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Abstract: p62/Sequestosome-1 (p62) is a multifunctional adaptor protein and is also a constant
component of disease-associated protein aggregates, including Mallory–Denk bodies (MDBs), in
steatohepatitis and hepatocellular carcinoma. We investigated the interaction of the two human p62
isoforms, p62-H1 (full-length isoform) and p62-H2 (partly devoid of PB1 domain), with keratins
8 and 18, the major components of MDBs. In human liver, p62-H2 is expressed two-fold higher
compared to p62-H1 at the mRNA level and is present in slightly but not significantly higher
concentrations at the protein level. Co-transfection studies in CHO-K1 cells, PLC/PRF/5 cells as
well as p62− total-knockout and wild-type mouse fibroblasts revealed marked differences in the
cytoplasmic distribution and aggregation behavior of the two p62 isoforms. Transfection-induced
overexpression of p62-H2 generated large cytoplasmic aggregates in PLC/PRF/5 and CHO-K1 cells
that mostly co-localized with transfected keratins resembling MDBs or (transfection without keratins)
intracytoplasmic hyaline bodies. In fibroblasts, however, transfected p62-H2 was predominantly
diffusely distributed in the cytoplasm. Aggregation of p62-H2 and p62∆SH2 as well as the interaction
with K8 (but not with K18) involves acquisition of cross-β-sheet conformation as revealed by staining
with luminescent conjugated oligothiophenes. These results indicate the importance of considering
p62 isoforms in protein aggregation disease.

Keywords: p62 isoforms; keratins; protein aggregation; protein aggregation diseases

1. Introduction

The SQSTM1 gene encodes the ubiquitously expressed sequestosome-1/p62 (p62),
a stress-inducible scaffold protein with a variety of cellular functions. These include
autophagy [1], cell signaling in inflammation [2], response to oxidative stress [3], and
pathogen infections [4]. Furthermore, p62 has been linked to several human disorders such
as cancer [5], Paget’s disease of the bone [6], and protein aggregates occurring in several
neurodegenerative diseases as well as alcoholic and non-alcoholic steatohepatitis [7,8].

The first evidence of a role for p62 in protein aggregation diseases was obtained by the
identification of p62 as a constant component of intracellular protein aggregates in the liver
and neurodegenerative diseases [9–11]. For example, hepatocyte-associated p62 aggregates
are found as Mallory–Denk bodies (MDBs) in steatohepatitis and as intracytoplasmic
hyaline bodies (IHBs) in hepatocellular carcinomas and copper toxicosis, and in the brain
as Lewy bodies in Parkinson’s disease, neurofibrillary tangles in Alzheimer’s disease, and
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huntingtin aggregates in Huntington’s disease [8,12–15]. These proteinaceous inclusions
are rich in amyloid-like structures and are mainly composed of p62, ubiquitin, chaperones,
proteasome subunits as well as core proteins characteristic of the inclusion type (e.g.,
keratin in MDBs, α-synuclein in Lewy bodies or neurofilaments and tau in neurofibrillary
tangles) [8,16,17].

p62 consists of several domains involved in protein–protein interactions that may also
play a role in protein aggregation, such as the Phox and Bem1p (PB1) domains, which
was shown to mediate self-oligomerization of p62, the LC3 interacting region (the LIR
responsible for binding to autophagosomes [18]), and the ubiquitin-associated (UBA)
domain that binds poly-ubiquitinated proteins [19]. Recently, three different isoforms were
identified as being transcribed from the SQSTM1 gene [20]. The p62 isoform-1 (p62-H1) is
the largest protein with 440 amino acids; p62 isoform-2 (p62-H2) differs in the 5’ UTR and
uses another translation initiation at methionine 85, resulting in a truncated p62 lacking
most parts of the PB1 domain (Figure A1). Furthermore, there is a third transcript variant
responsible for the same protein as p62-H2 [21]. Several studies have investigated the role
of the PB1 domain, but only few data exist on the expression and functional differences of
the different p62 isoforms. One study concentrated on tripartite motif-containing protein 5
alpha (TRIM5α), which interacted with p62-H1 but failed to interact with p62-H2 in HEK
293T and HeLa cells [20]. Regarding the interaction of p62 with LC3, a detailed study with
p62-H2 and p62-H1 was performed in HeLa cells, where p62-H2 (unable to oligomerize)
was found to interact more strongly with LC3 than p62-H1 and appeared to be present
within much larger complexes that consisted of multiple copies of p62 as revealed by FRET
analysis [22]. Another study demonstrated that p62 isoforms were proteolytically trimmed
by caspase-8 at aspartate 329 in human skin fibroblasts. Since p62-H2 partly lacks the
PB1 domain and might not be involved in autophagy, the authors focused on p62-H1;
they called the trimmed stable protein p62TRM (1–329aa), which plays a role in mTORC1
activation [23].

In order to elucidate the possible functions of p62-H1 and p62-H2 in protein aggre-
gation, particularly regarding hepatocellular inclusions, we investigated their interaction
with keratins 8 and 18; in addition, we compared p62-H2 with a SH2 deletion mutant
(p62∆SH2). The SH2 domain is part of the PB1 domain and is also involved in protein–
protein interaction. Whereas p62-H1 is ubiquitously expressed in various tissues [24],
little is known about the expression pattern of p62-H2 in human tissues [25] and studies
have failed to detect a stable p62-H2 protein [21]. We therefore analyzed the expression of
p62-H1 and p62-H2 mRNA and proteins in human liver and investigated the aggregation
behavior and interaction of p62 isoforms with keratins in different cell types with and
without endogenous p62 and keratin, respectively.

2. Results
2.1. p62-H2 Protein Was Present at a Slightly Higher Level than p62-H1 in Human Liver

In order to quantify mRNA concentrations of p62 isoforms, we designed specific
primers for qRT-PCR, where one primer set amplifies only p62 transcript variant 1 (p62
TV1), and the second amplifies all the p62 variants 1, 2, and 3 (p62 TV123) (Appendix A,
Figure A1). The purified plasmid DNA of p62-H1 was used to estimate the primer ef-
ficiencies for both isoforms (Appendix A, Figure A2). Normalizing p62 isoforms to the
house-keeping gene (β-actin) and primer efficiencies using MultiD software revealed an
approximately three-fold higher concentration of the shorter amplicon derived from all
three p62 isoforms than the longer one derived only from p62-H1 mRNA. This indicates
that mRNA concentrations of p62 isoforms 2 and 3 (encoding p62-H2) exceed by two-fold
the concentration of p62-H1 mRNA in the human liver (Figure 1A).

