on cognition than other age groups (27).
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FIGURE 1 Primary domains of water security include availability (whether water is available in the environment), accessibility (whether
water is affordable and able to be procured in a socially acceptable manner), use (whether there is enough water of sufficient quality for
all household needs), and stability across time; water quality is inherent in each domain. Adapted from references 9 and 30.

Water for drinking
Plain drinking water and other beverages.
Water is the optimal beverage for maintaining euhydration
(31). Yet, few studies or national reporting agencies system-
atically measure hydration status or collect drinking water
intake data (32); fewer still consider the ways by which water
embedded in foods and other beverages (i.e., “virtual water”)
contribute to hydration status (26). Limitations with current
methodologies for assessing water intake and hydration
status (e.g., recall bias, nonspecific biomarkers) have made
it difficult to establish adequate intake values (33–36). These
knowledge gaps are well articulated in the 2020 Dietary
Guidelines Advisory Committee Scientific Report, which
notes that “the degree to which hydration is a problem
in segments of the population is an open question” and
“better information about water intake is needed” (32). More
research is required to understand how water requirements
vary by climate, body composition, life stage, disease state,
and diets. Such information can then be used to track
the prevalence of suboptimal hydration across time and
populations (32).

Non-water beverages have varied impacts on hydration
status. Alcoholic and caffeinated drinks induce diuresis,
although caffeine intake rarely meaningfully impacts overall
water balance (37, 38). In contrast, juices and some sugar-
sweetened beverages (SSBs) can help to restore total body
water (39). But caloric beverages also contribute to excess
calorie intake and thereby increase the risk of overweight and
obesity, as well as their associated sequelae (39). Replacing
caloric beverages with plain water reduces energy intake,
increases fat oxidation, and can be a useful strategy for weight
maintenance (31).

Individuals may preferentially consume non-water bever-
ages for their taste, cost, convenience, perceived nutritional
value, or sociocultural importance, but also because of
distrust about the provenance and quality of their drinking
water (40) or problems related to water access (41). This is
significant given that water mistrust is common globally and
occurs even in settings with piped water systems (42). For
instance, qualitative research in rural New Mexico found that

students avoided drinking tap water at school because it was
perceived to be of poor quality and instead opted for more
readily accessible SSBs (43). Such barriers to reliably access-
ing clean drinking water, including infrastructural disparities
and environmental racism (17), may partly explain varying
trends in SSB and plain water intake between racial groups
and socioeconomic strata (44–46). Given the increase in
noncommunicable disease prevalence, nutrition experts have
identified the need to understand how experiential water
insecurity influences beverage intake as a priority research
area, noting that water-insecurity screening questionnaires
could be used by health professionals to develop more
tailored interventions (47).

Nutrients dissolved in drinking water.
The concentrations of essential minerals in most drinking
water sources are typically too low to meaningfully contribute
to overall intake, but there are exceptions (48). Millions of
individuals live in watersheds that have “hard” groundwater,
meaning that the water has high concentrations of dissolved
minerals like calcium and magnesium. These metal cations
are largely removed through industrial water treatment
and purification processes or by at-home water-softening
systems. As a result, the contribution of drinking water
to recommended daily intakes of magnesium and calcium
varies considerably (49, 50), but, on average, supplies 5–
20% of daily intake globally (51). Epidemiologic evidence
suggests that higher levels of magnesium in drinking water
are associated with lower risk of ischemic heart disease
and stroke mortality (52–54), and that higher calcium
concentrations are associated with both greater bone mineral
density and lower risk of hip fracture (54, 55).

Sodium is another essential nutrient that is typically found
in low concentrations in drinking water, although this may
change given greater saltwater intrusion in many settings
from increasing groundwater withdrawal and sea-level rise
(56). Drinking water high in salt content may contribute to
excess sodium intake and concomitant hypertension (57–
60), particularly among individuals with a salt-sensitive
phenotype (61); these risks may be attenuated if levels of
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calcium and magnesium in the water are also high (62).
Notably, most studies examining the relation between water
salinity and health have been conducted among coastal
communities in Bangladesh, even though drinking water
salinity is increasing elsewhere, such as northern Kenya
(63).

