
Tradeoff between enzyme and metabolite efficiency
maintains metabolic homeostasis upon perturbations
in enzyme capacity

Sarah-Maria Fendt1,2,3,5, Joerg Martin Buescher1,4,5, Florian Rudroff1, Paola Picotti1, Nicola Zamboni1,3 and Uwe Sauer1,3,*

1 Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland, 2 Life Science Zurich PhD Program on Systems Biology of Complex Diseases, Zurich,
Switzerland, 3 Competence Center for Systems Physiology and Metabolic Diseases, Zurich, Switzerland and 4 Life Science Zurich PhD Program on Molecular Life
Science, Zurich, Switzerland
5 These authors contributed equally to this work
* Corresponding author. Institute of Molecular Systems Biology, Wolfgang-Pauli-Strasse 16, ETH Zurich, Zurich 8093, Switzerland. Tel.: þ 41 1 633 3672;
Fax: þ 41 44 633 1051; E-mail: sauer@ethz.ch

Received 19.8.09; accepted 9.2.10

What is the relationship between enzymes and metabolites, the two major constituents of metabolic
networks? We propose three alternative relationships between enzyme capacity and metabolite
concentration alterations based on a Michaelis–Menten kinetic; that is enzyme capacities,
metabolite concentrations, or both could limit the metabolic reaction rates. These relationships
imply different correlations between changes in enzyme capacity and metabolite concentration,
which we tested by quantifying metabolite, transcript, and enzyme abundances upon local (single-
enzyme modulation) and global (GCR2 transcription factor mutant) perturbations in Saccharomyces
cerevisiae. Our results reveal an inverse relationship between fold-changes in substrate metabolites
and their catalyzing enzymes. These data provide evidence for the hypothesis that reaction rates are
jointly limited by enzyme capacity and metabolite concentration. Hence, alteration in one network
constituent can be efficiently buffered by converse alterations in the other constituent, implying a
passive mechanism to maintain metabolic homeostasis upon perturbations in enzyme capacity.
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Introduction

Physiological behavior emerges from complex dynamic interac-
tions between transcripts, enzymes, and metabolites, the
constituents of metabolism and its regulatory network (Sauer,
2006). Our ability to monitor global abundance alterations of
those network constituents has developed rapidly over the past
decade, culminating in an impressive array of so-called omics
methods (Domon and Aebersold, 2006; Ishii et al, 2007; Dunn,
2008; Bennett et al, 2009). As a relatively recent addition,
metabolomics methods became available for broad coverage and
quantitative analysis of intracellular metabolite concentrations
(van der Werf et al, 2007; Bennett et al, 2008; Garcia et al, 2008;
Buescher et al, 2009). With the generation of large data sets by
these omics methods, data integration, in particular across
different omics levels, becomes the key challenge (ter Kuile and
Westerhoff, 2001; Stitt and Fernie, 2003; Sauer et al, 2007).

The problem of data integration is the unknown or complex
relationships between the different data types. An example of a

more straightforward relationship is the one between transcripts
and proteins that are directly linked through translation, where
lack of correlation between both quantities is taken as a measure
for post-transcriptional regulation (Griffin et al, 2002; Stitt and
Fernie, 2003). The general relationship between proteins and
metabolites is much less obvious. Although studied extensively
for decades, the focus was on single reactions or small sets of
connected reactions to elucidate molecular mechanisms of
enzymatic catalysis in great detail, thereby enabling their
formalized description by kinetic laws (Fersht, 1974; Cornish-
Bowden, 1976). On the foundation of separately characterized
enzymatic reactions, kinetic models are often used for simulta-
neous analysis of connected reaction sets (Teusink et al, 2000;
Bettenbrock et al, 2006). The determination of model parameters
(Mendes and Kell, 1998) and the transfer of in vitro determined
parameters to in vivo conditions (van den Brink et al, 2008) is
essential but very difficult. To enable model description of larger
metabolic networks, simplifications such as lumping of linear
pathways and linearization of non-linear equations were
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introduced. This greatly reduced the number of parameters but
largely preserved the predictive power, provided one assesses
small deviations from the reference state (Visser and Heijnen,
2003; Fell, 2005; Kresnowati et al, 2005). Metabolic control
analysis and its extensions, in particular regulation analysis,
provide a coherent framework for sensitivity of the influence of
enzyme activities and metabolite concentrations on the flux
through linear pathways in steady state (Kacser and Burns, 1995;
ter Kuile and Westerhoff, 2001). This framework has also been
extended to incorporate non-infinitesimal deviations from steady
state in linear and branched pathways (Small and Kacser,
1993a, b; Hatzimanikatis, 1999) and to facilitate analysis of larger
networks by modularization (Schuster et al, 1993). Less
mechanistically, metabolome and expression data have been
integrated by correlation analyses to infer enzyme-reactant
relationships (Bradley et al, 2009) and metabolic flux rewiring
(Moxley et al, 2009). Two other statistical approaches were partial
least squares analysis to identify responses specific for environ-
mental conditions and gene knockouts (Pir et al, 2006) and
covariance analysis in the context of the known metabolic
network to distinguish different types of enzyme activity
regulation (Cakir et al, 2006). In all these examples, two or more
inputs such as measured data sets or models were combined to
infer biologically interesting outputs such as regulation events or
enzymatic control over flux. However, the prediction of changes
and their direction in the metabolome from expression data or
vise versa remains unsolved.