In a study with cultured human retinal pigment epithelial (RPE) cells, both p62 mRNA
variants were expressed, but no protein corresponding to p62-H2 was detected [24]. In
order to investigate the protein expression of p62-H1 and p62-H2 isoforms in human liver,
we performed Western blot analyses of three different normal human liver samples using
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the p62CT antibody, which was raised against the C-terminus of p62 and recognizes both
isoforms. Densitometric quantification of protein bands of both isoforms revealed a slightly
but not significantly higher expression of p62-H2 compared to p62-H1 (Figure 1B), which
is consistent with the mRNA expression. The calculated molecular mass of p62-H1 was
47.7 kDa and for p62-H2 38.6 kDa. We observed a slight difference in the mobility of
both isoforms as expected from the calculated molecular masses, which suggests post-
translational modifications (Appendix A, Figure A3). The two bands observed might reflect
different post-translational modifications of p62-H1 (Figure 1B). To rule out this possibility,
we performed Western blot analyses on the same liver samples using a p62 N-terminus
(p62NT) antibody that recognizes p62-H1 alone at 62 kDa (Appendix A, Figure A3C). Taken
together, our results demonstrate the expression of p62-H1 and p62-H2 isoforms at RNA
and protein levels in the human liver.
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Figure 1. Predominantly expressed p62 isoforms in the human liver. (A) mRNA expression of
p62 isoform-1 (p62TV1) and p62 isoform-1, 2, and 3 (p62TV123) normalized to β-actin. Inter-plate
calibration and normalization of primer efficiencies using MultiD software. (B) Western blot and
densitometric quantification of p62 isoform proteins p62H1 and p62-H2 in three independent human
liver samples (40 µg/lane) normalized to β-tubulin (Lane 1: protein ladder, 2–4: human liver samples).
Immunoblotting using the p62CT antibody that recognizes both isoforms. A paired student’s t-test
was performed to evaluate significance, ns p > 0.05, ** p < 0.05.

2.2. p62-H2 Formed Larger Aggregates than p62-H1 in CHO-K1 Cells

To investigate aggregation and interaction between overexpressed p62 isoforms and
keratins, we performed co-transfection experiments in CHO-K1 cells that lacked an en-
dogenous keratin intermediate filament cytoskeleton. The CHO-K1 cells were previously
used to study MDB formation in vitro, particularly the aggregation behavior of p62 and
keratins but without consideration of the possible roles of p62 isoforms [26,27]. As a
negative control and to demonstrate the possible effects of the stress-induced alterations
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of endogenous p62 expression, we transfected cells with an empty pCDNA4 vector. This
procedure led to the appearance of endogenous p62 as stress bodies (Figure 2A) [1].

Overexpression of p62-H1 or p62-H2 alone revealed cytoplasmic inclusions (Figure 2B,C),
whereby p62-H2 produced, in repeated experiments, large globular aggregates (Figure 2C)
in contrast to the smaller accumulation of p62-H1. The aggregates formed by p62-H2 resem-
bled in their size and shape IHBs found in tumor cells of some HCCs and in hepatocytes in
copper toxicosis [8,28]. Interestingly, overexpression of p62∆SH2 (different from p62-H2
by the presence of the AID domain of PB1) formed only smaller, more granular aggregates
(Figure 2D).

Overexpression of keratin 8 (K8) or keratin (K18) alone led to the formation of aggre-
gates that partially co-localized with endogenous p62 stress bodies (Figure 2E,F). In general,
K18 aggregates were smaller and more granular than those consisting of K8 (Figure 2E,F).

Overexpression by co-transfection of p62-H1 together with K8 did not result in co-
localization of p62 aggregates with K8 (Figure 2G). In contrast, transfection-induced
overexpression of p62–H2 and K8 led to the formation of large aggregates with partial
co-localization resembling so-called hybrid inclusions [8], which are regarded as tran-
sition stages between IHBs to MDBs (Figure 2H). The p62∆SH2/K8 co-transfection ex-
periments revealed similar results (Figure 2I) with, however, more granular aggregates
than with p62-H2. Similar results were obtained by co-transfection experiments with
p62-H2, p62∆SH2, and K18 (Figure 2K,L). In contrast, p62-H1 and K18 aggregates did
not co-localize (Figure 2J). Morphological analyses revealed major differences in the aggre-
gate size among the p62 isoforms. The p62-H2 formed significantly larger and globular
aggregates in comparison to the endogenous p62 of the empty-vector-transfected cells
and in comparison to p62-H1 and p62∆SH2, which was consistent in three independent
experiments (Figure 2M).

To more precisely assess the extent of interaction and co-localization between the
p62-H1 and p62-H2 isoforms with keratins, high-resolution 3D confocal imaging was
performed (Figure 3A). Using the Pearson correlation coefficient, we found on a single
cell level that transfected K18 was found in close proximity to endogenous p62 aggregates
compared to very low interaction with K8 (Figure 3B). While K8 showed a higher degree of
co-localization with co-transfected p62-H1 compared with endogenous p62, for K18 a lower
proximity to p62-H1 was observed. Nevertheless, both K8 and 18 showed very pronounced
interaction with co-transfected p62-H2 (Figure 3C). The results of high-resolution confocal
co-localization were further corroborated by wide-field FRET-measurements to increase
the spatial resolution of detection of molecular interaction to approximately 20 nm. The
FRET measurements revealed results comparable to the Pearson correlation coefficients
(Figure 3B,D). Furthermore, the count per cell and morphology of aggregates formed by
K8 and K18 as well as p62 isoforms were analyzed. While K8 and K18 formed only a
small number of particles in combination with endogenous p62, co-expression with p62-H1
and p62-H2 led to a strong increase in K8 and K18 aggregates. Interestingly, the number
of aggregates labeled for p62 in cells co-expressing p62-H1 or p62-H2 did not change
significantly compared to endogenous p62 (Appendix A, Figure A3). However, the size
of the aggregates strongly increased under conditions of K8/p62-H2 and K18/p62-H2
co-expression. At the same time, K8/p62-H1 and K18/p62-H1 combinations showed either
very small size increases, insignificant changes, or even a size reduction compared to
K8 and K18 combinations with endogenous p62 (Appendix A, Figure A4). These results
indicate a clear-cut involvement of the p62-H2 isoform in facilitating aggregate growth and
molecular interaction with keratins, especially K18.
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(D) p62ΔSH2 mutant, (E) keratin 8 (K8), (F) keratin 18 (K18), (G) p62-H1 and K8, (H) p62-H2 and K8, (I) p62ΔSH2 and K8, 
(J) p62-H1 and K18, (K) p62-H2 and K18, and (L) p62ΔSH2 and K18. Transfected cells were stained for double-label im-
munofluorescence microscopy with antibodies against p62 (red) and K8/18 (green). Arrows indicate examples of aggre-
gates showing co-localization of p62 and keratin; arrowheads indicate no co-localization. Scale bar = 20 μm. (M) The aver-
age size of the aggregates in the 130–170 cells/experiment, derived from three independent transfections (n = 3), was ana-
lyzed using ImageJ software, and the individual aggregate size was assessed. Accordingly, significant differences were 
assessed by comparing the average aggregate size of p62-H1, p62-H2, and p62ΔSH2 and endogenous p62 (i.e., stress bod-
ies; transfected with empty vector) using one-way ANOVA and Tukey’s multiple comparisons and presented as specific 
p-values (* p ≤ 0.05, ** p ≤ 0.01). 