Fluoride is naturally present in some water sources and
added artificially in a small subset of communities globally to
strengthen enamel, protect against dental caries, and improve
bone health (64). Excess fluoride intake can, however, cause
fluorosis and is endemic in many regions with high geologic
sources of fluoride (65). There is ongoing scientific and
political debate as to whether water fluoridation is the safest
and most cost-efficient method for increasing exposure to
fluoride in beneficial quantities (66).

Medication and micronutrient supplementation adher-
ence.
Fluids are necessary for taking some medications and
micronutrient supplements. Only a small amount of water is
needed to swallow pills (67), but some medicines require up
to an additional 2 L of water to metabolize (68). Moreover,
water is often needed to prepare the foods to which point-of-
use micronutrient powders are applied (69).

Few studies have examined water insecurity in relation
to medication and micronutrient supplement adherence. A
study among postpartum women in western Kenya found
that 26.6% of participants or members of their households
had been unable to take medicines due to problems with
water, although the types of problems and medicines were
not specified (70). Future studies should investigate if water
insecurity is a barrier to medication adherence in other
settings and identify the contextual factors that contribute to
this relation.

Disordered eating.
Eating disorders such as anorexia and bulimia nervosa have
the highest death rates of any psychiatric disorder (71). They
are most commonly documented in high-income countries,
but the prevalence of eating disorders is increasing in low-
and middle-income countries (72). Eating disorders are
primarily defined by dramatic changes in food intake or
eating patterns, but disordered fluid intake, including water
restriction and excess water intake, is also a common sign
(73). Some individuals water load—potentially to the point
of water intoxication (74, 75)—to blunt hunger or aid in
purging behavior (73, 76), while others misuse diuretics
to reduce weight (77). Both behaviors, as well as excessive
exercise and purging through self-induced vomiting, can
cause severe shifts in fluid volume and increase the risk of
impaired osmoregulation, hypotension, cardiac arrhythmia,
and death (77, 78). Increasing research on and awareness
about the symptoms and characteristic behaviors associated
with eating disorders, including altered fluid intake, may lead
to earlier diagnosis and treatment.

Exercise and physical activity.
Traveling to and fetching water from off-premises water
sources necessitates considerable energy expenditure that
may increase an individual’s risk of undernutrition (79).
Fetching water may also indirectly impact nutrition by taking
away time from income-generating activities (80, 81) or
leading to injuries that prevent food purchase, production,
or preparation (82). One study among individuals living in
a rural village in Laos estimated that, on average, 12.8% of
daily calories consumed were spent on water fetching during
the dry season (83). This is substantial given that millions of
households globally rely on water sources that require >30
min for roundtrip collection (80).

To estimate the degree to which water fetching contributes
to energy imbalance, frequency and duration of water
collection could be included in physical activity or time-use
questionnaires. Geospatial technologies and accelerometers
could also be used to better understand the relation between
water access, collection, and energy expenditure (84, 85).
Expenditure estimates should be sex and age disaggregated,
given that the physical (as well as mental and social) toll of
water collection is disproportionately borne by women and
girls (80, 86).

Water needs for athletes vary depending on the type and
duration of the activity, environmental factors, and indi-
vidual characteristics. An emergent subfield within sports
nutrition is examining when fluids should be consumed
to maximize performance (87) and the importance of
virtual water for athlete hydration (88). In some settings,
water insecurity may be a barrier to exercise. For instance,
individuals living in the United Kingdom reported that they
altered their fitness routines following an unexpected water
supply loss because they were too stressed about finding
water for other uses or feared they would not be able
to maintain hygiene norms (89). More research is needed
to determine whether this is a localized phenomenon or
common across populations.