Here, we attempt to identify a general relationship between
fold-changes in metabolite concentrations and enzyme capa-
city in central carbon metabolism that would allow to predict
changes in metabolite concentration based on changes in
enzyme capacity and vise versa. On the basis of enzyme
kinetics, as in many of the above studies (Fersht, 1974; Kacser
and Burns, 1995; Teusink et al, 2000 ), we propose several
mechanistic relationships between the constituents of meta-
bolism and then use a metabolic model to translate them into
observable predictions. A precondition for this analysis are
highly quantitative and large-scale transcript, enzyme, and
metabolite abundances that are rarely available (Ishii et al,
2007; Sauer et al, 2007). Hence, we performed genome-wide
transcript as well as quantitative proteomics (Picotti et al,
2008, 2009) and metabolomics (Buescher et al, 2009; Ewald
et al, 2009) analyses that are targeted to central metabolism of
the yeast Saccharomyces cerevisiae. To test the various
predictions, we perturb yeast metabolism by deletion of a
key transcription factor and by modulating expression of
single enzymes and subsequently monitor transcript, enzyme,
and metabolite response in wild type and mutant. These data
allow us to demonstrate the validity of the proposed relation-
ship in vivo for large alterations in single or multiple enzymes
in various pathways of central carbon metabolism.

Results

Hypothetical principles of enzyme–metabolite
relationship

To elucidate whether general relationships exist between
metabolite concentrations and enzyme capacities (i.e. the
outcome of enzyme abundance combined with activity), we

propose three hypothetical and alternative governing princi-
ples (Figure 1). The first hypothesis postulates a minimization
of metabolite concentration at a given flux. In this case, in vivo
substrate metabolite concentrations are much lower than Km

of the enzyme that catalyze their reaction. Consequently,
catalytic enzyme capacities are in excess and substrate
metabolite concentrations limit the reaction rates. Thus,
reaction rates are independent of small differences in enzyme
capacity and small changes in reaction substrate metabolite
concentrations are rapidly propagated to reaction product
metabolites. As the metabolite concentrations would then be
robust to small differences in enzyme abundances, alterations
in metabolite concentrations are not expected to correlate with
alterations in enzyme capacity.

The second hypothesis postulates a tradeoff between
metabolite concentration and enzyme capacity. Hence, sub-
strate metabolite concentrations are close to the Km values of
the catalyzing enzymes, consequently both enzyme capacities
and metabolite concentrations affect the reaction rate. In this
case, a negative correlation between differences in concentra-
tions of substrate metabolites and differences in enzyme
capacity is expected. Three subclasses of such a tradeoff can be
distinguished depending on whether substrates are meta-
bolites that participate only in few reactions (e.g. glucose-6-P
or succinate) or cofactors that participate in many reactions
throughout the network (e.g. ATP or NADH). (a) Network-
wide propagation of effects through cofactor reaction coupling
would be minimal if cofactor concentrations are much higher
than their Km values in the various enzymes. Thus, substrate
metabolite concentrations, but not cofactor concentrations,
correlate negatively with small differences in enzyme capacity.
(b) Both, cofactor and metabolite concentrations are close to
their Km values and influence the reaction rate. Thus, cofactors
times metabolite concentrations correlates negatively with
small differences in enzyme capacity. (c) Network-wide
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Figure 1 Alternative hypotheses on three different relationships between
enzyme abundances and metabolite concentrations alterations based on a
Michaelis–Menten enzyme kinetic.
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propagation of effects through cofactor reaction coupling
would be maximal when substrate metabolite concentrations
are much higher than the Km values. Thus, substrate cofactor
concentrations, but not substrate metabolite concentrations
correlate negatively with small differences in enzyme capacity.

