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Abstract

Water is often found to mediate interactions between a ligand and a protein. It can play a sig-

nificant role in orientating the ligand within a binding pocket and contribute to the free energy

of binding. It would thus be extremely useful to be able to accurately predict the position and

orientation of water molecules within a binding pocket. Recently, we developed the Water-

Dock protocol that was able to predict 97% of the water molecules in a test set. However,

this approach generated false positives at a rate of over 20% in most cases and whilst this

might be acceptable for some applications, in high throughput scenarios this is not desirable.

Here we tackle this problem via the inclusion of knowledge regarding the solvation structure

of ligand functional groups. We call this new protocol WaterDock2 and demonstrate that this

protocol maintains a similar true positive rate to the original implementation but is capable of

reducing the false-positive rate by over 50%. To improve the usability of the method, we

have also developed a plugin for the popular graphics program PyMOL. The plugin also con-

tains an implementation of the original WaterDock.

Introduction

Protein-ligand interactions are fundamental to many cellular processes and understanding

them is crucial for adopting a rationalized approach to drug-design. Water molecules, with

their ability to form multiple bridging hydrogen bonds, have been identified as a key structural

factor in mediating these interactions [1–8]. In cases such as the L-arabinose binding protein,

the water molecules are a pharmacophoric feature of the binding site and allow discrimination

between ligands [9]. Conversely, in other cases—like the oligopeptide binding protein (OppA)

—water molecules promote promiscuity by acting as flexible adapters, facilitating a range of

ligands to bind [10]. Water mediated interactions are so ubiquitous that a comprehensive anal-

ysis of 392 high-resolution crystal structures found 85% of the protein-ligand interfaces having

at-least one ‘bridging’ water molecule [11].

With their importance and prevalence, water is increasingly being included in a variety of

computational binding studies [12–19]. In quantitative structure-activity relationship (QSAR)
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modelling, Hussain et al. [20] found that the incorporation of explicit water molecules in the

binding-site of actin enabled improved accuracy for ligands with the formamide moiety. Simi-

larly, Taha et al. [21] incorporated water molecules in their 3D contact analysis search for

inhibitors of candida N-myristoyl transferase (NMT) and glycogen phosphorylase (GP). A

number of groups have also used crystallographic water molecules in molecular docking

screens. Huang et al. [22] used explicit water sites in 24 proteins to improve their docking

enrichment factors and reduce false positives. Verdonk et al. [23] also used crystallographic

waters to improve docking performance by up to 20%. The use of water molecules in docking

studies has become so ubiquitous that programs like AutoDock4 [24], Gold [23], Rosetta [25],

Glide [26] and FlexX [27] all offer options to include explicit waters.

However, utilising water molecules in binding studies first necessitates an accurate knowl-

edge of their locations. Water positions are typically obtained from high-resolution crystallo-

graphic structures. However, in many instances, the protein structure is often obtained via

methods such as NMR or homology modelling that do not provide this information. For such

cases, peaks in water density derived from Molecular Dynamics (MD) or Monte-Carlo (MC)

simulations with explicit water can suggest likely water positions [28]. However, the method

can have long convergence timescales (up to hundreds of microseconds) for buried binding

sites due to the time it takes for explicit water molecules to permeate within the protein [29].

Moreover, the use of water molecules in large-scale molecular screening requires an expedi-

tious prediction of their locations. Hence, various ‘fast-solvation’ methods have been devel-

oped to swiftly estimate the locations of water within protein structures [30–37].

WaterDock [38] is one such algorithm that uses the freely available AutoDock Vina [39]

tool to predict the water locations within the binding pocket. Water molecules are initially

treated as ligands and are docked thrice into a binding site of the protein. With AutoDock

Vina able to predict up to 20 configurations per run, the initial docking results in a maximum

of 60 probable water co-ordinates. A Vina score cut-off of� − 0.6 kcal/mol is then applied to

the co-ordinates to remove water-sites that are energetically unfavourable. The ensemble of

water co-ordinates is then sequentially clustered twice using the single linkage method with

distance cut-offs of 0.5 Å and 1.6 Å. WaterDock was able to predict 88% of the water-sites in a

dataset of seven high-resolution crystal structures. When validated against a set of 14 OppA

crystal structures used by the AcquaAlta method [40], WaterDock could predict 97% of the

water-sites.