Water for food production
Agricultural productivity.
Water is fundamental for food production and the success
of crops, livestock, and aquaculture. In fact, at least 70% of
freshwater withdrawals worldwide are for agriculture (90,
91). But intensifying water scarcity and extreme weather
events due to climate change, as well as increasing water
demands from other sectors, present substantial barriers to
achieving global food security (90, 91). Understanding the
bidirectional links between water security and agricultural
productivity is thus critical for sustainably increasing food
production to support growing populations and changing
dietary patterns (8, 92).

Broadly, there are 2 distinct water typologies relevant for
food production: “green water,” which refers to moisture
from rainwater, and “blue water,” which is water from surface
or groundwater sources (93). Rainfed agriculture (which
relies exclusively on green water) is typically less productive
than irrigated operations because it is more susceptible to
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climatic shocks and the vagaries of local weather conditions.
This is evidenced by the widening yield gap (a metric that
compares the actual yield of a particular cultivar compared
with its potential yield under optimal conditions) between
many rainfed and irrigated crops (94). Yet, most farmers
worldwide do not have access to the necessary financial
or infrastructural resources to benefit from irrigation (95).
Current strategies to increase agricultural yields, and ulti-
mately reduce rates of undernutrition, involve expansion of
irrigation (96) and modifying crops to be more drought
resistant and water efficient (“more crops per drop”) (97).

Dietary patterns also influence food production in ways
that impact global water security. A systematic review
estimated that shifting from a typical “Western” diet to
less resource-intensive dietary patterns—namely, replacing
animal-based with low-impact, plant-based foods—could
reduce overall water use by 50% (98). Reducing food
spoilage and loss is also an important strategy for reconciling
increasing food and water demands as nearly one-fifth of the
water used for agriculture is embedded within food that is
wasted throughout the supply chain (99).

Irrigation technologies.
Desalination and wastewater recycling are 2 technological
solutions with potential for improving agricultural water
security (100–102). Desalination is a process by which
minerals dissolved in water are removed to make otherwise
phytotoxic waters (i.e., water with mineral concentrations
that are harmful to plants) safe for agricultural use and
human consumption (102–104). Nutrients necessary for
plant survival must then be added to the desalinated water,
making the entire process expensive in terms of economic
and environmental costs (105).

Wastewater reclamation is a process by which sewage is
recycled for productive uses. Treated wastewater is often
higher in many nutrients necessary for plant growth (e.g.,
nitrogen, phosphorus, and magnesium) than groundwater
sources, thereby reducing fertilization costs (106–108). But
wastewater can also have high salinity, which can negatively
impact soil structure and crop productivity (104, 108).
Untreated or partially treated wastewater applied to crops can
also be a vector for water- and foodborne pathogens (109,
110). Combining treated wastewater and desalinated water
is an emerging method that mitigates many costs of both
technologies while preserving their benefits (101, 102).

Access to irrigation technologies can both directly and
indirectly improve nutritional well-being (111). Greater agri-
cultural yields can increase a household’s income, allowing
individuals to purchase more (diverse) food (112). Further,
irrigation technologies that produce clean water (e.g., desali-
nation) can function as multiple-use water systems, meaning
individuals can use the expanded water supply for other
household needs, like water, sanitation, and hygiene (WaSH)
activities that ensure the safe handling and preparation of
foods (2). Another potential mechanism of action is through
expanded women’s empowerment.

Small-scale irrigation can be a catalyst for women’s
empowerment by increasing asset ownership and income,
as well as decreasing the time burdens associated with
water fetching (8). Given that women in many settings are
primarily responsible for food preparation and caregiving,
it is hypothesized that women with greater autonomy and
decision-making capabilities will dedicate more resources to
improving nutritional adequacy, particularly among children
(113, 114). The relation between women’s empowerment
and child nutrition remains unclear, however, due to the
diversity of methods used to measure women’s empowerment
(115). Future nutrition-sensitive agriculture interventions
could help fill this knowledge gap by measuring water
insecurity, nutrition outcomes, and women’s empowerment
using validated instruments at multiple stages of project
implementation (8, 111, 116, 117).