Figure 2. The p62-H2 formed large aggregates and co-localized with K18 in the CHO-K1 cells. The CHO-K1 cells were
transiently (co-)transfected (TF) with (A) empty vector (pcDNA4), (B) p62 isoform1 (p62-H1), (C) p62 isoform2 (p62-H2),
(D) p62∆SH2 mutant, (E) keratin 8 (K8), (F) keratin 18 (K18), (G) p62-H1 and K8, (H) p62-H2 and K8, (I) p62∆SH2 and
K8, (J) p62-H1 and K18, (K) p62-H2 and K18, and (L) p62∆SH2 and K18. Transfected cells were stained for double-label
immunofluorescence microscopy with antibodies against p62 (red) and K8/18 (green). Arrows indicate examples of
aggregates showing co-localization of p62 and keratin; arrowheads indicate no co-localization. Scale bar = 20 µm. (M)
The average size of the aggregates in the 130–170 cells/experiment, derived from three independent transfections (n = 3),
was analyzed using ImageJ software, and the individual aggregate size was assessed. Accordingly, significant differences
were assessed by comparing the average aggregate size of p62-H1, p62-H2, and p62∆SH2 and endogenous p62 (i.e., stress
bodies; transfected with empty vector) using one-way ANOVA and Tukey’s multiple comparisons and presented as specific
p-values (* p ≤ 0.05, ** p ≤ 0.01).
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p62H2, n = 93; K18, n = 139; K18 + p62H1, n = 124; K18 + p62H2, n = 128). (B) Specimens shown in 
(A) were imaged using a widefield FRET system. Representative images for all conditions are shown 
for p62-labeled (red) and K8/18 (green), and additional FRET acquired signals are shown in pseudo-
color. (D) Close molecular interaction between K8 and K18, respectively, with endogenous or tran-
siently co-transfected p62-H1 or p62-H2 (K8, n = 169; K8 + p62H1, n = 187; K8 + p62H2, n = 160; K18, 
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as scatterplots with mean +/–SEM in red. The results originate from three independent preparations 
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showed no normal distribution. Significant differences were assessed by repeated Kruskal–Wallis 
tests and Dunn’s multiple comparison tests and presented as specific p-values (* p ≤ 0.05). 

Figure 3. Pronounced molecular interaction of keratins with p62-H2. The CHO-K1 cells were transiently co-transfected (TF)
with K8, K18, p62-H1 and K8, p62-H2 and K8, p62-H1 and K18, and p62-H2 and K18 and were stained for double-label
immunofluorescence microscopy with antibodies against p62 (red) and K8/18 (green). (A) Representative slides of confocal
Z-stacks are shown for each condition. (C) Co-localization analysis of confocal Z-stacks using the Pearson correlation
coefficient of the specimens is shown in a large number of cells (K8, n = 65; K8 + p62H1, n = 100; K8 + p62H2, n = 93;
K18, n = 139; K18 + p62H1, n = 124; K18 + p62H2, n = 128). (B) Specimens shown in (A) were imaged using a widefield
FRET system. Representative images for all conditions are shown for p62-labeled (red) and K8/18 (green), and additional
FRET acquired signals are shown in pseudo-color. (D) Close molecular interaction between K8 and K18, respectively, with
endogenous or transiently co-transfected p62-H1 or p62-H2 (K8, n = 169; K8 + p62H1, n = 187; K8 + p62H2, n = 160; K18, n =
199; K18 + p62H1, n = 202; K18 + p62H2, n = 193) using a FRET setup. Single-cell data are shown as scatterplots with mean
+/–SEM in red. The results originate from three independent preparations performed on three different days. Using the
Kolmogorov–Smirnov test for normality, the results showed no normal distribution. Significant differences were assessed
by repeated Kruskal–Wallis tests and Dunn’s multiple comparison tests and presented as specific p-values (* p ≤ 0.05).
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2.3. β-Sheet-Conformation Was Predominantly Associated with p62-H2 and K8 Co-Aggregates

Mallory–Denk bodies (containing p62 and keratins as constant components) are prone
to acquire cross β-sheet conformation [27]. To better understand the mode of interaction of
p62 isoforms alone and in the presence of keratins, we used the same set of co-transfection
experiments as described in Section 2.2., with additional staining with luminescent conju-
gated oligothiophenes (LCOs) that generate conformation-sensitive spectral signatures [29].
The p62-H1 alone or in combination with K8 and K18 did not acquire cross-β-sheet con-
formation (Figure 4A). In contrast, p62-H2, p62∆SH2, and K8 alone (but not K18 alone)
acquired cross-β-sheet conformation (Figure 4C–F). Interestingly, p62-H2 and some gran-
ules of p62∆SH2 formed structures with cross-β-sheet conformation in combination with
K8 (Figure 4H,I). The p62-H2 alone as well as in combination with K8 (co-)aggregated, the
latter resulting in hybrid inclusions (i.e., the combination of features of IHBs and MDBs) as
observed in human liver disease. Although p62-H2 and p62∆SH2 co-aggregated with K18,
the majority of the resulting aggregates did not show cross-β-sheet conformation except
for a few granular aggregates that were LCO fluorescence positive (Figure 4K,L). It should
be stressed in this context that K8, in contrast to K18, is an essential component of MDBs,
since the lack of K8 prevents MDB formation [30]. Morphometric analysis demonstrated
more ß-pleated sheet conformation in the context of p62-H2 as compared to p62-H1. This
effect was even more pronounced in co-aggregates of K8 and p62-H2 (Figure 4M,N).
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Figure 4. Cross-β-sheet conformation in aggregates demonstrated by using LCO. The CHO-K1 cells were transiently co-
transfected (TF) with (A) empty vector (pcDNA4), (B) p62 isoform1 (p62-H1), (C) p62 isoform2 (p62-H2), (D) p62ΔSH2 
mutant, (E) keratin 8 (K8), (F) keratin 18 (K18), (G) p62-H1 and K8, (H) p62-H2 and K8, (I) p62ΔSH2 and K8, (J) p62-H1 
and K18, (K) p62-H2 and K18, and (L) p62ΔSH2 and K18, and all were stained for triple-label immunofluorescence mi-
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gates showing co-localization of p62 and keratin with an LCO-fluorescence signal; arrowheads indicate examples of no 
co-localization. Scale bar = 20 μm. (M) Co-localization of p62-H1, p62-H2 or p62∆SH2 with LCO-fluorescence in protein 
aggregates of two independent experiments shown in (B–D) (p62-H1, n = 34; p62-H2, n = 41; p62ΔSH2, n = 41). (N) Triple 
co-localization analysis of K8/18 and p62 overlaying clusters with LCO fluorescence of the specimens shown in (E–L) (K8, 
n = 30; K8 + p62-H1, n = 25; K8 + p62-H2, n = 30; K8 + p62ΔSH2, n = 32; K18, n = 35; K18 + p62-H1, n = 32; K18 + p62-H2, n = 
45; K18 + p62ΔSH2, n = 38). Single-cell data are shown as boxplots. Horizontal lines represent the median, the lower and 
upper hinges show the first quartile and third quartile, and the lower and upper whiskers encompass 10% and 90% of 
values. Outliers are marked as dots. Using the Kolmogorov–Smirnov test for normality, the results showed no normal 
distribution. Significant differences were assessed by repeated Kruskal–Wallis tests and Dunn’s multiple comparison tests 
and presented as specific p-values (* p ≤ 0.05). 
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Figure 4. Cross-β-sheet conformation in aggregates demonstrated by using LCO. The CHO-K1 cells were transiently
co-transfected (TF) with (A) empty vector (pcDNA4), (B) p62 isoform1 (p62-H1), (C) p62 isoform2 (p62-H2), (D) p62∆SH2
mutant, (E) keratin 8 (K8), (F) keratin 18 (K18), (G) p62-H1 and K8, (H) p62-H2 and K8, (I) p62∆SH2 and K8, (J) p62-H1 and
K18, (K) p62-H2 and K18, and (L) p62∆SH2 and K18, and all were stained for triple-label immunofluorescence microscopy
with antibodies against p62 (red), K8/18 (magenta), and LCO dye (green). Arrows indicate examples of aggregates showing
co-localization of p62 and keratin with an LCO-fluorescence signal; arrowheads indicate examples of no co-localization.
Scale bar = 20 µm. (M) Co-localization of p62-H1, p62-H2 or p62∆SH2 with LCO-fluorescence in protein aggregates of two
independent experiments shown in (B–D) (p62-H1, n = 34; p62-H2, n = 41; p62∆SH2, n = 41). (N) Triple co-localization
analysis of K8/18 and p62 overlaying clusters with LCO fluorescence of the specimens shown in (E–L) (K8, n = 30; K8 +
p62-H1, n = 25; K8 + p62-H2, n = 30; K8 + p62∆SH2, n = 32; K18, n = 35; K18 + p62-H1, n = 32; K18 + p62-H2, n = 45; K18
+ p62∆SH2, n = 38). Single-cell data are shown as boxplots. Horizontal lines represent the median, the lower and upper
hinges show the first quartile and third quartile, and the lower and upper whiskers encompass 10% and 90% of values.
Outliers are marked as dots. Using the Kolmogorov–Smirnov test for normality, the results showed no normal distribution.
Significant differences were assessed by repeated Kruskal–Wallis tests and Dunn’s multiple comparison tests and presented
as specific p-values (* p ≤ 0.05).