However, in tests against consensus water-sites from seven crystal structures, WaterDock

had a false-positive rate of 24% [38]. In the OppA dataset, the false positive rate was on average

1–2 waters per structure. Whilst this rate of false-positive prediction may be tolerable for some

applications, it may pose problems for large-scale automated workflows. Therefore, we were

keen to see if this aspect of the WaterDock method could be improved. Recent work on the sol-

vation structure of small molecules has indicated a correlation between their hydration shells

and the location of mediating waters in holo-structures [41,42]. In this work, we show how

information from hydration shells can be combined with the WaterDock protocol to give an

improved false-positive hit rate and incorporate the entire workflow in to an easy to use

PyMOL [43] plugin.

Methods

Overview of the WaterDock 2.0 pipeline

The pipeline of WaterDock 2.0 for identifying bridging water molecules in holo structures is

outlined in Fig 1. In the original WaterDock protocol, the position of the waters within the

structure were predicted without consideration of the hydration and hydrogen bonding

WaterDock 2.0
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capability of the ligand. To address this we analysed the solvation behaviour of small molecules

from MD simulations.

Ligand 
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Fig 1. Schematic illustration of the WaterDock 2.0 bridging water prediction pipeline.

doi:10.1371/journal.pone.0172743.g001
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Functional groups of the ligand are first identified and their hydration structures are gener-

ated semi-empirically as detailed below. Sites within this hydration structure with ‘favourable’

protein-water interactions are then identified using AutoDock Vina. To do this, a water mole-

cule is iteratively docked onto the protein with a small box-size of 0.5 Å centred on coordinates

from the ligand hydration shell. From AutoDock Vina version > 1.0.2, the algorithm is

adjusted to not exclude results whose hydrogen atoms are outside the search space. Thus, the

small box size allows the usage of Vina’s docking function to score the site’s water-protein

interaction by preventing its lateral displacement. The ‘num_modes’ option of Vina that con-

trols the number of output configurations was set to 1 to allow generation of only the most

favourable configuration. Additionally, the small box size allows the ‘exhaustiveness’ option to

be set to 5 (compared to 20 in the original protocol).

Subsequently, and as described for the original WaterDock, unfavourable water-sites with a

Vina score more positive than an empirically calculated cut-off (in this case -0.55 kcal/mol) are

discarded.

Our strategy to reduce the number of false-positive results is to employ a hydrogen bond

saturation limit. Essentially, this dictates the maximum number of bridging water-sites from

the hydration shell of each functional group. Thus, if more than the stipulated number of

water-sites from a motif’s hydration shell are predicted to have favourable Vina scores, only

the highest scoring ones among them are selected. The saturation limits were selected based

on the number of valence shell electron pair repulsion (VSEPR) lone pairs or bound hydrogens

in the oxygen/nitrogen atoms. Table 1 lists the functional groups implemented in WaterDock

2.0 and the corresponding H-bond saturation limit. Finally, water-sites where the centres of

the waters are within 1.8 Å of each other are clustered to avoid the problem whereby hydration

sites subtended by multiple ligand functional groups are predicted as multiple bridging waters.

Identifying functional group hydration

Dataset. To semi-empirically generate the hydration shells of ligands, the individual

hydration of functional groups was first calculated from Molecular Dynamics (MD) simula-

tions of ligands from the CSAR-2012 dataset [44]. The Community Structure-Activity

Resource (CSAR) is a regularly compiled dataset of crystal structures aimed to provide bench-

marks for the development of scoring functions and docking algorithms. The first set of the

2012 database contains 242 high-resolution crystallographic structures with no regions of

ambiguously resolved ligand electron density. With the inherent inaccuracies associated with

Table 1. The H-bond saturation limit enforced on the various functional groups implemented in the

WaterDock 2.0 pipeline.

Motif H-bond Limit

Carbonyl 2

Carboxyl 2

Cyano 1

Imine 1

Nitro 2

Amine No. of H

Sulfonyl 2

Phosphoryl 2

Hydroxyl 3

Ether 2

Halogen 1

doi:10.1371/journal.pone.0172743.t001

WaterDock 2.0
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the identifying water molecules from crystallography, the dataset has limited use in the devel-

opment of prediction algorithms. However, the structural accuracy and the large number of

molecules in the dataset make it ideal for compiling the hydration of specific functional groups

across a range of chemical environments.