Water for food preparation and infant and young child
feeding
Food preparation.
Water is needed for food hygiene, particularly cleaning fruits
and vegetables. Washing foods with clean water can remove
harmful pesticides or residual soil matter that may contain
parasitic helminths that cause intestinal bleeding and reduce
the host’s ability to absorb nutrients (118). Water is also
needed to clean utensils for serving and consuming foods
(119). Use of pathogen-contaminated water for any of these
activities can increase the risk of diarrhea (120, 121). Future
research should consider the ways by which water insecurity
may impact food handling safety, meal preparation, and
feeding (122–124).

Starchy staples often require water to improve palata-
bility and digestibility as well as to remove toxins. For
instance, cassava is a drought-resistant, carbohydrate-rich
crop that is common in many diets throughout sub-Saharan
Africa and must be soaked or boiled in water to remove
neurotoxic cyanogenic glucosides (125). During periods of
water scarcity, many food-insecure households consume
underprocessed cassava, as evidenced by variations in the
prevalence of konzo (a neurologic disorder resulting from
cyanide exposure) that track seasonal fluctuations in rainfall
and water availability (126).

Households may cope with water scarcity and
contamination by consuming less food or changing diets,
sometimes replacing preferred foods with less nutrient-
dense or more highly processed substitutes that require little
or no water to prepare (127). In Kenya, 2 studies found
that households had sufficient food but were unable to use
it because they lacked water (e.g., for preparing porridge)
(81, 128). Similarly, women in South Africa reported that
unexpected water supply interruptions limited their ability to
cook and prepare meals (129). In other settings, individuals
may cope with poor water quality by limiting fluid intake
and increasing consumption of water-rich foods to maintain
euhydration (130).

Like many food-insecure households, households expe-
riencing water issues may consume more meals outside the
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home (131). Such foods tend to be more calorie dense and
higher in saturated fats than those prepared at home (132).
One study in the Galápagos found that concurrent exposure
to poor water access and food insecurity was associated with
greater odds of the dual burden of malnutrition in house-
holds (133), suggesting that problems with water may be
a risk factor for overweight and noncommunicable disease.
More systematic investigation is required to understand how
other components of water insecurity influence a household’s
ability to prepare foods and how this, in turn, affects meal
frequency, size, and composition.

Human-milk quality and quantity.
Water is the primary component of human milk (134), such
that lactating individuals require greater water to compensate
for fluid loss through milk synthesis (135) and are at higher
risk of dehydration, particularly in hot-humid climates (136).
Previous studies have found no association between fluid
restriction and human-milk supply, although the majority
were conducted among small study samples and measured
milk production indirectly (e.g., weighing infants pre- and
postfeeding) (137). The paucity of data is evidenced by
a Cochrane review that deemed the only modern trial
examining fluid intake and human-milk production to be of
low quality and at high risk of bias (138). It is possible that
mammals have evolved to prioritize milk production during
times of water scarcity to ensure offspring survival (137)—
similar to how maternal macronutrients are preferentially
shunted to the developing fetus during pregnancy (139)—
although more research is needed to understand the mech-
anisms that control milk synthesis during water restriction.

Water insecurity may also limit human-milk production
through psychosocial mechanisms. Greater household water
insecurity has been found to be associated with greater
perceived stress (6); increased sympathetic nervous system
activity can, in turn, impair lactogenesis and lead to
decreased milk output (140). Perceived milk insufficiency
or inadequacy may also lead caregivers to introduce non–
human-milk foods too early (141). More robust research is
needed to understand how dehydration, and water insecurity
more broadly, impacts milk production, especially given
that many lactating individuals do not meet adequate fluid
intake levels (142). Deuterium oxide (i.e., doubly labeled
water) dose-to-the-caregiver techniques have provided novel
insights into how food insecurity impacts breastfeeding (143)
and could be similarly informative for understanding how
water insecurity shapes human-milk production and feeding.