The third hypothesis postulates a minimization of enzyme
capacity at a given flux. Hence, substrate metabolite concen-
trations are much higher than the Km of their catalyzing
enzymes, consequently metabolites are in excess and the
enzyme capacities limit the reaction rates. Thus, the reaction
rate is insensitive to small differences in metabolite concen-
trations and it is directly proportional to the enzyme capacity.
Thus, one expects a positive correlation between differences in
concentrations of reaction product metabolites and differences
in enzyme capacity. The three subclasses (a–c) identified in
hypothesis II can also be applied here.

As hypotheses I–III imply different relationships between
enzyme capacities and metabolite concentrations, identifica-
tion of the prevailing situation in microbial metabolism
requires quantitative in vivo metabolite concentration and
enzyme capacity data upon moderate changes in enzyme
capacity. As a first test, we chose wild type S. cerevisiae and an
otherwise isogenic mutant with a complete deletion of the
transcription factor Gcr2p, an activator of glycolysis (Cham-
bers et al, 1995). This mutant exhibits altered transcript
abundances, enzyme activities, and metabolite concentrations
within closely connected reactions in glycolysis and in the
tricarboxylic acid cycle (Uemura and Fraenkel, 1990, 1999;
Sasaki and Uemura, 2005). Although any other transcription
factor that modulates expression of multiple genes could be
used, Gcr2p has the advantage that its targets are primarily in
central metabolism where metabolite and enzyme abundances
are comparably high and therefore measurable at high
accuracy and coverage. To quantify the relationship between
metabolite concentrations and enzyme capacities, we deter-
mined transcript, enzyme, and metabolite abundances in wild
type and GCR2 mutant in batch culture on glucose minimal
medium. Transcript and enzyme abundances are used as
surrogates for enzyme capacities. Certainly, this does not hold
true if post-transcriptional or allosteric regulation takes place,
and such cases are expected as outliers from the correlation.

Transcript abundances

As a first and global measure of the GCR2 deletion conse-
quences, we determined 5649 mRNA abundances in wild type
and mutant by microarray analysis (Supplementary Table 1).
In the mutant, the expression of 257 and 165 genes was
significantly increased and decreased, with a fold-change
between 1.3 and 14.2 (P-valuep0.05). As expression altera-
tions beyond carbohydrate metabolism are either indirect
effects of the reduced mutant growth rate (Supplementary
Table 2) or results from so far unknown targets of Gcr2p, we
focused our attention on central carbon metabolism.

Differential expression within central metabolism during
growth in minimal medium was consistent with GCR2
mutant data in rich medium (Sasaki and Uemura, 2005).
The abundance of the glycolytic gene GLK1 was 1.8 fold
(P-value¼0.003) increased and those of PGI1, GPM1, and
ENO1 between 1.4 and 1.7 fold (P-valuep0.0006) decreased

in the mutant compared with the wild type (Supple-
mentary Figure 1). ENO2 and CDC19 were only slightly
decreased (fold-change between 1.2 and 1.3, P-value
p0.0007). For 7 out of 9 tricarboxylic acid cycle reactions,
we found expression of at least one encoding gene to be
slightly increased (fold-change between 1.1 and 1.2, P-value
p0.04) in the mutant compared with the wild type. Given the
highly coordinated response, even this subtle increase seems
to be biologically relevant. On rich medium, only four genes of
the tricarboxylic acid cycle were expressed at higher level
(Sasaki and Uemura, 2005), which might be related to the
additional influx of amino acids into the cycle.

Enzymes abundances

As a precondition for this work, the transcript data confirmed
the primary regulatory targets of Gcr2p in central metabolism,
and now enabled us to specifically target the relevant proteins
and metabolites for further analysis. To obtain a more
quantitative readout on altered in vivo enzyme capacities that
are expected to result from this differential gene expression,
we quantified the abundance of 50 central metabolic enzymes
by targeted mass spectrometry-based proteomics (Supplemen-
tary Table 3). The abundance of 9 out of 15 measured
glycolytic enzyme was lower in the GCR2 mutant than in the
wild type (fold-change between 1.3 and 5.3, P-valuep0.05),
which is in agreement with reported glycolytic in vitro enzyme
activities in rich medium (Uemura and Fraenkel, 1999).
Likewise, enzyme abundances in the acetate and ethanol
formation pathways were decreased in the mutant. The
abundance of 3 out of 7 measured enzymes within the pentose
phosphate pathway and 6 out of 19 within the tricarboxylic
acid cycle were increased in the mutant (fold-change between
1.3 and 3.0, P-valuep0.05). Generally, the observed differ-
ences in enzyme abundances were more pronounced than the
respective differences in mRNA abundances (Supplementary
Figure 1).