Methodology. Ligand structures were visually inspected for their correct protonation

states before parameterisation according to the General Amber Force Field (GAFF) [45] using

Antechamber [46] and Amber 14 [47]. The partial charges were calculated according to the

AM1-BCC method [48,49] and the parameters were converted to GROMACS format using

the acpype script [50]. The ligands were then solvated in a TIP3P rectangular box of water with

a minimum distance of 14 Å from each edge and neutralised by the addition of Na+/Cl− ions

as parameterised by Joung et al. [51]. GROMACS 5.0.2 [52] was used to simulate all boxes for

30 ns each with a time-step of 2 fs. The temperature was maintained at 300 K and the pressure

at 1 bar using the V-rescale thermostat and the Parrinello-Rahman barostat [53] respectively.

Co-ordinates were saved every 0.6 ps resulting in 50000 trajectory frames. During the course

of the simulation, the conformation of the ligands were maintained using positional restraints

of 100 kJ/mol nm2 on all non-hydrogen ligand atoms.

The hydration shells of ligands were discretised using the Quality Threshold (QT) algo-

rithm [54] similar to the methodology of WATSite [55] and Placevent [56]. First, a 3-D grid

with a spacing of 0.25 Å and extending up to 4 Å from all heavy atoms was placed over the

ligand. Subsequently, the residence of the oxygen atom of water in each grid-point was tabu-

lated across all frames of the trajectory. This tabulated grid is then histogrammed to provide a

3-D occupancy density matrix. Finally, the QT algorithm is used to discretise the histogram

with a minimum distance of 2 Å between clusters.

For each ligand, discretised hydration sites were ‘assigned’ to the nearest functional group

and the ‘assigned’ hydration sites of each motif were then overlaid across all ligands of the

dataset. This allowed us to make a comprehensive picture of probable functional group hydra-

tion distribution across different atomic surroundings.

Training

Dataset. The Vina score cut-off for the prediction algorithm was calculated using the

Astex diverse dataset [57] of 85 holo structures. Compiled from the Protein Data Bank [58],

the ligands are structurally diverse and, more importantly, the resolved electron density

accounts for all parts of the ligand. While not all relevant bridging water molecules are resolved

within the dataset, studies by Hartshorn et al. [57] showed that the resolved waters are accurate

and capable of improving docking performance by up to 20%. Thus, this validation set was

chosen to find the energetic cut-off score that allows the prediction of the maximum number

of water-sites. However, with not all bridging waters resolved in the crystallographic struc-

tures, a fairly high false-positive rate was anticipated in this training set.

Methodology. Hydrogen atoms were added to the ligand structures of the Astex dataset

using the Reduce program [59] and their protonation states were visually verified. The polar

motifs of the molecule were then used to ‘model’ the hydration shell of the molecule as per the

results from the previously simulated CSAR-2012 dataset. The protein-water interactions for

each of the modelled hydration sites was scored using AutoDock Vina through iterative dock-

ing as described above. Finally, for each of the modelled water-sites, the distance to the nearest

crystallographic water was calculated and considered ‘conserved’ if the distance was less than

2.0 Å.

Validation. The co-ordinates of water molecules are notoriously difficult to accurately

estimate [60]. During the initial development of WaterDock [38], this was circumvented by

WaterDock 2.0
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overlaying multiple independently crystallised structures and only considering those sites

resolved at least twice. This overlaying allows the accounting for variations in crystallographic

conditions and errors during the refinement process [61]. A similar dataset was compiled to

validate this new WaterDock 2.0 workflow. Table 2 lists the details of the validation dataset

and the number of consensus water-sites in each case. The ligands in each structure were over-

laid and the water-coordinates within 3.2 Å of both ligand and protein present in more than

one structure were considered as consensus sites. This may seem a generous cut-off, but we

wanted to be certain that all relevant waters were included. Additionally, to allow a direct com-

parison with the original WaterDock and AcquaAlta algorithms, the 14 OppA structures used

by both were also analysed.

Results and discussion

Functional group hydration

The total hydration structure calculated from MD around five polar functional groups (car-

bonyl, carboxyl, ether, phosphoryl and imine) are shown in Fig 2A–2E.