2.4. Overexpressed Ubiquitin Accumulated in Co-Aggregates of Keratins with Both p62 Isoforms

Since misfolded proteins are often ubiquitinated, we performed the same series of
experiments, as shown in Figure 4, with additional co-transfection of ubiquitin (triple
transfections) in CHO-K1 cells in order to elucidate the role of ubiquitin in the aggrega-
tion process of p62 isoforms and keratins. Ubiquitin co-localized with endogenous p62,
p62-H1, and p62∆SH2 (Figure 5A,B,D). Surprisingly, not all aggregates of p62-H2 showed
co-localization with ubiquitin: co-localization was observed in smaller aggregates, but
weak co-localization occurred in larger globular inclusions (Figure 5C). Interestingly, the
majority of the p62-H2 aggregates associated more strongly with the overexpressed ubiq-
uitin compared to p62-H1 and p62 ∆SH2 (Figure 5M). A small percentage of K8 or K18
aggregates showed co-localization with ubiquitin (Figure 5E,F,N). Very weak signs of co-
localization of K8/p62-H1 aggregates and ubiquitin were observed (Figure 5G). However,
K8 aggregation and co-localization with p62-H2 and p62∆SH2 were pronounced in the
ubiquitin-(co)transfected state (Figure 5H,I,N). Furthermore, K18 aggregates co-localized
with p62-H1 in the situation of overexpressed ubiquitin (Figure 5J). This co-aggregation
of K18 with p62-H1 was markedly more pronounced than without overexpression of
ubiquitin (compare with Figures 3 and 4). The p62-H2 and p62∆SH2 readily co-localized
with K18 regardless of the presence or absence of ubiquitin (Figure 5K,L,N). These results
suggest that the role of ubiquitin in the interaction of p62 isoforms with keratins varies
depending on the type of aggregate.
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Figure 5. Keratin-8 and keratin-18 co-aggregation with p62-H1 was enhanced by ubiquitin. The CHO-K1 cells were
transiently (co-)transfected (TF) with ubiquitin in combination with (A) empty vector (pcDNA4), (B) p62 isoform1 (p62-H1),
(C) p62 isoform2 (p62-H2), (D) p62∆SH2 mutant, (E) keratin 8 (K8), (F) keratin 18 (K18), (G) p62-H1 and K8, (H) p62-H2
and K8, (I) p62∆SH2 and K8, (J) p62-H1 and K18, (K) p62-H2 and K18, and (L) p62∆SH2 and K18, and all were stained for
triple-label immunofluorescence microscopy with antibodies against ubiquitin (green), p62 (red), and K8/18 (magenta).
Arrows indicate examples of aggregates showing co-localization of p62 and keratin with ubiquitin; arrowheads indicate
examples of no co-localization. Scale bar = 20 µm. (M) Co-localization of p62-H1, p62-H2, or p62∆SH2 with ubiquitin in
protein aggregates of two independent experiments shown in (B–D) (p62-H1, n = 41; p62-H2, n = 34; p62∆SH2, n = 25). (N)
Triple co-localization analysis of K8/18 and p62 overlaying clusters with ubiquitin staining is shown in (E-L) (K8, n = 33; K8
+ p62-H1, n = 42; K8 + p62-H2, n = 40; K8 + p62∆SH2, n = 37; K18, n = 46; K18 + p62-H1, n = 39; K18 + p62-H2, n = 27; K18 +
p62∆SH2, n = 32). Single cell data are shown as boxplots. Horizontal lines represent the median, the lower and upper hinges
show, respectively, the first quartile and the third quartile, and the lower and upper whiskers encompass 10% and 90%
of values. Outliers are marked as dots. Using the Kolmogorov–Smirnov test for normality, the results showed no normal
distribution. Significant differences were assessed by repeated Kruskal–Wallis tests and Dunn’s multiple comparison tests
and presented as specific p-values (* p ≤ 0.05).
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2.5. p62-H1 and p62-H2 did Not Co-Localize with the Endogenous Keratin Intermediate Filament
Cytoskeleton of PLC/PRF/5 Cells

Next, we performed experiments with the human hepatocellular cancer cell line,
PLC/PRF/5, that contains an endogenous keratin intermediate filament cytoskeleton.
Neither endogenous stress body-like p62 aggregates induced by transfection with empty
vector (Figure 6A) nor overexpressed p62-H1, p62-H2, or p62∆SH2 showed co-localization
with the keratin intermediate filament cytoskeleton (Figure 6B–D). The p62-H1 aggregates
appeared as multiple, small, and ring-like (hollow) structures (Figure 6B), whereas the
p62-H2 and p62∆SH2 aggregates were larger with homogenous staining (Figure 6C,D). In
some cells, they were surrounded by keratin filaments (Figure 6D). Overexpression of K8
resulted in small aggregates associated with keratin filaments without association with
endogenous p62 granules (Figure 6E). Overexpression of K18 resulted in some distortion
of the keratin filament cytoskeleton and the appearance of endogenous p62 (Figure 6F).
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Figure 6. The p62-H2 formed large aggregates and interacted with aggregates of overexpressed
K8 and K18 but not with intermediate filaments in PLC/PRF/5 cells. The PLC/PRF/5 cells were
transiently (co-)transfected (TF) with (A) empty vector (pcDNA4), (B) p62 isoform1 (p62-H1), (C) p62
isoform2 (p62-H2), (D) p62∆SH2 mutant, (E) keratin 8 (K8), (F) keratin 18 (K18), (G) p62-H1 and K8,
(H) p62-H2 and K8, (I) p62∆SH2 and K8, (J) p62-H1 and K18 (K), p62-H2 and K18, and (L) p62∆SH2
and K18, and all were stained for double-label immunofluorescence microscopy with antibodies
against p62 (red) and K8/18 (green). Two independent experimental series were performed. Arrows
indicate examples of aggregates showing co-localization of p62 and keratin; arrowheads indicate
examples of no co-localization. Scale bar = 20 µm.