Metabolite concentrations

Intracellular concentrations of metabolites in the vicinity of
differentially expressed enzymes were quantified by targeted
metabolomics. Specifically, we determined absolute concen-
trations of 24 metabolites and relative concentration for an
additional three metabolites, thereby covering 80% of central
carbon metabolism (Supplementary Figure 2; Supplementary
Table 4). All measurements were performed with liquid
chromatography–mass spectrometry analysis except for the
tricarboxylic acid metabolites that were determined by gas
chromatography–mass spectrometry. Overall, metabolite con-
centrations in the GCR2 mutant were mostly higher in
glycolysis and lower in the tricarboxylic acid cycle compared
with the wild type. The greatest fold-change was observed for
P-glycerate, as reported earlier (Uemura and Fraenkel, 1999).

We used two approaches to further confirm the validity of
our metabolite data set. First, exponentially growing cells are
expected to exhibit an adenylate energy charge of 0.80 or
higher (Wiebe and Bancroft, 1975). As the calculated
adenylate energy charge on glucose was 0.89±0.02
(0.75±0.02 on ethanol) and 0.78±0.02 (0.73±0.02 on
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ethanol) for wild type and mutant, respectively, we have
evidence that the highly sensitive energy cofactor concentra-
tions are a faithful representation of the in vivo situation.
Second, we used network-embedded thermodynamic analysis
(Kümmel et al, 2006; Zamboni et al, 2008) to demonstrate that
all measured metabolite concentrations were thermodyna-
mically consistent with the expected direction of flux.

Integration of metabolite concentrations with
transcript and enzyme abundances

To determine whether one of the above-proposed hypotheses
(Figure 1) between enzymes and metabolite prevails in vivo,
we quantified the various metabolite and transcript/enzyme
correlations. To maintain the functional metabolic context, we
defined pairs of metabolites/cofactors with their connected
genes/enzymes, using the genome-scale metabolic model
iLL672 and flux balance-derived flux directions (Küpfer et al,
2005) (Figure 2). For most cases, we obtained clearly defined
pairs of reaction substrate or reaction product metabolites/
cofactors with their corresponding enzymes/genes. Where
multiple genes were assigned to a single reaction, we used the
yeast genome database (Cherry et al, 1998) and the genome-
scale model to distinguish between iso-enzymes and subunits
of enzymatic complexes. For iso-enzymes, the individually
determined abundances were summed into a single reaction
abundance value before calculating fold-change between
mutant and wild type. For multisubunit complexes, we
calculated the average complex abundance by averaging over
all subunits, weighted with their stoichiometric participation
in the complex.

The implied fold-change correlations were then evaluated
by the P-value for the null hypothesis that the data are not
correlated (Figure 3). If metabolite abundance is minimized
(hypothesis I), enzyme and metabolite abundances should be
independent of each other and there would be no correlation in
Figure 3. If a tradeoff between metabolite and enzyme
abundance exists (hypothesis II): (a) substrate metabolite
fold-changes could correlate with transcript/enzyme fold-
changes (Figure 3A) and thus network-wide propagation of
effects through cofactor reaction coupling is minimal; (b)
substrate metabolite times substrate cofactor fold-changes
could correlate with transcript/enzyme fold-changes
(Figure 3E) and thus both are equally relevant; and (c)
substrate cofactor fold-changes could correlate with tran-
script/enzyme fold-changes (Figure 3C) and thus network-
wide propagation of effects through cofactor reaction coupling
is maximal. Finally, if enzyme abundance is minimized
(hypothesis III), product metabolite/cofactor correlate with
transcript/enzyme fold-changes (Figure 3B and D) and/or
product metabolite times product cofactor fold-changes
correlate with transcript/enzyme fold-changes (Figure 3F).