Environmental exposures, including polluted water, can
adversely affect human-milk quality. Lactating caregivers
exposed to heavy metals through drinking water have higher
circulating blood concentrations of these toxic compounds,
which can be incorporated into human milk and consumed
by infants (144, 145). This is significant because rapid
brain development and myelination occur during infancy,
meaning that repeated heavy metal exposure during this
sensitive period, even at low levels, can result in lifelong
neurocognitive deficits (146, 147). Importantly, exclusive

human-milk feeding remains the preferred feeding method,
even in settings with high environmental burdens. Infant
formula and other foods prepared with contaminated water
can expose infants to waterborne pathogens or harmful
chemicals (148–150) that cannot pass from caregiver to
infant via human milk. Indeed, the inappropriate marketing
of infant formula to caregivers without access to clean
water in low- and middle-income countries during the late
20th century caused tens of thousands excess infant deaths
(151). Initiatives to promote human-milk feeding should
therefore include strategies to address persistent caregiver
misconceptions that water supplementation during the first 6
mo of life is needed to prevent infant dehydration (152–154).

The physical burdens and opportunity costs associated
with water insecurity present additional barriers to exclusive
human-milk feeding. A prior cross-cultural study spanning
16 low- and middle-income countries found that greater
time spent fetching water was perceived to limit caretakers’
abilities to exclusively offer human milk or feed at the
breast (155). In a separate study, Ghanaian mothers also
reported that the time and physical burdens associated with
hauling water limited their ability to breastfeed (156). Future
studies can build on these qualitative findings by empirically
assessing the relation between household water insecurity
and human-milk feeding initiation, duration, and exclusivity.

Complementary feeding.
To date, most studies during the complementary feeding
period have only considered water as a potential vector for
pathogenic organisms (157, 158). But, as described above,
problems with water can also limit the diversity and quan-
tities of foods a household is able to purchase, produce, or
prepare (e.g., insufficient water to make foods soft enough for
young infants to swallow). One study drawing on nationally
representative Demographic and Health Survey data from In-
dia found that optimal household water access was associated
with a higher odds of an infant meeting minimum dietary
diversity, compared with intermediate or basic access (159).
Seasonal variations in rainfall and associated impacts on food
availability have also been described as influencing the age
at which complementary foods are introduced (155, 160).
Beyond water quality and availability, qualitative evidence
suggests that problems with water access and use can lead
caregivers to substitute preferred dishes with less nutrient-
dense foods (155). The time and opportunity costs associated
with water insecurity may also limit the ability of caregivers
to notice feeding cues or apply optimal responsive-feeding
practices (161). Ultimately, more systematic investigation is
needed to understand how common these experiences are
and assess their magnitudes of effect.

Water as an environmental exposure
Pathogens, heavy metals, and emerging water pollutants.
There has been substantial progress in expanding access to
safely managed drinking water sources in the prior 3 decades,
but unsafe water still significantly contributes to the global
burden of disease, even in high-income countries (162). For
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instance, it is estimated that 12–19 million cases of gastroin-
testinal illness in the United States are attributable to con-
taminated drinking water each year (163). The relative health
risks of each water contaminant are based on their mech-
anism of action, concentration, and duration of exposure.
Whereas waterborne pathogens can cause illness after brief
exposures, chemical contaminants are typically most harmful
when consumed for prolonged periods of time (164).

