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Abstract: MUC1 belongs to the family of cell surface (cs-) mucins. Experimental evidence indicates
that its presence reduces in vivo influenza viral infection severity. However, the mechanisms by
which MUC1 influences viral dynamics and the host immune response are not yet well understood,
limiting our ability to predict the efficacy of potential treatments that target MUC1. To address
this limitation, we use available in vivo kinetic data for both virus and macrophage populations in
wildtype and MUC1 knockout mice. We apply two mathematical models of within-host influenza
dynamics to this data. The models differ in how they categorise the mechanisms of viral control. Both
models provide evidence that MUC1 reduces the susceptibility of epithelial cells to influenza virus
and regulates macrophage recruitment. Furthermore, we predict and compare some key infection-
related quantities between the two mice groups. We find that MUC1 significantly reduces the basic
reproduction number of viral replication as well as the number of cumulative macrophages but has
little impact on the cumulative viral load. Our analyses suggest that the viral replication rate in the
early stages of infection influences the kinetics of the host immune response, with consequences for
infection outcomes, such as severity. We also show that MUC1 plays a strong anti-inflammatory
role in the regulation of the host immune response. This study improves our understanding of
the dynamic role of MUC1 against influenza infection and may support the development of novel
antiviral treatments and immunomodulators that target MUC1.

Keywords: influenza viral dynamics; cell-surface mucin MUC1; immune response; mathematical models

1. Introduction

Influenza is a contagious respiratory disease. It remains a major public health burden
that affects and threatens millions of people each year [1]. Influenza virus (IV) primarily
attacks the epithelial cells that line the upper respiratory tract (URT) of the host, causing
an acute infection [2]. The host immune response has been shown to play an important
role against influenza infection [3,4]. As part of the innate immune response, macrophages
that reside in airways limit viral dissemination through phagocytosis of viral particles
and prevent the virus from spreading to the lungs [5,6]. Activated macrophages produce
inflammatory molecules, such as TNF-α, which stimulates recruitment of additional im-
mune cells, such as monocyte-derived macrophages (MDMs) to the site of infection. These
molecules also facilitate the activation of adaptive immune responses, such as maturation
of B cells and effector CD8+ T cells [7]. Thus, macrophages play a critical role against
influenza viral infection [8–10].

However, recruited macrophages also amplify inflammation. Overstimulation of the
host immune response can lead to pathology, indicating that there is a subtle balance
between a protective and a destructive response [1,11]. A dysregulated immune response,
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often marked by an excessive recruitment of macrophages to the site of infection and a high
level of cytokine production, can lead to lung pathology, causing serious and sometimes
fatal infection outcomes [12–15].

MUC1 belongs to the family of cell surface (cs-) mucin and is constitutively expressed
at the surface of respiratory epithelial cells and macrophages, as reviewed in [16–18]. It
was shown to be capable of modulating cytokine production in vitro viral infection [19–21]
and in vivo bacterial infection [22,23]. More recently, McAuley and colleagues investigated
the in vivo effects of MUC1 on influenza viral infection [24]. They first intranasally infected
wildtype (WT) and MUC1-knockout (KO) mice with influenza A virus, then measured and
compared the kinetic time-series data of viral load as well as different immune cells between
the two groups. They found that the virus grows more quickly and reaches a peak earlier
in MUC1-KO mice. Mice displayed a more enhanced inflammatory response, dominated
by a higher number of macrophages and a high level of cytokine production. Based on
these observations, they hypothesized that MUC1 acts as physical barrier to prevent virus
from infecting epithelial cells and contribute to regulation of the host immune response.
However, the potential effects of MUC1 in vivo are poorly quantified, limiting our ability to
predict the efficacy of potential treatments that target MUC1. To address this limitation, we
incorporated the hypothesized effects of MUC1 into mathematical models of influenza viral
dynamics and applied Bayesian inference to estimate key parameter values and provided
new quantitative insight into the role of MUC1 in shaping influenza virus infection and the
host immune response.

Influenza viral dynamics models have been used to study many aspects of influenza
infection and the host immune response, as reviewed in [25]. Studies focusing on the
immune system have used viral dynamics models to study various types of immunological
data, sharpening to our understanding of the contribution of different immunological
components to influenza viral infection [26–28].