The orientations of water-sites around each group are further analysed as a distribution of

φ and θ - the angles made by the ligand atom—Owater vector with an imaginary X and Z axes

(see S1 Fig). Hydration sites around carbonyl oxygens are distributed in a uniform ‘oval’ shape

with θ ranging from 40˚ to 140˚ and φ ranging from 20˚ to 160˚. The distribution around car-

boxyl oxygens is also ‘oval’ albeit with a larger range of angles with θ spanning from 60˚ to 160˚

and φ spanning from 0˚ to 180˚. This increased range of binding might probably be attributed

to a combination of the larger solvent accessibility of carboxyl oxygens and the greater negative

charge on the oxygen atoms. Additionally, θ deviates from a mean value of 90˚ seen in carbonyl

oxygens to *110˚ probably due to hydration sites also interacting with the other oxygen atom

of the carboxylic motif. In phosphoryl oxygens, the distribution of hydration sites is similar to

that seen in carboxylic acids with a mean θ value again deviating from 90˚. This deviation might

probably be caused by a similar reason with phosphoryl oxygen atoms normally occurring as

pairs in ligand molecules. The hydration sites of both ether oxygen and imine nitrogen lie on a

plane normal to that of the motif with θ not deviating from *90˚.

Fig 2F–2J show the modelled hydration structures of the five functional groups that have

been fitted to the simulation results. The polar atom—Owater vector length was modelled with

Table 2. The dataset used to validate the ligand-directed Waterdock 2.0 algorithm.

Protein PDB Codes Ligand Code Resolution (Å) Consensus Waters

HIV-1 3FXS, 2ZYE KNI-272 0.93, 1.9 8

GluR2 1FTMa, 1MY2a AMPA 1.7, 1.8 18

Trypsin 2AH4, 3RJX GBS 1.13, 1.7 8

GST 1K3Ya, 1K3La GTX 1.3, 1.5 22

HSP90 2BRC, 2BT0a CT5 1.6, 1.9 6

PIM1 1XWS, 2BIK RBT205 1.8, 1.8 4

Bromodomain 3ZYUa, 4ALG I-BET 1.5, 1.6 6

Androgen Receptor 4OHA, 2AX6 Hydroxyflutamide 1.42, 1.5 4

Casein Kinase II 3BQC, 3Q9W Emodin 1.5, 1.7 4

Thrombin 4CH2a, 5LUW 0G6 1.6, 1.69 14

Carbonic Anhydrase 3HS4, 3V2M, 3DC3 Acetazolamide 1.1, 1.47, 1.7 3

a—Structures where multiple chains were overlaid to validated waters.

doi:10.1371/journal.pone.0172743.t002

WaterDock 2.0
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a length 3.0 Å to match the experimental hydrogen bond length [62] and distinct water-sites

were modelled 2.0 Å apart. Fig 3 shows the location of water-sites derived from MD simula-

tion around different primary, secondary and tertiary amines. In all cases, water-sites preferen-

tially bind to the hydrogen atom. This preference for linearity in the N-H—Ow binding is

similar to those observed in Neutron Diffraction [63,64] and CSD mining studies [40]. Hence,

amine hydration sites are modelled along the direction of the N-H vector with a distance of 3

Å from the nitrogen atom.

Fig 4A shows the hydration structure of hydroxyl groups from simulation. Two distinct ori-

entations of water are seen bound to the hydrogen and oxygen atoms. Therefore, the hydration

of the hydroxyl group is modelled as a combination of an ‘ether’ oxygen atom and an ‘amine’

hydrogen atom (see Fig 4B).

Fig 2. The MD (A-E) and modelled (F-J) hydration structure of five polar functional groups. (A, F) carbonyl,

(B, G) carboxyl, (C, H) ether, (D, I) phosphoryl, (E, J) imine.

doi:10.1371/journal.pone.0172743.g002

Fig 3. The location of water-sites around different amine groups as produced in MD.

doi:10.1371/journal.pone.0172743.g003

WaterDock 2.0
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Fig 4. (A) The distribution of hydration sites around the hydroxyl functional group from MD simulation. (B)

The modelled hydration structure of the hydroxyl functional group.

doi:10.1371/journal.pone.0172743.g004

WaterDock 2.0
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Of the 55 chloride functional groups in the dataset, none had a water-site distributed

around it in MD simulation. On the other hand, fluorine atoms were hydrated. However, with

only four F atoms in the dataset, an accurate hydration distribution could not be determined.

Similarly, insufficient ligands with ‘nitro’, ‘sulphonyl’ and ‘cyano’ functional groups were pres-

ent in the dataset. The hydration of all four functional groups were thus modelled similar to

that of the most extensively hydrated motif—carboxyl oxygen Empirical knowledge of the

hydration of these functional groups can plausibly be gathered from the Cambridge Structural

Database [65,66] using SuperStar [67]. However, the high prediction accuracy of the current

modelling method (see below) did not necessitate the usage of proprietary software.