There are hundreds of known waterborne pathogens,
which include viruses, bacteria, parasitic protozoa and
helminths, and fungi. Regulatory agencies have the capacity
to systematically monitor only a small subset (164, 165),
such that the true burden of waterborne diseases is likely un-
derestimated due to infrequent or nonspecific testing and an
inability to determine etiology in many cases of illness (166).
Available data, however, suggest that viruses are the most
common cause of gastrointestinal distress globally (167).
Bacterial pathogens such as Vibrio cholerae and Salmonella
enterica are also responsible for numerous outbreaks of
enteric illness, particularly in settings with limited access to
improved water sources (165). Inhalation of mist containing
bacteria can also cause respiratory disease. Outbreaks of
Legionnaires’ disease, for instance, are most often attributed
to poor water treatment and infrastructure maintenance
(e.g., infrequent cleaning of heating, ventilation, and air
conditioning systems) in communities with centralized
piped water networks (168, 169). Finally, antibiotic-resistant
bacteria in drinking water are also becoming increasingly
common and pose significant health risks when resistance is
transferred to human pathogens (170).

Water can also be problematic due to heavy metal or
chemical contamination. Heavy metals that pose the greatest
threats to human health include cadmium, lead, mercury,
and arsenic; their impacts on nutrient metabolism have been
thoroughly described elsewhere (171). Briefly, heavy metals
can be detrimental by acting as competitive inhibitors and
interfere with, for example, iron metabolism, erythropoiesis,
and bone formation (172). Heavy metals can also alter the
composition of the gut microbiota and induce dysbiosis
(173). Interestingly, an individual’s nutritional intake can
moderate the impacts of heavy metal exposure. For instance,
a double-blind trial among individuals living in an area with
naturally occurring arsenic in the groundwater found that
folic acid supplementation increased arsenic methylation and
reduced its harmful sequelae (174).

Pollutants of emerging concern are those that are not
commonly monitored or regulated but have known or
suspected human health risks (175). Hundreds of these
emerging pollutants have been identified and include phar-
maceuticals, personal care products, industrial and house-
hold byproducts, metals, microplastics, industrial additives
and solvents, and artificial sweeteners (175, 176). The types,
prevalence, and concentrations of emerging pollutants vary
substantially across regions, water sources, and season (177,
178). Our understanding about their nutritional impacts is
in its infancy, but the relation is likely bidirectional: some
emerging contaminants may affect nutrient absorption and

FIGURE 2 Water security is shaped by factors at multiple
socio-ecological levels, from environmental conditions (dark blue)
to intrahousehold dynamics (light blue). Problems at any level can
have negative impacts on downstream water uses and thereby
influence nutrition, health, and well-being.

nutrition may modulate the toxicity of these pollutants (179).
The development of low-cost, easy-to-use, field-deployable
water diagnostics is needed to advance our ability to detect,
research, and develop solutions for water contamination
(164, 180).

Strategies to improve water quality should account for the
multiple routes and types of exposure, from the watershed
(e.g., agricultural runoff) to household level. Increasing
access to piped water sources can improve household water
security, but potable water collected from an improved water
source can be rendered unsafe if gathered with or stored in
a contaminated container (181, 182). For this reason, inter-
ventions are often most effective at reducing diarrhea risk if
they improve source quality and provide a safe water storage
container (183). Household coping strategies may also mod-
ify risk from contaminated water and should be considered
when designing interventions. For instance, interhousehold
water sharing is a common practice among water-insecure
families and could expose individuals to greater disease risk
if the borrowed water is contaminated (184, 185).

Diarrhea and environmental enteropathy.
The role of water in child growth and mortality has most
frequently been considered in terms of its impact on diarrhea,
which is typically caused by 1 or more of the waterborne
pathogens described above. It is estimated that nearly three-
quarters of the almost 450,000 diarrhea deaths among
children under 5 in 2016 can be attributed to unsafe water and
sanitation (186), as well as 16% of stunting among children
under 5 in low- and middle-income countries (187).