Double transfection of p62-H1 in combination with K8 or K18 produced ring-like (hol-
low) aggregates without interference with the endogenous keratin filament cytoskeleton
(Figure 6G,J). However, co-transfection of p62-H2 and p62∆SH2, respectively, with K8 or
K18 showed co-localization of keratin with p62 aggregates similar to the observation in
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CHO-K1 cells (Figure 6H,I,K,L). Large K8 or K18 aggregates were, however, not found
in PLC/PRF/5 cells, which might be explained by the fact that, in contrast to CHO-K1
cells, overexpressed K8 and K18 are mostly integrated into the intermediate filament
cytoskeleton.

2.6. Overexpressed p62-H2 Predominantly Accumulates in a Diffuse Fashion in the Cytoplasm
of Fibroblasts

To address whether endogenous p62 interferes with the transfected human p62 iso-
forms (the relative concentrations of endogenous p62 and transfected p62 can be seen in
the Western blots shown in Figure A3), we performed transfection studies in p62 knock-out
(p62KO) mouse embryonic fibroblasts (MEFs). To this aim, fibroblasts were isolated from
p62 total knockout mice (p62KO) [7] and mice with a floxed p62 gene (p62flox) as controls.
The p62flox MEFs transfected with empty pcDNA4 vector developed endogenous p62
stress granules similar to CHO-K1 and PLC/PRF/5 cells (Figure 7A). Transfection with p62-
H1 led to the appearance of granular aggregates (Figure 7B), whereas p62-H2-transfected
cells showed a predominantly diffuse cytoplasmic distribution in addition to a few small
granular aggregates (Figure 7C). In contrast, multiple p62 aggregates were observed in
the p62∆SH2-transfected cells (Figure 7D). No co-localization of endogenous p62 with
transfected K8 and K18 was observed (Figure 7E,F). Co-transfected p62-H1 co-localized
neither with K8 nor with K18 or with a combination of K8/18 (Figure 7G,J,N). The p62-H2
co-transfected with K8 showed a predominantly diffuse distribution of p62 overlapping
with K8 aggregates (Figure 7H). Because of the diffuse p62 staining, it was impossible to
distinguish overlapping staining from true co-localization. However, in cells co-transfected
with p62-H2 and K18, some small aggregates of p62-H2/K18, suggesting co-localization of
both proteins, were observed in addition to the diffuse accumulation of p62-H2 (Figure 7K).
Co-transfection of p62∆SH2 with K8 and K18, respectively, showed MDB-like aggregates
with co-localization of p62∆SH2 with K8 as well as K18 (Figure 7I–L). Since neither of the
p62 isoform aggregates showed co-localization with regular keratin intermediate filaments
in PLC/PRF/5 cells, we tested whether the co-localization of p62 with keratin depended on
misfolding of keratin. Therefore, we performed triple-transfections of K8 and K18 together
with either p62-H1 or p62-H2; K8 and K18 co-transfection should result in the formation of
keratin intermediate filaments instead of the development of aggregates of improperly as-
sembled (misfolded) keratin as is the case if only one keratin protein type is overexpressed.
In fact, keratin intermediate filaments generated by overexpression of both K8 and K18
showed neither association with endogenous nor transfected p62 isoforms (Figure 7M–P).
However, in the experiment with triple-transfection, K8 + K18 + p62-H2 co-localization
cannot be excluded since there was an overlap of signals provided by the densely packed
keratin intermediate filaments and the diffusely distributed p62-H2 (Figure 7O).

The same series of experiments were also performed with the p62KO MEFs (Figure 8)
to eliminate possible interfering effects of endogenous p62. The absence of p62-containing
stress granules in empty pcDNA4 vector-transfected cells reflected the lack of endoge-
nous p62 (Figure 8A). The p62-H1-transfected cells formed small aggregates with different
sizes and shapes (Figure 8B), whereas p62-H2-transfected cells showed a diffuse cyto-
plasmic distribution along with a few small granules (Figure 8C). Transfected p62∆SH2
formed somewhat larger aggregates than p62-H1 without diffuse cytoplasmic distribution
(Figure 8D). Transfection of either K8 or K18 alone revealed multiple small aggregates
consisting of improperly folded keratin (Figure 8E,F). Co-transfection of p62-H1 and K8 did
not result in co-localization (Figure 8G). However, co-transfection of p62-H1 and K18 led
to inclusions (aggregates) with co-localization of both proteins (Figure 8J). Like in p62flox
MEFs, transfected p62-H2 was diffusely distributed in the cytoplasm but also showed
aggregates in co-localization with transfected K8 (Figure 8H) and K18 (Figure 8K). This
was also the case with transfected p62∆SH2 and K8 (Figure 8I) and K18 (Figure 8L). The
experiments with triple-transfection of K8 and K18 (leading to intermediate filaments) and
the various p62 expression constructs yielded identical results as obtained with p62flox
MEFs (Figure 8M–P).
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Figure 7. The p62-H2 was diffusely distributed and formed aggregates only in the presence of either K8 or K18 but not
of keratin intermediate filaments in p62flox MEFs. Isolated p62flox fibroblasts were transiently (co-)transfected with (A)
empty vector (pcDNA4), (B) p62 isoform1 (p62-H1), (C) p62 isoform2 (p62-H2), (D) p62∆SH2 mutant, (E) keratin 8 (K8), (F)
keratin 18 (K18), (G) p62-H1 and K8, (H) p62-H2 and K8, (I) p62∆SH2 and K8, (J) p62-H1 and K18, (K) p62-H2 and K18, (L)
p62∆SH2 and K18, (M) K8 and K18, (N) p62-H1, K8 and K18, (O) p62-H2, K8, and K18, and (P) p62∆SH2, K8 and K18, and
all were stained for double-label immunofluorescence microscopy with antibodies against p62 (red) and K8/18 (green).
Two independent experimental series were performed. Arrows indicate examples of aggregates showing co-localization of
p62 and keratin; arrowheads indicate examples of no co-localization. Scale bar = 20 µm.
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2.7. p62-H2 Predominantly Accumulated in IHBs and Hybrid Inclusions of Human HCC 

Figure 8. Interaction of p62-H2 with keratin was independent of endogenous p62 in p62KO MEFs. Isolated p62KO MEFs
were transiently (co-)transfected with (A) empty vector (pcDNA4), (B) p62 isoform1 (p62-H1), (C) p62 isoform2 (p62H2),
(D) p62∆SH2 mutant, (E) keratin 8 (K8), (F) keratin 18 (K18), (G) p62-H1 and K8, (H) p62-H2 and K8, (I) p62∆SH2 and K8,
(J) p62-H1 and K18, (K) p62-H2 and K18, (L) p62∆SH2 and K18, (M) K8 and K18, (N) p62-H1, K8, and K18, (O) p62-H2,
K8, and K18, and (P) p62∆SH2, K8, and K18, and all were stained for double-label immunofluorescence microscopy with
antibodies against p62 (red) and K8/18 (green). Two independent experimental series were performed. Arrows indicate
examples of aggregates showing co-localization of p62 and keratin; arrowheads indicate examples of no co-localization.
Scale bar = 20 µm.
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2.7. p62-H2 Predominantly Accumulated in IHBs and Hybrid Inclusions of Human HCC