In this work, we use available in vivo kinetic data for both virus and macrophage
populations in wildtype and MUC1 knockout mice. We analyze the data with two math-
ematical models of influenza viral dynamics under a Bayesian framework, quantifying
the potential effects of cs-mucin MUC1 in influenza infection. The two models differ in
how they categorise mechanisms of viral control. We also use the data-calibrated models
to evaluate and analyze the dependence of various infection-related quantities on MUC1
expression. Finally, we discuss the biological implications of our results.

2. Results
2.1. Model Fitting

In vivo viral load and macrophage data in WT and MUC1-KO mice were used in
model fitting. We fitted a Target cell-Infected-cell-Virus (TIV) model (Equations (1)–(4) in
Materials and Methods) and an Immune Response (IR) model (Equations (5)–(18)) to the
data, respectively. MUC1 has been suggested to prevent virus from infecting epithelial
cells. It also has been implicated in the regulation of the host innate immune response,
associated with macrophage recruitment [24]. As detailed in Materials and Methods, both
models capture these effects. The reduction in susceptibility of target cells is captured by
a parameter ε1, modulating viral infectivity to the target cells in dT/dt = (1 − ε1)βTV
(Equation (1)). The effect of the limitation of macrophage recruitment is captured by a
parameter ε2 and is modelled in dM/dt = s + (1 − ε2)φI − δM M (Equation (4)). In the
absence of MUC1 expression, e.g., in MUC1-KO mice, we set ε1 = ε2 = 0 to represent a
complete knockout effect.

The fitting results are shown in Figure 1. The median of the posterior prediction
(solid line) and a 95% predict interval (PI, shaded area) were computed from 4000 model
simulation based on 4000 samples from the posterior distribution of model parameters
(provided in Supplementary Figures). The trend for both the viral kinetics (Figure 1A,B)
and macrophages dynamics (Figure 1C,D) is well captured by the median prediction in
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both models, suggesting that both models are able to explain the data. Moreover, the
narrow 95% PI indicates a relatively high certainty level for model predictions.
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Figure 1. Results of model fitting for WT and MUC1-KO mice. Data are presented by solid circles.
Panels (A,B) show the median of posterior predictions (solid line) and a 95% prediction interval
(shaded area) of viral load data for both TIV (red) and IR (yellow) models for WT and MUC1-KO mice,
respectively. Panels (C,D) show the model predictions of macrophage data in the two models for
WT and MUC1-KO mice, respectively. The priors of model parameters are given in Supplementary
Materials. The posteriors of estimated model parameters are given in Supplementary Figures.

2.2. Estimates of MUC1 Parameters

The marginal posterior densities for ε1 and ε2 provide insight into the role of MUC1.
The median parameter estimates and their associated 95% credible intervals (CIs) are given
in Table 1. The median estimate of MUC1 on reduction of viral infectivity (ε1) is 0.44 (95%
CI: 0.23–0.71) in the TIV model and 0.42 (95% CI: 0.22–0.58) in the IR model. Furthermore,
the estimated median values of MUC1 on regulation of macrophage recruitment (ε2) are
0.45 (95% CI: 0.18–0.64) and 0.38 (95% CI: 0.06–0.63) in the TIV and IR models, respectively.
Biologically, the median estimate for ε1 indicates that the presence of MUC1 reduces the
rate of virus infection to epithelial cells by 44% (for the TIV model) or 42% (for the IR
model). In addition, the median estimate for ε2 indicates that the presence of MUC1 reduces
the recruitment rate of macrophages induced by infected cells by 45% ( for the TIV model)
or 38% (for the IR model).

The posterior-median estimates are qualitatively consistent between the two models.
The median estimates of ε1 and ε2 both exclude 0 (in the 95% credible interval) for the
WT group (for both the TIV and IR models), indicating a reduced viral infectivity (i.e.,
(1 − ε1)β) and a reduced rate of macrophage recruitment induced by infected cells (i.e.,
(1 − ε2)φ) in the presence of MUC1. The results support the experimental hypothesis [24]
and provide quantitative evidence that the presence of MUC1 reduces viral infectivity to
epithelial cells. They also provide evidence that MUC1 reduces macrophage recruitment
and thus regulates the host innate immune response.
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Table 1. Estimates of MUC1 parameters and comparison between models. The estimates of MUC1
on reduction of target cell susceptibility to influenza virus (ε1) and on reduction of macrophage
recruitment rate induced by infected cells (ε2). The lower and upper boundary of the 95% credible
interval (CI) of the parameter is given by calculating the 2.5% and 97.5% quantile of the marginal
posterior parameter distribution.