Establishing the Vina score cut-off

Modelling the hydration sites based on functional groups predicted 2045 water-sites around

the 85 ligands of the Astex diverse Set [57]. Fig 5 plots the results of the docking study on each

Fig 5. Scatter plot showing the water-site’s Vina docking score against the distance to the nearest crystallographic water on application of the

WaterDock 2.0 pipeline to the Astex Diverse Set. The 2.0 Å distance cut-off is plotted as a vertical dotted line and the Vina cut-off score of -0.55 kcal/mol is

plotted as a horizontal dotted line. The lower left quadrant thus signifies crystallographic waters molecules correctly identified within the training set.

doi:10.1371/journal.pone.0172743.g005

WaterDock 2.0

PLOS ONE | DOI:10.1371/journal.pone.0172743 February 24, 2017 10 / 17



of the 2045 semi-empirically generated water-sites. It shows a scatter plot of the site’s docking

Vina score against the distance to the nearest crystallographic water. The 2 Å distance cut-off

used in the original WaterDock protocol for discriminating ‘conserved’ and ‘displaced’ water

molecules is also plotted as a dotted vertical line. The Kendall rank correlation coefficient

between the Vina score and distance to a crystallographic water site was found to be 0.29 with

a p-value less than or equal to 2.2×10−16. Therefore, there is a weak, but very significant associ-

ation between the Vina score and accuracy, such that ligand hydration sites with stronger

binding scores are more likely to be ‘conserved’ and vice-versa.

Using the statistical program R with the rpart package, a regression tree with a single split

was used to calculate a cut-off score with which to discard the most unfavorable possible water

locations. The cut-off that was most able to identify (using the Gini index) predictions that

were no greater than 2 Å from crystallographic water sites was found to be -0.55 kcal/mol
(shown as black horizontal line in Fig 5). Thus, all hydration sites with a Vina score more neg-

ative than -0.55 kcal/mol are retained for hydration bond saturation analysis and clustering.

Validation of the protocol

Table 3 lists the results of the WaterDock 2.0 pipeline on the validation dataset of holo struc-

tures. A water-site was considered correctly predicted if it was within 2.0 Å of both water mole-

cules used to identify a consensus site. The protocol has an identical true positive rate to the

original WaterDock of 88%. However, the incorporation of ligand conformation and hydra-

tion reduced the false-positive rate from ~24% to ~8%. Even with this improvement it is still of

interest to investigate cases where the method struggles. Fig 6 shows the predicted and crystal-

lographic water-sites from the two PIM-1 structures 1XWS and 2BIK. The crystallographic

waters from the two structures are shown in red/blue and the predicted waters are in green/

yellow. The false-positives in this structure are a result of a ‘chaining’ of predicted of waters

with two sites predicted either site of the same water molecule. Thus, despite the double-pre-

dictions inflating the number of false-positives, the results are still within hydrophilic regions

of the holo-structure.

Additionally, the new pipeline proposed here sacrifices AutoDock Vina’s search algorithm

for semi-empirically generated probable sites. This results in a slightly greater mean error of

1.24 Å compared to 0.83 Å in the original WaterDock protocol.

Table 4 lists the results of the OppA dataset used to validate the protocol and offer a further

comparison to WaterDock and AcquaAlta. AcquaAlta was validated using a cut-of distance of

Table 3. The results of the validation dataset of eleven protein holo-structures.

Protein Consensus Waters Total Predicted Waters Predicted Consensus Waters False-Positives

HIV-1 8 8 8 0

GluR2 18 18 18 0

Trypsin 8 5 5 0

GST 22 22 18 4

HSP90 6 7 6 1

PIM1 4 5 4 1

Bromodomain 6 6 6 0

Androgen Receptor 4 4 4 0

CK II 4 5 3 2

Thrombin 14 13 11 2

Carbonic Anhydrase 3 3 3 0

TOTAL 97 96 86 10

doi:10.1371/journal.pone.0172743.t003

WaterDock 2.0
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Fig 6. The location of the crystallographic waters from two structures of PIM-1 with PDB accession

codes 1XWS and 2BIK, where the crystallographic waters from the two structures are shown in red/

blue and the predicted waters from the two runs are shown in green/yellow, respectively. A false-

positive result arises from two sites (green) predicted adjacent to the same crystallographic water (red/blue).

doi:10.1371/journal.pone.0172743.g006

Table 4. The results of the OppA dataset of structures used to allow comparison of new prediction protocol to AcquaAlta and the original Water-

Dock methodologies.