Although functionally related, neither enzyme nor tran-
script fold-changes were significantly correlated with fold-
changes in metabolites/cofactors when these were reaction
products (Figure 3B, D, and F corresponding to hypothesis
IIIa–c). Likewise, no correlation of enzyme or transcript fold-
changes with substrate metabolite times substrate cofactor
was found (Figure 3E corresponding to hypothesis IIb).
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Although reasonable P-values of 0.097 and 0.070 were found
for the correlation between fold-changes of substrate cofactors
and fold-changes of enzymes or transcripts, respectively
(Figure 3C corresponding to hypothesis IIc), we did not
consider them further because they were defined by only two
point clouds that resulted from similar cofactor concentrations
in wild type and GCR2 mutant.

The most significant correlation was observed for fold-
changes in substrate metabolite concentrations with fold-
changes in enzyme abundance (Figure 3A corresponding to
hypothesis IIa). Not unexpectedly, enzyme abundances were a
significantly better approximation for enzyme capacities than
transcript abundances; as seen by the lower P-value for the
enzyme-metabolite correlation than the transcript–metabolite
correlation. A further improved correlation was achieved by
considering all diverging enzymes that react upon a given
substrate metabolite simultaneously rather than considering
them as a separate reaction (Figure 4). This improvement by
summing the abundances before calculating fold-changes
supports the intuitive notion that divergent branches of
enzymes simultaneously affect substrate metabolite concen-
trations. The high correlation between substrate metabolite
and enzyme fold-changes suggests a tradeoff between enzyme
capacity and metabolite concentrations in central metabolism.
These results also indicated that reaction coupling by cofactors
does not occur in vivo, since the best correlation was obtained
by solely considering substrate metabolites without cofactors.
In general, allosterically regulated enzymes might not fit into
this correlation because their enzyme capacity can be
regulated independently of their abundance. Although several
allosteric enzymes occur in central carbon metabolism, only
pyruvate kinase (Cdc19p) was identified as an outlier of the
correlation (Figure 4).

Validity of negative correlation between substrate
metabolite and enzyme abundances

To test the general validity for central carbon metabolism of the
above identified tradeoff between reaction substrate metabo-
lite concentrations and enzyme abundances, we performed
four independent validations: a statistical, a literature based,
and two experimental ones. Statistically, we verified that the
correlation between substrate metabolites and enzymes
could not have been found by chance. For this purpose,
we calculated P-values for 108 correlations of 17 metabolite–
enzyme pairs that were randomly picked from all measured
metabolite and enzyme abundances. The smallest observed
P-value was 0.174 (Bonferroni corrected for 108 random
samples). On this basis, we conclude that by chance
occurrence of the proposed correlation is highly unlikely. On
the basis of the literature data, we performed the above
correlation analysis with data from the bacterium Escherichia
coli (Rahman et al, 2006), the plant Arabidopsis thaliana
(Rohde et al, 2004), and three data sets from the yeast S.
cerevisiae (Uemura and Fraenkel, 1999; Castrillo et al, 2007;
Tai et al, 2007) (Figure 5). All available data followed the
proposed correlation, thus providing further evidence for the
general validity of this relationship. Different theoretical
analysis of optimal enzyme properties suggested substrate

concentrations either one order of magnitude below Km

(Fersht, 1974) or within one order of magnitude of Km

(Cornish-Bowden, 1976), the latter was also found experi-
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mentally in E. coli (Bennett et al, 2009). This supports our
hypothesis of a tradeoff between metabolite and enzyme
efficiency. The finding that cofactor concentrations are
predominantly above their respective Km values in E. coli
(Bennett et al, 2009) strongly supports our finding that
reaction coupling in the metabolic network is rather loose.

As a more serious challenge of the identified correlation, we
designed an experiment where the absolute flux alterations are
large and additionally the flux directions are altered. For this
purpose, we quantified intracellular metabolite concentrations
in both wild type and GCR2 mutant during growth on ethanol
as sole carbon source. Under this condition, the flux through
the glycolytic pathway is reversed relative to glucose growth
and the fluxes are also much lower (Küpfer et al, 2005).
Reported in vitro enzyme capacities demonstrated that
fold-changes in capacity between the wild type and the
GCR2 mutant are qualitatively identical and quantitatively
similar on glycolytic and gluconeogenic substrates (Uemura
and Fraenkel, 1999). Thus, we expected the new substrate
metabolites (which were product metabolites on glucose)
to occur at higher concentrations in the mutant than in the
wild type. We can test this for the reactions catalyzed by
Fba1p, Eno1/2p, and Pgk1p, because flux directions are
reversed and enzyme abundances are significantly altered
(Figure 4). The expectation was fulfilled by the experimental
data in all cases, thereby further corroborating the negative
correlation between enzyme capacity and metabolite concen-
trations (Figure 6).