Parameter Description Median (95% CI)

TIV IR

ε1
The reduction in target cell susceptibility

to infection due to MUC1 0.44 (0.23, 0.71) 0.42 (0.22, 0.58)

ε2
The reduction in recruitment rate of

macrophages due to MUC1 0.45 (0.18, 0.64) 0.38 (0.06, 0.63)

Detailed posteriors of model parameters are provided in Supplementary Figures S1–S10,
and correlation maps of the estimated parameters for the TIV and IR models are given
in Figures S11 and S12. There is a low correlation coefficient between ε1 and ε2 for the
TIV (R = 0.08) and IR (R = −0.22) models, suggesting the two parameters have a weak
relationship. In particular, we found that the posterior-median estimate of the phagocytosis
rate of virus by macrophages (κM) is approximately 10−8 for the TIV model, and the
estimate is in agreement with the estimate for the IR model (Figure S9). We used the
median estimates of model parameters to compute the ratio of macrophage-mediated viral
decay (κM M(t)) to overall viral decay rate in the TIV (κM M(t) + δV) and IR (κM M(t) +
δV + κAS AS(t) + κAL AL(t)) models as a time-series, respectively. We found that κM M(t)
only has a minor contribution to viral clearance (Figure S14). The result suggests that
macrophages, although important to maintain gas exchange in lungs and reduce infection
severity, are not directly involved in limiting viral replication, as shown in [29,30].

2.3. Prediction of Infection-Related Quantities

Influenza pathogenesis is often associated with a high viral load and an overstimulated
immune response [15]. In the absence of MUC1, mice showed a significantly high mortality
rate [24]. Here, we use the 4000 joint posterior distributions to predict the impact of MUC1
on some key infection-related quantities that likely influence infection severity. We then
compare these quantities between the two models.

The basic reproduction number of viral replication (R0) is defined as the average
number of secondary infected cells that are produced by an initially infected cell when the
target cell population is not depleted and is fully susceptible [31]. An infection may be
established only if R0 > 1. It is a critical indicator that quantifies how fast an infection is
established and evolved.

Figure 2A,B show the R0 between WT and MUC1-KO groups in the TIV and IR models,
respectively. Both models predict a significantly higher median value of R0 (dashed line) in
the MUC1-KO group (20 in MUC1-KO group versus 11.1 in WT group for the TIV model, and
45.6 versus 26.4 for the IR model). The estimates of R0 are comparable to previous estimates
from fitting viral dynamics models to viral kinetic data in humans [32] and mice [33].

To assess the impact of MUC1 on viral dynamics, we compute the area under the viral
load (without log-transformation) curve, which is often used as a marker for infectiousness
(shown in Equation (21) in Materials and Methods). Both the TIV (Figure 2C) and IR
(Figure 2D) models predict very similar log10(AUCV) in WT and MUC1-KO mice. This
implies that a paucity of MUC1 expression has little, if any, effect on the cumulative viral
load. This observation is supported by data in [24] in which they found that MUC1-KO
mice were still capable of clearing virus after day 7 post infection.
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Figure 2. Comparison of model predictions for selected key biological quantities. Distributions are
calculated using the 4000 joint posterior distributions. Panels (A,B) show the distribution of the basic
reproduction number of viral replication in wildtype (purple) and MUC1-knockout (green) group in
TIV (left panel) and IR models (right panel), respectively. Panels (C,D) show the distribution of the
cumulative viral load in different mice groups in the two models. Panels (E,F) show the accumulative
macrophages in WT and MUC1-KO mice group in the two models.

An excessive accumulation of macrophages is considered to be a hallmark for severe
infection, often observed in highly pathogenic influenza viral infection [14]. We use the
area under the macrophage time-series curve (without log-transformation; Equation (22)
in Materials and Methods) as a surrogate for the strength of immune response stimulation
and explore the dependence of the AUCM on MUC1. As shown in Figure 2E,F, both models
predict a higher median value of log10(AUCM) in MUC1-KO mice compared to WT mice.
This suggests that MUC1 reduces the accumulation of macrophages and thus contributes
to the regulation of the host immune response.

We also assessed the influence of MUC1 on peak viral load (Figure S13A,B in Sup-
plementary Figures) and peak viral load time (Figure S13C,D) for the two models. Both
models predict that the presence of MUC1 delays the time at which viral load peaks but
only has a subtle influence on the magnitude of peak viral load, as shown in [24].