Structure PDB code Waters Predictions (1.4 Å) Predictions (2.0 Å) False Positives

1JET 7 5 6 0

1JEU 9 7 8 1

1JEV 6 5 5 0

1B4Z 10 7 9 1

1B5I 7 5 7 1

1B32 7 5 6 0

1B3F 7 5 6 1

1B46 6 4 6 0

1B51 9 7 8 0

1B58 7 5 6 0

1B5J 10 8 8 1

1B9J 6 5 6 1

1QKA 6 6 6 1

1QKB 6 4 5 1

Total 103 78 92 8

doi:10.1371/journal.pone.0172743.t004

WaterDock 2.0
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1.4 Å and could predict 66% of the 103 crystallographic waters. At the same maximum

error, the original WaterDock could predict 87% of bridging waters. The slightly greater

maximum error of the new protocol becomes evident in the OppA dataset with WaterDock

2.0 able to predict only 78 water molecules (76%) at 1.4 Å. While inferior to the original pro-

tocol at this cut-of distance, the new pipeline still out-performs AcquaAlta. However, if the

maximum error was increased to match the modelled inter hydration-site distance of 2.0 Å,

the prediction rate increases to 91%. Only 8 false-positive sites were predicted compared to

19 using the original protocol. Using the R package exact, Boschloo’s exact test was used to

determine the statistical significance of this improvement, given a fixed number of predic-

tions for the original WaterDock and WaterDock 2.0. Under the null hypothesis that Water-

Dock and WaterDock 2.0 have the same false positive rate, the probability for observing 8

false positives or fewer with WaterDock2 (i.e. the p-value) was calculated to be 0.033, which

is significant up to standard 0.05 level. The number of true positives for WaterDock 2.0 was

92, compared to 95 true positives of the original WaterDock. Using Boschloo’s exact test for

a fixed total number of predictions, the null hypothesis of equal true positive rates was not

rejected with a p-value of 0.979. A further comparison between the two WaterDock proto-

cols is provided in S2 Fig.

Conclusions

To summarise, the inclusion of ligand conformation and its associated hydration sites into

the WaterDock pipeline allows accurate prediction of bridging waters. Additionally, a con-

sideration of the conformation of the ligand polar groups allows a marked reduction in the

number of false-positives compared to the original WaterDock protocol. Finally, the semi-

empirical generation of hydration sites allows a robust application to holo structures of dif-

ferent ligand sizes without needing to consider effects of changing box sizes (the clustering

in the original WaterDock implementation was tuned for a cube of sides 15 Å and thus

very large ligands may prove problematic as recently discussed in similar applications

[31]).

WaterDock 2.0 was envisaged with a view of combining ligand hydration with AutoDock

Vina’s scoring to predict water molecules within the binding site of holo structures. While the

validation of any prediction protocol is inherently difficult considering the inaccuracies associ-

ated with crystallographic waters, the new pipeline significantly reduced the number of false-

positives while matching the true positive rate of WaterDock. While the speed of predictions is

reduced due to the greater number of docking attempts in the new protocol, the effect is mar-

ginal due to the significant reduction in the ‘exhaustiveness’ and search space of each run.

The speed of the protocol and its sensitivity to ligand conformation (because final water

positions are generated based on the orientation of the functional groups) make it ideal for

combination with drug screens. Work is currently underway to combine WaterDock 2.0 with

docking poses to predict conformation-dependant bridging waters which in-turn can be used

to develop a ‘hydrated’ docking score.

To make WaterDock 2.0 easy to use, we developed a graphical user inter-face (GUI) based

on PyMOL[43]. The GUI allows easy file loading and parameter specification for the protocol.

Snapshots of the plugin installed within PyMOL are shown in Fig 7. The ‘Apo-WaterDock’

option is a PyMOL implementation of the original WaterDock previously scripted in R. The

‘Holo-WaterDock’ option is the WaterDock 2.0 pipeline developed here. The plugins along

with a description of the installation/usage procedures and the necessary libraries are currently

available at https://github.com/bigginlab/WaterDock_pymol.git . In addition, a command line

version of WaterDock 2.0 is available at https://github.com/bigginlab/WaterDock-2.0.git.
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