So far, our experimental evidence was based on perturbing
multiple enzyme abundances through a transcription factor
mutant. To ensure that our findings are also valid for single-
reaction perturbations, we modulated individual abundances
of the four glycolytic enzymes Pgi1p, Tpi1p, Eno2p, and
Cdc19p using strains whose endogenous genomic promotor
was replaced by a Tet-controlled promotor (Mnaimneh et al,
2004). The Tet-controlled promotor is repressed by addition of
doxycycline (or tetracycline). Such strains are available for
about 13% of all yeast genes, and we tested the four strains for
which we could measure metabolites surrounding the
perturbed reaction. The strains were grown on glucose
minimal medium, supplemented with leucine, methionine,
uracil, histidine, and lysine at different amounts of doxycycline
to modulate expression. We then determined intracellular
metabolite concentrations during exponential growth and
normalized them to the concentrations without doxycycline
(Figure 7). The identified relationship between substrate
metabolite and enzyme abundance alterations predicts an
exclusive increase for the substrate metabolite of down-
regulated enzymes, while all other metabolite concentrations
should remain constant. This prediction was indeed verified
with two minor exceptions. Reduced Eno2p abundance, led
also to a minor increase of the product metabolite P-enol-
pyruvate, which might be related to allosteric regulation of
Cdc19p that further catalyzes P-enol-pyruvate. Furthermore,
reduced Cdc19p abundance, not only increased the expected
P-enol-pyruvate concentration but also 2þ 3-P-glycerate,
albeit somewhat dampened, which indicates that the adjacent
enolase reaction operates close to thermodynamic equilibrium
(Kümmel et al, 2006). We thus conclude that metabolic
homeostasis in central carbon metabolism is achieved by local
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Figure 6 Substrate and product metabolite concentrations for reactions catalyzed
by Eno1/2p, Fba1p, Pgk1p in the exponentially growing GCR2 mutant (green) and
wild type (yellow) on glucose or on ethanol as sole carbon source. Eno1/2p, Fba1p,
and Pgk1p exhibit lower enzyme activities in the mutant compared with the wild type
(Uemura and Fraenkel, 1999) (data are found in Supplementary Table 4A).
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metabolite responses, independent of whether the perturba-
tions are at single enzymes or more coordinated at multiple
enzymes.

Discussion

We demonstrate here that global or local alterations in enzyme
abundance correlate negatively with enzyme reaction sub-

strate concentration at least in central carbon metabolism.
This implies a tradeoff between enzyme and metabolite
efficiency in metabolic networks. As the correlation was
specific to substrate metabolites that are connected to few
reactions, but did not extent to highly connected cofactor
metabolites, there was no reaction coupling such that the
metabolite response remained relatively local.

These findings can be interpreted as a passive network
mechanism to maintain close-to-wild-type homeostasis of

Figure 7 Metabolite concentrations in S. cerevisiae strains with independently downregulated protein abundance. Protein abundances were modulated using yeast
strains whose endogenous promotor was replaced by a Tet-controlled one. Blue background highlights the substrate metabolite for the perturbed enzyme abundance.
Enzyme depicted in blue were modulated. G6P¼glucose-6-P, F6P¼fructose-6-P, FBP¼fructose-bis-phosphate, DHAP¼di-hydroxy-acetone-P, 2þ 3PG¼2þ 3
P-glycerate, PEP¼P-enol-pyruvate (data are found in Supplementary Table 4B).
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central carbon metabolism upon perturbations that alter the
enzyme capacity (Cornish-Bowden, 1976). Such alterations in
enzyme capacity are buffered by converse changes in substrate
metabolite concentration, thereby minimizing the difference
in metabolic flux that is caused by the alteration. It seems that
cells locally sacrifice metabolite homeostasis to maintain
fluxes and global metabolite homeostasis. This finding is in
line with earlier findings, suggesting small influence of single
enzymes on metabolic flux (Kacser and Burns, 1995), and
further explains why metabolic fluxes are surprisingly robust
to local (e.g. enzyme deletions) but also global (e.g. transcrip-
tion factor deletions) genetic perturbations (Blank et al, 2005;
Fischer and Sauer, 2005; Perrenoud and Sauer, 2005; Tang et al,
2009). Furthermore, this mechanism has two intuitive
advantages for the cell. First, environmental stresses that
drain reduction cofactor metabolites (e.g. oxidative stress)
(Hampsey, 1997; Grant, 2008) are not propagated throughout
the network, thus minimizing the impact on metabolic
homeostasis. Second, global environmental perturbations that
affect enzyme capacity are buffered by increased metabolite
concentrations, thus minimizing growth effects. Only when
alterations in central carbon metabolism exceed the passive
metabolite–enzyme capacity buffering the reaction flux will
change. If this passive buffering mechanism is also present in
secondary metabolism, which has an inherent lower overall
flux remains open. Although we demonstrated the relationship
in yeast, it remains to be tested whether it generally holds for
other organisms. Yet, in the small data sets of a plant (Rohde
et al, 2004) and a bacterium (Rahman et al, 2006) that we used
for our empirical validation, we found no evidence against it.