In summary, both models predict a higher value of R0 (Figure 2A,B) and increased
macrophage accumulation (Figure 2E,F) in the absence of MUC1 expression. The results
emphasise the dual roles for MUC1 in reducing viral infectivity and limiting macrophage
recruitment. Furthermore, they suggest that the absence of MUC1, while not driving a
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significant increase in cumulative viral load, facilitates viral replication and dissemination
within the host in the early stages of infection. More epithelial cells are infected in a short
time interval, heightening macrophage recruitment, likely contributing to lung pathology
and providing an explanation for the heightened mortality rate in MUC1 KO mice.

2.4. Delineation the Effects of MUC1 on Macrophage Recruitment

We showed that the presence of MUC1 reduces AUCM (Figure 2E,F), which may
alleviate infection severity. The accumulation of macrophages is not only directly impacted
by the regulatory effect of MUC1, (i.e., ε2), but is also indirectly affected by antigen levels,
which are influenced by ε1 through modulating dynamics for infected cells (I). Here, we
analyze the relative contribution of the two effects of MUC1 on the AUCM. We use the
macrophage reduction efficiency, defined as the decrease in the area under the macrophage
curve in wild type mice (AUCM,WT) relative to the AUC of the macrophage curve in MUC1
knockout mice (AUCM,KO):

Macrophage Reduction Efficiency = 1 − AUCM,WT

AUCM,KO

Figure 3 shows the estimated marginal posterior density of ε1 and ε2 for the TIV model
(top panel) and a heatmap of the dependence of macrophage reduction efficiency on ε1
and ε2 (bottom panel). The heatmap predicts the dependence of the macrophage reduction
efficiency for various values of ε1 and ε2 within the 95% CI. We observe that a higher ε1 or
ε2 leads to a higher macrophage reduction level, suggesting that both effects contribute to
reduce the accumulation of macrophages. However, the macrophage reduction efficiency is
notably more sensitive to changes in ε2. In particular, taking the median parameter values as
a reasonable prediction point (black circle), the rate of change in the macrophage reduction
efficiency is strongly dependent on ε2 and only weakly dependent on ε1. (indicated by the
arrow line). The result suggests that the reduction in macrophage recruitment (i.e., via an
increase in ε2) is more influential than the reduction of infected cells (i.e., via a reduction
in ε1) in determining AUCM. We also assess the macrophage reduction efficiency as a
function of ε1 and ε2 for the IR model. As shown in Figure 4, the results are qualitatively
consistent—the macrophage reduction efficiency is strongly influenced by ε2.
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Figure 3. The dependence of the AUCM on the effects of MUC1 for the TIV model. The upper panel
shows the marginal posterior distribution of ε1 (left) and ε2 (right). The 95% credible interval (CI)
for the parameters is indicated between the two red-dashed lines, and the red-solid line indicates
parameters’ median value. The heatmap shows dependence of macrophage reduction efficiency on
ε1 and ε2. The black circle indicates the pair of median values of ε1 and ε2, and the arrow indicates
the direction of the rate of change in macrophage reduction efficiency at that point.
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Figure 4. The dependence of the AUCM on the effects of MUC1 for the IR model. The upper panel
shows the marginal posterior distribution of ε1 (left) and ε2 (right). The 95% credible interval (CI)
for the parameters is indicated between the two red-dashed lines, and the red-solid line indicates
parameters’ median value. The heatmap shows dependence of macrophage reduction efficiency on
ε1 and ε2. The black circle indicates the pair of median values of ε1 and ε2, and the arrow indicates
the direction of the rate of change in macrophage reduction efficiency at that point.

Both models predict a strong effect for ε2 and relatively small effect for ε1 on the AUCM.
This is understood by recalling that the presence of MUC1 does not significantly influence
the cumulative viral load, as shown in Figure 2C,D. Thus, a change in the reduction of viral
infectivity to target cells (ε1) has only a minor effect on the AUCM. The results emphasise a
strong regulatory effect of MUC1 on macrophage accumulation.