Environmental enteric dysfunction (EED), a complex
condition characterized by chronic intestinal inflammation,
flattened villi, and greater gut permeability, may be an
important mediator between water and child development
(188). Currently, few noninvasive tests are available to
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diagnose EED and none are sufficiently specific to distinguish
EED from other intestinal infections, such that the pathogen-
esis of EED and its mechanisms of action have yet to be thor-
oughly described (189, 190). Most likely, EED is the result
of repeated exposure to 1 or more pathogens that ultimately
alter the structure and function of the gut (190). Numerous
observational studies have found that indicators of EED
are associated with suboptimal nutrient absorption, stunted
linear growth, restricted early childhood development, and
lower oral vaccine effectiveness (188, 191–194). Based on
these findings, 3 large-scale randomized trials aimed to
reduce the incidence of childhood diarrhea and stunting
by limiting environmental exposure to pathogens through
improvements in both sanitation and hygiene practices and
drinking water quality (195–197). These interventions had
mixed impacts on diarrhea and no effect on child linear
growth (198). A subset of participants in the Zimbabwe trial
were enrolled into a substudy to assess impacts on EED;
the WaSH intervention did not have a major impact on any
of the EED biomarkers (199). Taken together, these studies
suggest that more expansive strategies that address additional
routes of exposure and other dimensions of water insecurity
beyond quality (i.e., “transformative WaSH”) may be needed
to meaningfully reduce the risk of EED (198). Advancements
in the methods used to identify EED are also needed for more
accurate diagnosis and earlier treatment (190).

Microbiome and inflammation.
The diversity and stability of the gut microbiome is
responsive to a wide range of dietary and environmental
factors (200, 201) and may therefore be directly influenced
by the quality and quantity of available drinking water, with
direct consequences for metabolism, immune function, and
resistance to infectious pathogens (202–204). Each drinking
water source has a unique, dynamic microbiome that can
alter the composition of an individual’s gut microbiota
directly or by changing the gut ecology (205, 206). For
example, Himalayans who drank river water had higher
abundances of Treponema and lower levels of Fusobacterium
compared with those who drank underground water,
suggesting that each water source contained different
microbes (207). Likewise, the gut microbiota of the Hadza,
a forager group in East Africa, differed by the primary water
source individuals used (207).

Along with its microbial content, the chemical properties
of drinking water may also influence the gut microbiota,
even in piped water sources. For instance, work in the
United Kingdom has found that ɑ-diversity (i.e., number
and richness of species within a sample) was associated with
the sodium, sulfate, and chloride content of tap water (208),
suggesting that these minerals can differentially support
bacterial communities in the gut.

Poor water quality, particularly water contaminated by
enteric pathogens, may be an important factor shaping the
colonization of the gut in early development. A study in
Nicaragua found that infants and young children living in
households with higher concentrations of total coliforms in

their drinking water had lower ɑ-diversity and a greater
relative abundance of potentially predatory or pathogenic
bacteria in fecal samples relative to those using low-coliform
water sources (209). This suggests that exposure to poor-
quality water may render the gut more susceptible to harmful
bacteria (210). Similarly, research across diverse settings
has found that repeated episodes of diarrhea, caused by
contaminated water or other environmental sources, are
associated with lower microbiota diversity, gut dysbiosis, and
chronic inflammation (211, 212).

Importantly, the psychological distress that accompanies
water insecurity (213) may also influence the gut microbiota.
Chronic stress has been shown to affect the development
of the intestinal barrier (214), increase gut permeability
(215), and contribute to gut dysbiosis (216). These, in turn,
increase the risk of infection, malnutrition, overweight,
and cardiometabolic disease by stimulating inflammation,
insulin dysregulation, and weight gain (204, 217). Despite the
known importance of environmental exposures on the gut
microbiota and its associated health outcomes, relatively little
work has focused on water insecurity as a multidimensional
experience shaping gut colonization or diversity.