Finally, the identified relationship between metabolite concen-
trations and enzyme capacities provides a theoretical basis for the
use of metabolomics as fast screening method in functional
genomics. As mass spectrometry-based intracellular metabolo-
mics is amenable for high-throughput analysis (Ewald et al, 2009),
large data sets could be generated rapidly. Our results indicate that,
at least to some extent, an altered metabolite concentration can be
interpreted as a converse change in its catalyzing enzyme capacity.

Materials and methods

Strains, medium, and cultivation conditions

S. cerevisiae wild type FY4 Mata (Winston et al, 1995) (kindly provided
by Fred Winston) was used as a reference. The GCR2 mutant was
constructed as whole gene deletion by using a KanMX4 cassette in the
prototroph background of FY4 Mata (Winston et al, 1995) (kindly
provided by Charlie Boone). Tet-titratable promotor strains were
obtained from openbiosystem (Mnaimneh et al, 2004).

Liquid pre-cultures were inoculated from freshly plated YPD plates.
Pre-cultures were always grown in glucose minimal medium as
described earlier with 10 g/l glucose (Blank and Sauer, 2004). Ethanol
(5 g/l) as carbon source was only added to the final cultures.
Cultivations of 25–50 ml were performed in 500 ml shake flasks
at 301C and 250 r.p.m. (metabolite and proteome measurement),
or in 96-deep-well plates (Kuehner AG, Birsfeld, Switzerland)
(Duetz et al, 2000) with a culture volume of 1.2 ml, at 301C and
300 r.p.m. (transcriptome measurement). All shakers had a 50 mm
amplitude. To improve mixing, a single 4 mm diameter glass bead
(Sigma-Aldrich, Buchs, Switzerland) was added to each well. For the
metabolome measurement, we reduced the medium potassium
hydrogen phthalate concentration from 100 mmol/l to 10 mmol/l with
no significant change in physiology. Experiments with Tet-controlled
promotor strains were performed in reaction tubes with 3.5 ml filling

volume. The cultivation medium was glucose minimal medium
supplemented with leucine (0.24 g/l), methionine (0.02 g/l), uracil
(0.02 g/l), histidine (0.02 g/l), and lysine (0.03 g/l). To titrate expres-
sion alterations, the doxycycline concentration (Sigma-Aldrich) was
varied between 0 mg/l and 20 mg/l.

All samples were taken at an OD600 between 0.8 and 1.2 from
cultures growing exponentially on minimal medium. To ensure
comparability among the samples, only cultures that followed a
standardized growth curve and thus exhibited reproducibly the
determined physiology were used (Supplementary Table 2).

Physiological parameters

Specific growth rates were determined from at least three independent
cultures and at least six OD600 points during the exponential growth.
Uptake and secretion rates were determined as described elsewhere
(Heer and Sauer, 2008).

Transcriptome analysis

Harvesting, extraction of mRNA, and on-column DNase digestion were
performed by the mechanical disruption protocol of the RNeasy Mini
Kit (50) (Qiagen, Rapperswil, Switzerland).