3. Discussion

In this work, we studied the in vivo immunological effects of cs-mucin MUC1 in
influenza viral infection. To the best of our knowledge, this is the first study to incorporate
the dynamical roles of MUC1 into models of influenza virus dynamics. In our models,
MUC1 regulates both viral replication and macrophage recruitment. We incorporated
the experimentally hypothesized roles of MUC1 into two mathematical models and fit-
ted kinetic data of both virus and macrophage populations to the models in a Bayesian
framework. Our estimation results (Table 1) provide evidence that MUC1 reduces the sus-
ceptibility of epithelial cells to viral infection. They also provide evidence that MUC1 limits
the recruitment of macrophages and thus regulates the host immune response. Both models
predict the influence of MUC1 on various infection-related quantities (Figure 2). While
the expression of MUC1 has little impact on the cumulative viral load (AUCV), it delays
viral infection by reducing the basic reproduction number of viral replication (Figure 2A,B)
and delaying viral load peak time (Figure S11C,D). More importantly, we found that the
presence of MUC1 significantly reduces the accumulation of macrophages (Figure 2E,F).
The decreased level of macrophages is primarily driven by the direct regulatory effect (ε2)
of MUC1 on macrophage recruitment (Figures 3 and 4).

Our model-based analyses provide new insight into the mechanisms by which MUC1
influences viral dynamics and the host immune response. This is also the first study that
we are aware of that provides quantitative estimates of the in vivo effects of cs-mucin
MUC1 on influenza infection. Our analyses enhance our ability to predict the efficacy
of potential treatments that target MUC1. Influenza pathogenesis is often marked by
a high viral load, and infection of epithelial cells is a key determinant of the level of
viral load [11,15,34]. MUC1 is rapidly stimulated at the surface of epithelial cells and
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macrophages on infection, and is thought to act as a “releasable decoy”, preventing virus
from attaching and infecting the cells, thereby reducing viral infectivity [17]. Regardless of
the specific mechanism, our model predictions suggest that MUC1 only effectively reduce
R0 (Figure 2B) but not the AUCV (Figure 2C,D). The biological implications of this are
two-fold. Firstly, MUC1, as part of the innate immune response, has been shown to be
rapidly up-regulated within a few hours post in vitro infection [21]. The decreased R0
suggests that MUC1 expression contributes to limit and delay viral infection, and more
importantly, to prevent viral dissemination within the host. This provides strong protection
to the host and reduce infection severity. Viral spread to the lower respiratory tract (LRT) is
known to cause complications, leading to more severe infection outcomes [34]. Secondly,
the comparable AUCV between WT and MUC1-KO group implies that a lack of cs-mucin
MUC1 protection have a subtle influence on other immunological components that are
responsible for viral clearance, such as the host adaptive immune response. This may be
partially supported in [24], where MUC1-KO mice were shown to clear virus from the
lungs at day 7 post infection. A more comprehensive dataset that captures the dynamics
of antibodies or effector CD8+ T cells would greatly improve our understanding of the
impact on MUC1 to the adaptive immune response.

Beyond these virological indicators, viral pathogenesis is also associated with the
strength of the host immune response induced by influenza infection. An excessive re-
cruitment of macrophages to the site of infection is a hallmark of overstimulated immune
responses [14,34]. The anti-inflammatory role of MUC1 has been shown to inhibit activation
of Toll-like receptors (TLRs) in macrophages and infected cells [24]. In MUC1-KO mice, our
models predicted a significantly enhanced level of AUCM (Figure 2E,F), which may reflect
the high mortality rate in the group. This finding emphasises the importance of quantities
related to the immune response, which can be critical indicators for predicting the severity
of infection and facilitating the assessment of antiviral therapies, as suggested in [34,35].
Furthermore, we showed that the decreased AUCM is primarily due to the direct regulatory
effect of MUC1 on macrophages (i.e., ε2), which highlights a strong anti-inflammatory
effect for MUC1. This may support the development of novel immunomodulators that
target cs-mucin MUC1.

In conducting this study, we applied two mathematical models to the kinetic data.
The models models differ in how they model adaptive immunity. We compared the key
estimation results of MUC1’s effects and model predictions of infection-related quanti-
ties between the two models. We found that both models fit the in vivo viral load and
macrophage data well (Figure 1), giving comparable parameter estimates and consistent
biological insights.