Cytoplasmic inclusions, such as IHBs, MDBs, and hybrid inclusions (inclusions show-
ing a mixed phenotype of IHB and MDB), may be found in tumor cells of some human
HCCs [31]. Intracytoplasmic hyaline bodies mainly consist of p62 and ubiquitin and are
devoid of K8 or K18, whereas major components of MDBs are misfolded keratins, p62, and
ubiquitin. Since the type of p62 isoform involved in IHBs is yet unclear and to demonstrate
whether the aggregates generated in transfected cells in vitro are similar to aggregates
in human tissues in vivo, we investigated the presence of p62 isoforms in IHBs. Tissue
sections of a typical HCC containing numerous IHBs, hybrid inclusions, and MDBs were
immunostained with two different p62 antibodies; the p62CT antibody detects both p62
isoforms, whereas the p62NT antibody detects only p62-H1 (see Figure A3). By comparing
the reactivity of these two p62 antibodies, conclusions can be drawn as to which p62
isoform is involved in inclusion body formation. Surprisingly, homogenous staining with
p62CT was observed in typical IHBs, but only small granules were detected by p62NT
immunostaining, suggesting p62-H2 as the major p62 isoform involved in the pathogenesis
of IHBs (Figure 9A,B,G). Intracytoplasmic hyaline bodies do not acquire cross-β-sheet
conformation as revealed by negative LCO fluorescence signal. In contrast, hybrid inclu-
sions (characterized by positivity for p62CT/p62NT and K8/18) showed a positive LCO
signal indicating the presence of cross-ß-sheet conformation (Figure 9C,D). Interestingly,
MDBs that are constantly positive for keratin are rich in cross-ß-sheet conformation and are
positive with both p62CT and p62NT antibodies, suggesting a role of p62-H1 and p62-H2
in MDB formation (Figure 9E,F) whereas in IHBs only p62-H2 was present (Figure 9A,B).

Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 14 of 28 
 

 

Cytoplasmic inclusions, such as IHBs, MDBs, and hybrid inclusions (inclusions 
showing a mixed phenotype of IHB and MDB), may be found in tumor cells of some hu-
man HCCs [31]. Intracytoplasmic hyaline bodies mainly consist of p62 and ubiquitin and 
are devoid of K8 or K18, whereas major components of MDBs are misfolded keratins, p62, 
and ubiquitin. Since the type of p62 isoform involved in IHBs is yet unclear and to demon-
strate whether the aggregates generated in transfected cells in vitro are similar to aggre-
gates in human tissues in vivo, we investigated the presence of p62 isoforms in IHBs. Tis-
sue sections of a typical HCC containing numerous IHBs, hybrid inclusions, and MDBs 
were immunostained with two different p62 antibodies; the p62CT antibody detects both 
p62 isoforms, whereas the p62NT antibody detects only p62-H1 (see Figure A3). By com-
paring the reactivity of these two p62 antibodies, conclusions can be drawn as to which 
p62 isoform is involved in inclusion body formation. Surprisingly, homogenous staining 
with p62CT was observed in typical IHBs, but only small granules were detected by 
p62NT immunostaining, suggesting p62-H2 as the major p62 isoform involved in the 
pathogenesis of IHBs (Figure 9A,B,G). Intracytoplasmic hyaline bodies do not acquire 
cross-β-sheet conformation as revealed by negative LCO fluorescence signal. In contrast, 
hybrid inclusions (characterized by positivity for p62CT/p62NT and K8/18) showed a pos-
itive LCO signal indicating the presence of cross-ß-sheet conformation (Figure 9C,D). In-
terestingly, MDBs that are constantly positive for keratin are rich in cross-ß-sheet confor-
mation and are positive with both p62CT and p62NT antibodies, suggesting a role of p62-
H1 and p62-H2 in MDB formation (Figure 9E,F) whereas in IHBs only p62-H2 was present 
(Figure 9A,B). 
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Figure 9. The p62-H2 contributed to IHB formation in human HCC. Frozen tissue sections from human HCC were stained
for double-label immunofluorescence microscopy with antibodies against the (A) C-terminus (p62CT) or the (B) N-terminus
(p62NT) of p62 (red) combined with K8/18 labeling (green) and DAPI (blue) staining. (C,D) HCC containing IHBs and
hybrid inclusions were stained for triple-label immunofluorescence microscopy with antibodies against p62CT (red in C) or
p62NT (red in D) and K8/18 (magenta in C and D) and the LCO dye (green) and DAPI (blue). (C,D) The arrows indicate
aggregate with co-localization of p62, keratins, and an LCO fluorescence signal as characteristic of a hybrid lesion, (C)
whereas the arrowheads denote IHBs containing only p62-H2 and (D) granular p62-H1. (E,F) HCCs containing MDBs
were stained for triple-label immunofluorescence microscopy with antibodies against p62CT (red in E) or p62NT (red in
F) and K8/18 (magenta in E and F) and the LCO dye (green) and DAPI (blue). (E,F) The arrows indicate aggregate with
co-localization of p62, keratins, and an LCO fluorescence signal as characteristic of MDBs. Scale bar = 25 µm. (G) Analysis
of p62 aggregate size in IHBs, hybrid inclusions, and MDB samples labeled for p62CT (CT) or p62NT (NT) (IHB_CT, n = 10;
IHB_NT, n = 10; MDB_CT, n = 10; MDB_NT, n = 10; Hybrid_CT, n = 6; Hybrid_NT, n = 8). (H) Co-localization of p62CT
(CT) or p62NT (NT) with K8/18 in IHB, hybrid inclusions, and MDB samples (IHB_CT, n = 10; IHB_NT, n = 10; MDB_CT,
n = 10; MDB_NT, n = 10; Hybrid_CT, n = 6; Hybrid_NT, n = 8). (I) Triple co-localization analysis of K8/18 and p62CT/NT
overlaying aggregates with LCO staining in IHB, hybrid inclusions, and MDB samples (IHB_CT, n = 10; IHB_NT, n = 10;
MDB_CT, n = 10; MDB_NT, n = 10; Hybrid_CT, n = 6; Hybrid_NT, n = 8). Single-image data are shown as scatterplot
with mean +/–SEM in red. Using the Kolmogorov–Smirnov test for normality, the results showed normal distribution.
Significant differences were assessed by ANOVA and Bonferroni post hoc tests and presented as specific p-values (* p ≤ 0.05).
(J) Schematic drawing of the distinctive roles of p62 isoforms involved in IHBs, hybrid inclusions, and MDB formation.
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3. Discussion

p62 is a constant component of different types of inclusion bodies. Its role in their
pathogenesis and functional significance is still largely unknown except for some evidence
generated in p62 knockout mice [7]. The human p62 isoforms p62-H1 and p62-H2 differ by
the absence of a major part of the protein-interacting PB1 domain in p62-H2. This domain
is involved in a variety of signaling pathways [32–34]. p62-H1 is known to maintain the
protein homeostasis in cells [3,35,36]. Its PB1 domain has conserved lysine residues (type
I) and OPCA motif (type II), placing it in the type I/II category. It can initiate homo-
oligomerization in a front-to-back fashion as well as hetero-oligomerization with other
PB1-containing proteins [37]. Due to the defect of the PB1 domain, p62-H2 can be expected
to be excluded from, or at least less prone to, protein interactions and related physiologic
functions or be responsible for differences in aggregation behavior with certain types of
cellular proteins and related physiologic functions.