Total RNA samples were reverse transcribed with One-Cycle cDNA
Synthesis Kit (Affymetrix Inc., P/N 900431, Santa Clara, CA, USA). The
double-stranded cDNAwas purified using the Sample Cleanup Module
(Affymetrix Inc., P/N 900371). The purified double-stranded cDNAs
were in vitro transcribed with biotin-labeled nucleotides using the IVT
Labeling Kit (Affymetrix Inc., P/N 900449). The biotinylated cRNA
was purified using the Sample Cleanup Module, and NanoDrop ND
1000 and Bioanalyzer 2100 were used to determine quality and
quantity. Biotin-labeled cRNA samples were fragmented randomly to
35–200 bp at 941C in fragmentation buffer (Affymetrix Inc., P/N 900371)
and suspended in 100ml of hybridization mix (Affymetrix Inc., P/N
900720), containing a hybridization control and control oligonucleo-
tide B2 (Affymetrix Inc., P/N 900454). Samples were hybridized to
GeneChip Yeast Genome 2.0 arrays for 16 h at 451C. Arrays were then
washed using an Affymetrix Fluidics Station 450 FS450 0003 protocol.
An Affymetrix GeneChip Scanner 3000 (Affymetrix Inc.) was used to
determine the fluorescent intensity emitted by the labeled target.

Affymetrix CEL files were processed using R (version 2.8.0)
and the Bioconductor affy package (Gautier et al, 2004). Probe
intensities were normalized for background by using the robust
multiarray average method (RMA) (Irizarry et al, 2003), using only
perfect match (PM) probes. Normalization was performed using the
qsplines algorithm (Workman et al, 2002). Gene expression values
were calculated from the PM probes using the expression index
calculation method (Li and Wong, 2001). Raw data are stored in GEO
(series number GSE19569, NCBI tracking system 15756402).

Proteome analysis

The targeted proteomics protocol based on single-reaction monitoring
as described by Picotti et al (2008, 2009) was applied. The majority of
the proteins is quantified based on two or more peptides. Exceptions
with single peptides were Adh2p, Fba1p, Gnd2p, Gpd2p, Hxk2, Lat1p,
Pfk2p, Rki1p, Sdh2p, Sdh4p, and Tdh2p. All the coordinates of the
single-reaction monitoring assays used are listed in Supplementary
Table 5. Raw tandem mass spectrometry data have been deposited in
the publicly accessible repository of proteomic data PeptideAtlas
(S. cerevisiae—MRMAtlas build, http://www.mrmatlas.org; Picotti
et al (2008)) and can be browsed using the yeast genome database
accession name of each protein/ORF measured.

Metabolome analysis

Sampling and cold methanol quenching were performed by de Koning
and van Dam method (de Koning and van Dam, 1992) and its extensions
(Buescher et al, 2009; Ewald et al, 2009). Liquid chromatography
separation of compounds was achieved by an ion pairing-reverse phase
method developed forultra high performance systems, based on previously
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published high pressure methods (Luo et al, 2007; Buescher et al, 2009;
Ewald et al, 2009) and implemented on a Waters Acquity UPLC (Waters
Corporation, Milford, MA, USA) using a Waters Acquity T3 end-capped
reverse phase column with dimensions 150 mm� 2.1 mm� 1.8mm
(Waters Corporation). Selective and sensitive detection of compounds
was achieved by coupling liquid chromatography to a Thermo TSQ
Quantum Ultra triple quadrupole mass spectrometer (Thermo Fisher
Scientific, Waltham, MA, USA) using a heated electrospray ionization
source (Thermo Fisher Scientific). The mass spectrometer was operated
in negative mode with multiple reaction monitoring. Fragmentation
parameters were optimized individually for all compounds (Supplemen-
tary Table 6). Both acquisition and peak integration were performed with
the Xcalibur software version 2.07 SP1 (Thermo Fisher Scientific) and
in-house integration software (Begemann and Zamboni, unpublished).
Peak areas were normalized to fully 13C-labeled internal standards
(Wu et al, 2005) and the amount of biomass.

Tricarboxylic acid cycle intermediates were determined with gas
chromatography-time-of-flight mass spectrometry (Ewald et al, 2009).
Raw data are available as Supplementary Table 4.

Statistical analysis

To validate correlations, we calculated P-value, with the Matlab
function ‘corrcoef’ (The MathWorks Inc., Natick, MA, USA). First, the
correlation coefficient matrix R is calculated

Rði; jÞ ¼ xðiÞ � yðjÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xðiÞ � xðiÞ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
yðjÞ � yðjÞ

p

where x denotes the log2 fold-changes of metabolites and y denotes the
log2 fold-changes of transcripts/enzymes. The P-value is then
computed by transforming the correlation to create a t-statistic.

Supplementary information

Supplementary information is available at the Molecular Systems
Biology website (www.nature.com/msb).
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