One of the most important applications of viral dynamic models is to estimate key
kinetic parameters, as reviewed in [25]. Model selection for data fitting is an important
but unresolved challenge in influenza dynamics modelling due to limited time-series data
on numerous quantities of interested. Parameter estimates vary substantially between
different studies, and the predictive power of any given model is influenced by the selection
of model components, as showed in previous work by our group [27,35] and others [36]. In
our study, there are advantages and disadvantages in applying the TIV and IR models. Due
to its simple model structure, the TIV model is more computationally efficient. However,
its lack of a detailed characterization of adaptive immunity makes the model difficult
to use to explore potential interactions between different immunological components,
e.g., interactions between macrophages and CD8+ T cells. The IR model, on the other
hand, is more computationally intensive and has far more parameters to either estimate or
determine from the literature. However, it is more suitable for explaining in vivo kinetic
viral load data to which adaptive immunity has been shown to have an influence. It also
provides a platform to study more complicated virus-immunity dynamics and interaction
between different components of immune responses.

Neither the TIV nor IR models consider the full spectrum of host immune response
which are known to contribute to viral control and that have been included in other mod-
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elling works, e.g., interferon dynamics [27,28]. Regardless, we argue our two models are
sufficient for this study in which we focus on the influence of MUC1 on viral dynamics
and macrophage kinetics, which are both explicitly considered in the models. Further-
more, there is no evidence to suggest that MUC1 has an impact on the adaptive immune
response. Combined with the observation that MUC1-KO mice clear virus after day 7 post
infection [24], the effects of MUC1 may be minimally influenced by the detailed dynamics
of adaptive immunity.

Our study has some limitations. We only incorporated the two hypothesized effects of
cs-mucin MUC1 on influenza viral infection into our mathematical models, but did not
consider the detailed dynamics of MUC1 itself due to a lack of MUC1 kinetic data. As a
result, the critical timing at which MUC1 starts to take effect has not been estimated. This
could be an important factor that influences disease severity [17]. In future work, explicitly
modelling the time dependent MUC1 effects would be of interest given availability of time-
series data of MUC1 expression. Another limitation is that we assumed a fixed adaptive
immune response, such that the adaptive immune responses dominate viral clearance at
day 5 post infection regardless of MUC1 expression [27,37]. Though there is no evidence
so far that MUC1 would affect the magnitude and/or timing of the adaptive immune
response, extension of the IR model to allow for such an effect may be of interest.

4. Materials and Methods
4.1. Mathematical Models

In this study, we considered two mathematical models that are often used to study
within-host influenza dynamics, but which differ in how they categorise the mechanisms
of viral control.

4.1.1. The TIV Model

The Target cell-Infected cell-Virus (TIV) model depicts a simple but fundamental inter-
action between target cells and influenza virus, as originally presented in [32]. To estimate
the in vivo impacts of MUC1, we incorporate the two hypothesized effects of MUC1 on
viral infectivity and innate immune responses into the TIV model. We also consider a
component of macrophage dynamics and critical interactions between macrophages and
virus. The model is described by a set of ordinary differential equations (ODEs):

dT
dt

= gT
(

1 − T + I
Tmax

)
− (1 − ε1)βTV, (1)

dI
dt

= (1 − ε1)βTV − δI I, (2)

dV
dt

= pI − δVV − κM MV, (3)

dM
dt

= s + (1 − ε2)φI − δM M. (4)

Equations (1)–(3) describe the interaction between virus and epithelial cells. In detail,
epithelial cells (T), the target cells for influenza virus, are infected with virus (V) and
become infected cells (I) at an infectivity rate βV per day. Target cells are replenished at a
rate gT(1 − (T + I)/Tmax), where Tmax is the maximal number of epithelial cells that line
the upper respiratory tract (URT). The infectivity rate is modified by MUC1, parameterised
by ε1. Infected cells produce free virus at a rate p per day. Apoptosis occurs at a rate δI per
day. We do not explicitly model the role of macrophages in removing apoptotic infected
cells [3,6,38]. While an established role of macrophages, it is not required as we have no
data on dead cell dynamics and so our model does not include the dynamics of the dead
cell population. The decrease of free virus is either due to natural decay at a constant rate
δV per day, or internalization by macrophages (M) at a rate κM M.

Equation (4) models the dynamics of macrophages. We assume a constant supple-
mentary rate and a decay rate of macrophages at s and δM per day, respectively. Upon
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infection, monocytes are recruited from peripheral blood to the site of infection and become
monocyte-derived macrophages (MDMs) in the presence of cytokines. We assume the re-
cruitment rate is proportional to the level of infected cells, φI, as infected cells contribute to
cytokines production. The cs-mucin MUC1 regulates the recruitment rate of macrophages,
parameterised by ε2.