Our study demonstrates for the first time the expression of the p62 isoform p62-H2 in
human liver, and the differences in behavior of isoforms p62-H1 and p62-H2 with regard
to aggregation and interaction with keratins in vitro, depending on the cell type, and in
human tissue. The aim of our study was to obtain closer insights into mechanistic aspects
of inclusion body formation, particularly with respect to the interactions between p62,
ubiquitin, and the hepatocellular keratins 8 and 18. In vitro transfection experiments with
different cell types were regarded as suitable to achieve this goal and to correlate the
findings with normal and pathologic situations in humans.

A general observation was that overexpressed p62-H2 formed larger aggregates than
p62-H1 in different cell types and showed a pronounced affinity to improperly assembled
and misfolded keratins. In contrast, aggregated p62-H1 did not significantly co-localize
with aggregated K8 or K18. The p62-H2 aggregates arising in PLC/PRF/5 cells closely
resembled IHBs (i.e., large globular inclusions without keratin content) present in some
human HCCs. Furthermore, some transfection experiments performed in CHO-K1 cells
reproduced features of hybrid inclusions which are a combination of p62 with aggregated
keratins found in some human liver diseases and are regarded as transition stages between
IHBs to MDBs [8,9,26,28,38]. Interestingly, there was also a difference in distribution
and shape of the aggregates between p62-H2 and p62∆SH2 in that the aggregates of the
latter were similar to MDBs due to the fact of their more granular appearance. The co-
aggregation of p62-H2 and p62∆SH2, respectively, with overexpressed K8 but not with
assembled intermediate filaments reflects the MDB pathogenesis in human HCC. K8 in
contrast to K18 is an essential component of MDBs, since lack of K8 or excess of K18
prevents MDB formation [30,39]. In the course of MDB formation, K8 (type II keratin) is
overexpressed and, thus, the 1:1 relationship of K8 and K18 (type I keratin) partners, which
is essential for intermediate filament formation, is disturbed. The reasons for this situation
may be overexpression/increased synthesis of K8 or preferred degradation of K18.

Cell type differences in aggregation behavior of overexpressed p62 isoforms were
also evident from our fibroblast experiments. Whereas transfection of p62-H1 led to the
appearance of granular and ring-like (hollow) aggregates, overexpressed p62-H2 mostly
showed diffuse cytoplasmic distribution. Diffuse cytoplasmic p62-specific immunostaining
has, although not correlated with isoforms, been observed in human pancreatic β-cells [40]
and neural cells [41,42]. Its functional significance is yet enigmatic. However, a recent
study in SW480 cells demonstrated the role of p62-H1 stress bodies in trafficking RelA to
nucleoli under cellular stress conditions, whereas p62-H2, which was diffusely distributed
within the cytoplasm, was ineffective in this respect [43].

With regard to the different functions and behavior of the two major p62 isoforms,
increasing evidence exists that the accumulation of p62 stress bodies has beneficial effects
by facilitating the clearance of stress-induced cytotoxic substances. In this context, the PB1
domain and the UBA domain of p62-H1 are required for efficient autophagic disposal of
misfolded proteins [44,45]. Moreover, the different binding characteristics of p62-H1 and
p62-H2 with aggregated proteins could be due to the fact that cross-β-sheet conformation



Int. J. Mol. Sci. 2021, 22, 6227 17 of 27

upon aggregation is facilitated by the deletion of the SH2 together with the PB1 domain
at the N-terminus of p62 (see Appendix A, Figure A1), as is the case for p62-H2 and
p62∆SH2 [27]. We found that p62-H1-related aggregates did not acquire cross-β-sheet
conformation (Figure 4A,B,G,J) as revealed by staining with LCO dyes. p62-H2, p62∆SH2
in combination with K8 (but not with K18) as well as K8 alone (but not K18 alone) were
prone to acquire cross-β-sheet conformation. Of note, the presence of β-sheet structures
in p62-H2/K8 aggregates together with transglutaminase-induced cross-linking could
be responsible for increased durability and resistance which is also typical for MDBs [7].
Furthermore, cross-β-sheet conformation might mediate the binding of other proteins with
cross-β-sheet conformation to p62-related aggregates [46]. In addition to cross-β-sheet
conformation, we also found different roles of ubiquitin in aggregate formation, which like
p62 is a constant component of cytoplasmic protein aggregate. Interestingly, co-localization
of K18 and p62-H1 was markedly enhanced by co-transfection and overexpression of
ubiquitin, suggesting that for aggregates involving p62-H1 ubiquitin-mediated protein–
protein interaction is a major factor (Figure 5). Whereas for p62-H2, depending on the
aggregate type, different combinations of ubiquitin-mediated protein interactions and
acquisition of cross β-pleated sheet conformation appear to be instrumental as also seen in
IHBs (presence of ubiquitin without ß-pleated sheet conformation) and hybrid inclusions
(acquisition of ß-pleated sheet conformation).

In conclusion, our results, obtained in a comprehensive series of transfection experi-
ments in comparison with human pathologic situations, demonstrate a decisive role for
p62 isoforms in protein aggregation and related diseases.

4. Materials and Methods
4.1. Cloning

The p62-H1 (NCBI accession no: NM_003900.5, cloned from position 284 to 1355) and
p62-H2 (NCBI accession no: NM_001142299.2, cloned from position 271 to 1342) and an
empty vector of pEGFP-C1 (Clontech) were digested using Age1 and Mfe1 (Fermentas,
Vienna, Austria) restriction enzymes, and digested products were separated by gel elec-
trophoresis. The Gel Extraction and DNA Clean-Up Kit (ThermoFisher Scientific, Vienna,
Austria) was used to extract and purify DNA fragments according to the manufacturer’s
protocol. Purified DNA was ligated using a Rapid Ligation Kit (ThermoFisher Scientific,
Vienna, Austria). The cloned p62-H1 and p62-H2 were further sequence verified by Sanger
sequencing at Microsynth, Vienna, Austria.

4.2. Quantitative Reverse Transcriptase-Polymerase Chain Reaction Analysis (qRT-PCR) of
Human Liver Samples

Human liver samples were collected after surgery and immediately snap-frozen. The
study was approved by the Ethics Committee of the Medical University of Graz, Austria
(EK 20-119 ex 08/09). Total RNA was extracted and purified from cryopreserved tissue
using TRIzol reagent (Invitrogen, Vienna, Austria). The RNA concentration was determined
using nanodrop spectrophotometry, and the integrity was assessed using a Bioanalyzer.
Two micrograms of purified RNA was reverse transcribed into cDNA according to the
manufacturer’s protocol (Invitrogen). Subsequently, qRT-PCR was performed on Quant
studio 7 Flex (Applied Biosystems, Vienna, Austria) using the Power SYBR Green PCR
Master Mix as a detection fluorophore. For better comparison of the expression of p62
splice variants, primer efficiencies were estimated by a standard curve using purified
plasmid DNA and normalized using MutliD software. Primer sequences are listed in
Appendix A Figure A1. Data are shown as expression ratios of target genes normalized to
the expression of β-actin as an internal reference in each sample.