Conclusions
It is evident that water security is essential, but not sufficient,
for good nutrition. As demonstrated, nutritional well-being
is contingent upon the presence of both water and food
security. At the food production level, improved nutrition
through more efficient agricultural practices is dependent
on water quality and quantity, but also crop quality, safety,
diversity, and yield. At the household level, secure access
to nutritious and safe foods is necessary for ensuring good
health, as well as access to sufficient and safe water to prepare
available foods and reduce the risk of foodborne pathogens.
Within individuals, drinking water is needed for fluid
balance and may enhance nutritional status by providing
essential micronutrients, but the benefits are moderated by
water quality, coexisting infections, nutritional status, and
microbiome characteristics. Additionally, nutritional needs
shift across the life course (e.g., with age, pregnancy status),
including the risks for and consequences of food and water
insecurity. Yet, despite their many linkages, food and water
insecurity have traditionally been treated as independent
challenges to health.

Current global public health efforts could be more
effective by addressing water and food insecurity jointly. For
instance, there are Sustainable Development Goals for food
and water, but none consider their many linkages; underap-
preciation of the interconnections between these 2 essential
resources is significant given that improvements in one can
be to the detriment of the other (2). Such delineations have
contributed to disciplinary siloing, although coordination
between the WaSH and nutrition sectors is needed to advance
the goals of each (8).

Strategies to improve nutrition must consider the di-
verse ways by which water availability, accessibility, quality,
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stability, and use can be compromised (Figure 2). Policies
that intervene upon only 1 determinant of water security
may not be sufficient for improving downstream health and
nutrition outcomes. As noted by implementers of 3 large-
scale WaSH trials that found no effect of household-level
drinking water quality improvements on child linear growth,
holistic solutions that consider water security at multiple
scales are needed to address seemingly intractable health
issues (198). Technocratic strategies (e.g., installation of
water pipes) are likely to be most effective when implemented
at the utility level (218) and paired with water governance and
infrastructural maintenance initiatives that ensure that water
technologies are sustainably managed, adaptable to shocks,
and accessible to all (i.e., do not exacerbate entrenched water
inequities) (219, 220). This will require considerable financial
investment, but the returns are likely to be substantial,
including reductions in health care costs, expanded human
capital, and greater national security (221, 222). Sustained
financial and institutional support for interdisciplinary re-
search that addresses the knowledge gaps outlined above is
also necessary to inform the development of effective policies
and programs (Text Box 1).

Text Box 1
Selection of policy-relevant research
opportunities for better understanding how
experiential water insecurity both directly
and indirectly impacts nutritional
well-being

• Explore how water requirements vary by body composition, life
stage, disease state, and local climate to inform recommendations
about water consumption and improve monitoring of dehydration
across time and populations

• Assess the role of water insecurity in noncommunicable disease risk
and progression through its potential impacts on:

� Food insecurity and dietary patterns, including
sugar-sweetened beverage intake and meals prepared away
from home

� Physical activity and exercise
� Gut microbiota composition and abundance
� Medication and supplement adherence

• Understand how water insecurity influences infant and young child
feeding, particularly:

� Perceived and actual human-milk quantity and quality
� Human-milk feeding initiation, duration, and exclusivity
� Timing and choice of complementary foods
� Responsive-feeding practices

• Quantify the burden of poor water quality (including emerging
pollutants) and its potential impact on disease risk and dietary
decision making

Systematic collection of high-resolution data will ad-
vance our understanding of the global water crisis and
identify where resources should be targeted. We encourage
researchers and agencies to add validated metrics of water
quality (164, 180), water-insecurity experiences (6), and
markers of hydration (223) alongside traditional nutrition
indicators. Data generated from these tools can be compared
across settings and time to understand the dynamics of water
insecurity and determine which aspects of water insecurity
are key constraints to health and well-being. Further, data
should be disaggregated by salient sociodemographic charac-
teristics, such as age, gender, and income status, to determine
whether progress towards water security is equitable (224).
In prior decades, data generated from the implementation of
experiential food-insecurity scales have been used to inform
policy and bring awareness to disparities in food availability,
access, and use (225); application of experiential water
insecurity scales are likely to be similarly transformative (4).
Ultimately, a policy and research agenda that addresses the
multiple water–nutrition linkages herein will advance our
ability to ensure equitable access to healthy foods and safe
water for all.
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