4.1.2. The IR Model

The immune response (IR) model is based on the TIV model and includes a de-
tailed adaptive immune response, which contributes to viral clearance over a distinct
timescale [28]. The model is formulated by a system of ODEs:

dT
dt

= gT
(

1 − T + I
Tmax

)
− (1 − ε1)βTV, (5)

dI
dt

= (1 − ε1)βTV − δI I − κEEI, (6)

dV
dt

= pI − δVV − κM MV − κAS ASV − κAL ALV, (7)

dM
dt

= s + (1 − ε2)φI − δM M, (8)

dE0

dt
= −γE

V
V + E50

E0, (9)

dE1

dt
= γE

V
V + E50

E0 −
nE
τE

E1, (10)

dEi
dt

=
nE
τE

(Ei−1 − Ei), i = 2, ..., nE (11)

dE
dt

= φE
nE
τE

EnE − δEE, (12)

dB0

dt
= −γB

V
V + B50

B0, (13)

dB1

dt
= γB

V
V + B50

B0 −
nB
τB

B1, (14)

dBi
dt

=
nB
τB

(Bi−1 − Bi), i = 2, ..., nB (15)

dP
dt

= φp
nB
τB

BnB − δpP, (16)

dAS
dt

= µSP − δAS AS, (17)

dAL
dt

= µLP − δAL AL. (18)

Equations (5)–(8) retain the skeleton of the TIV model, describing the essential target
cell-virus dynamics, except for additional components in dI/dt and dV/dt related to
adaptive immune responses. κEE in Equation (6) represents the rate of infected cells lysis
by effector CD8+ T cells. The extra terms κAS AS and κLS AL in Equation (7) represent virus
clearance mediated by a short-lived (AS, e.g., IgM) and a long-lasting antibody (AL, e.g.,
IgG), respectively.

Equations (9)–(12) describe a major component of the cellular adaptive immune re-
sponse mediated by CD8+ T cells. Naïve CD8+ T cells (E0) initiate proliferation and differ-
entiate into effector cells E1 on stimulation via antigen-presentation at a rate γEV/(V +E50),
where γE is the maximal stimulation rate, and E50 is a half saturation level at which half
of the stimulation rate is obtained (as shown in Equation (9)). Effector cells E1 perform
programmed proliferation to Ei where i denotes proliferation stages (Equations (10) and (11))
for τE days, experience through nE stages [39], finally becoming mature effector cytotoxic
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T lymphocytes (E) at a rate φE at the final stage. The decay rate of E is δE, as shown in
Equation (12).

Similarly, the dynamics of the humoral adaptive immune response are described by
Equations (13)–(16). Naïve B cells (B0) start to proliferate and differentiate into plasma cells
(B1) once stimulated by virus at a rate γBV/(V + B50), where γB is the maximal stimulation
rate and B50 is a half-saturation level, as shown in Equation (13). Equations (14) and (15)
capture how plasma cells (B1) undergo programmed proliferation through nB stages into
Bi, where i denotes proliferation stages, for τB days [39]. Finally, mature plasma cells P
(Equation (16)) are produced at a rate φB and decay at a rate δp.

Equations (17) and (18) describe the dynamics of a short-lived antibody (AS) and a
long-lived antibody (AL). AS and AL are produced by plasma cells (P) at rates µS and µL
and decay at rates δAS and δAL, respectively.

4.2. Statistical Inference

We extracted the kinetic data of both virus and macrophage population in wild type
(WT) and MUC1 knockout mice using WebPlotDigitizer (version 4.4) from [24]. In the
study, groups of wild type and MUC1-KO mice were intranasally infected with influenza
A virus (PR8). There were five mice in each group. We assumed the variability of virus and
macrophage data between different mice within the same group was due to measurement
error, so that the data from different mice were pooled together for analysis.

We took a Bayesian inference approach to fit the TIV and IR model (detailed in Model)
to the log-transformed kinetic data. In detail, our model has 10 parameters to estimate, and
the parameter space is denoted as Φ = (ε1, β, δI , p, δV , s, δM, ε2, κM, φ). Upon calibrating the
IR model, we fixed all parameters of the adaptive immune responses (e.g., all parameters
in Equations (9)–(18)) to previous estimated values in the literature [27,39]. We fixed the
parameters because estimating the immunological effects of adaptive immunity is not
a focus of this study, and [24] does not provide sufficient data for estimation of these
parameters. We chose the number of effector T cell and B cell division cycle (i.e., nE and nB)
and the total proliferation time of the cells (i.e., τE and τB) from [39], such that the adaptive
immune responses only become activated five days post infection. The fixed parameter
values are given in Table S1 in Supplementary Materials.

Furthermore, we assumed WT and MUC1-KO mice only differ in ε1 and ε2, a reason-
able assumption given inbred mice and use of the same virus for all experiment. We fitted
log-transformed WT and MUC1-KO data simultaneously to the models with the same
parameter vector set, only differing except for ε1 and ε2, which were set to ε1 = ε2 = 0
for MUC1-KO mice. The prior distribution for model parameters (Φ) is given in Table S2
in Supplementary Materials. The distribution of the observed log-transformed viral load
and macrophage measurement is assumed to be a normal distribution with a mean value
given by the model simulation results and standard deviation (SD) parameter with prior
distribution of a normal distribution with a mean of 0 and a SD of 1.

Model fitting was performed in R (version 4.0.2) and Stan (Rstan 2.21.0). Hamiltonian
Monte Carlo (HMC) optimized by the No-U-Turn Sampler (NUTS) [40] was implemented
to draw samples from the joint posterior distribution of the model parameters. A detailed
theoretical foundation of HMC can be found in [41]. In particular, we used four chains
with different starting points and ran 2000 iterations for each chain, discarding the first
1000 iterations as burn-in. We retained 4000 samples in total from 4 chains (1000 for each)
after the burn-in iterations. The marginal posterior and prior density for all parameters are
shown in Supplementary Materials. We calculated the median and quantiles of 2.5% and
97.5% of the 4000 model outputs at each time for posterior prediction and a 95% prediction
interval (PI), respectively (e.g., Figure 2).
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4.3. Infection-Related Quantities

The basic reproduction number of viral replication (R0) is given by

R0 =
(1 − ε1)βT0V

(δI + κEE(0))(δV + κM M0 + κAS AS(0) + κAL AL(0))
, (19)

where T0 is the initial number of epithelial cells, and M0 is the number of macrophages
in a disease-free equilibrium, given by s/δM. E(0), AS(0) and AL(0) are initial values of
effector CD8+ T cells, a short-term antibody and a long-term antibody, respectively, which
are set to zero at the beginning of infection as mice are naive (i.e., not previously exposed
to influenza). Therefore, R0 simplifies to

R0 =
(1 − ε1)βT0V

δI(δV + κM M0)
. (20)

Please note that ε1 = 0 in MUC1-KO group. The area under the viral load time-series
curve (AUCV) and under the macrophage time-series curve (AUCM) are given by

AUCV =
∫ τ

0
V(t)dt, (21)

AUCM =
∫ τ

0
M(t)dt, (22)

where τ is a cut-off day for calculation. We set τ = 14, which covers the duration of
viral infection, macrophage dynamics and clinical dynamics in [24]. V(t) and M(t) are
simulated time series of viral load and macrophages, respectively.

The estimates of the infection-related quantities were computed using the 4000 pos-
terior samples by solving the ode solver ode15s in MATLAB R2019b with a relative
tolerance of 1 × 10−5 and an absolute tolerance of 1 × 10−10. The initial values for
different model components in the TIV model is (T, I, V, M) = (1 × 107, 0, 30, s/δM),
where s and δM are estimated from fitting the macrophage data to the model. For
the IR model, the initial values were (T, I, V, M, E0, E1 . . . E, B0, B1 . . . P, AS, AL) = (1 ×
107, 0, 30, s/δM, 100, 0, . . . 0, 100, 0, . . . 0, 0, 0). The values of fixed parameters are given in
Supplementary Materials (Table S2). All visualization was performed in R (version 4.0.2).
Computer codes to produce all the figures in this study can be found at
https://github.com/keli5734/MUC1 (accessed on 5 May 2021).

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/v13050850/s1, Figures S1–S10: Posterior distribution for estimated model parameters Φ.
Figure S11–S12: Correlation map of estimated parameters in the TIV and IR models. Figure S13:
Comparison of model predictions for peak viral load, viral load peak time and initial viral growth
rate in the TIV and IR models. Figure S14: Relative contribution of macrophage-mediated viral
clearance in the TIV and IR models. Table S1: Parameter values for fixed parameters. Table S2: Priors
for estimated model parameters.
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