4.3. Western Blot Analysis

Whole tissue extracts from snap-frozen human liver samples were prepared using
radioimmunoprecipitation assay (RIPA) buffer (ThermoFisher Scientific, Vienna, Austria) in



Int. J. Mol. Sci. 2021, 22, 6227 18 of 27

the presence of protease and phosphatase inhibitors (Roche, Vienna, Austria). The samples
were subjected to the previously described procedure [47]. Detection of blotted protein
was performed using the p62CT antibody (Progen, GP62C, 1:1000, Heidelberg, Germany),
p62NT antibody (Progen, GP62N, 1:100), and normalized to β-tubulin (Cell signaling,
1:1000). The bound antibodies were visualized with a horseradish peroxidase-conjugated
secondary antibody (P0141, P0448; DakoCytomation, Dako, Glostrup, Denmark), using
an ECL Western Blotting Substrate (Biorad, Hercules, CA, USA) on an ImageQuant LAS
500 gel imaging system (GE Healthcare, Vienna, Austria). Densitometric quantification
was performed using Image Lab software (Biorad).

4.4. Cell Culture

The PLC/PRF/5 cells were cultured in DMEM containing 10% fetal bovine serum
(FBS) and 1% penicillin–streptomycin (Gibco, ThermoFisher Scientific, Vienna, Austria).
The CHO-K1 cells were cultured in Ham’s F-12 (Lonza, Vienna, Austria) containing 10%
fetal bovine serum (FBS) and 1% penicillin–streptomycin (Gibco). Mouse embryonic
fibroblasts (MEFs) were isolated from day 12 mouse embryos with a floxed p62 gene
(p62WT) and total p62 knockout mice (p62KO) used in our previous study [7]. The p62WT
and p62KO mice were bred and maintained under standard conditions in a mouse house
facility. Mouse experiments were approved by the Austrian Federal Ministry of Science,
Research, and Economy in compliance with the Austrian Law for Welfare of Laboratory
Animals with license number: BMWF-66.010/0114-II/3b/2012 and BMWFp62 66.010/0114-
ii/3b/2013. All animals received humane care according to the criteria outlined in the
“Guide for the Care and Use of Laboratory Animals” prepared by the National Academy of
Sciences, USA, and published by the National Institutes of Health (NIH publication 86–23
revised 1985). The uterus was removed from the pregnant mouse after cervical dislocation.
It was briefly disinfected in Wescodyne solution following 70% ethanol and DPBS (Gibco)
before dissection in a sterile 10 cm plate. Subsequently, each embryo was cut into small
pieces in the presence of 50 µL trypsin and placed in an incubator for 15 min. The MEFs
were resuspended in 20 mL of DMEM containing 10% FBS and 1% penicillin–streptomycin,
and they were monitored for growth for 3 days and further expanded for transfection
experiments. All cells were maintained in the incubator at 37 ◦C with 5% CO2.

4.4.1. Transfection

Four hundred thousand cells were seeded on glass coverslips in Costar 6 well plates
(Sigma–Aldrich, Vienna, Austria) 24 h before transfection and allowed to grow to 80%
confluency. Cells were transfected at equivalent concentrations with 1.5 µg of DNA to 3 µL
of lipofectamine 2000 for 18 h. Cells were transfected with expression constructs containing
human Keratin 8 (#18063, Addgene, Watertown, MA, USA), human Keratin 18 (#18064,
Addgene), p62H1, p62H2 and p62∆SH2 mutant deletion of 1–50 bp (NCBI accession
no: NM_0039003, cloned from position 85 to 1360), and human ubiquitin (Accession no:
M26880, cloned from position 1960 to 2193). All constructs used in the study contained
the cytomegalovirus promoter for constitutive expression. Controls were transfected with
pcDNA4 using lipofectamine 2000 (Invitrogen, Vienna, Austria). All plasmid constructs
used in the study were sequence verified by Sanger sequencing at Microsynth, Vienna,
Austria.

4.4.2. Immunocytochemistry of Transfected Cells

Transfected cells grown on glass coverslips were fixed in methanol for 5 min, followed
by acetone for 20 s (−20 ◦C), washed in PBS, and incubated with p62CT antibody (GP62C,
Progen, 1:100), K8 and 18 antibodies (#6038 and #61028, Progen, 1:100), and ubiquitin
(Z0458, DAKO, 1:100) for 1 h. Coverslips were rinsed with PBS and incubated with a
secondary anti-guinea pig antibody (rhodamine red) (#93431, Jackson Immune Research
Laboratories, West Grove, PA, USA, 1:200) and anti-mouse Alexa fluor 488 (ThermoFisher
scientific, Austria, 1:200) for 30 min at room temperature. Coverslips were washed with
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PBS and briefly rinsed with 70% ethanol, then air-dried and mounted with mounting
medium (#S3023, DAKO). Nikon A1R confocal laser scanning microscopy was used to
analyze the images.

4.4.3. Scoring of p62 Aggregate Size

The CHO-K1 cells transfected with empty vector (pcDNA3), p62-H1, p62-H2, and
p62∆SH2 were used for scoring the average size of the p62 aggregates in three independent
experiments. Images were taken using a Nikon A1R confocal laser scanning microscope at
60× magnification. Fifteen random areas with approximately 150–170 cells were scored
per experiment. Images were Otsu auto thresholded, and the area was measured using the
particle analyzer implemented in Fiji.

4.4.4. Confocal Co-Localization and Particle Analysis

The CHO-K1 cells transfected with K8 or K18 and p62-H1, p62-H2, or p62∆SH2
were fixed and immunolabeled. High-resolution images of cells were recorded using a
confocal spinning disk microscope (Axio Observer.Z1 from Zeiss, Gottingen, Germany)
equipped with 100× objective lens (Plan-Fluor ×100/1.45 Oil, Zeiss), a motorized filter
wheel (CSUX1FW, Yokogawa Electric Corporation, Tokyo, Japan) on the emission side, an
AOTF-based laser merge module for laser line 405, 445, 473, 488, 561, and 561 nm (Visitron
Systems), and a Nipkow-based confocal scanning unit (CSU-X1, Yokogawa Electric corpo-
ration). AF488 and rhodamine were alternately excited with 488 and 561 nm laser lines,
respectively, and emissions were acquired at 353 and 600 nm using a charged CCD camera
(CoolSNAP-HQ, Photometrics, Tucson, AZ, USA). The Z-stacks of both channels in 0.2 µm
increments were recorded. VisiView acquisition software (Universal Imaging, Visitron
Systems) was used to acquire the imaging data. For IHBs, hybrid inclusions and MDB
tissues, LSM 510 META (Carl Zeiss, Jena, Germany) confocal laser scanning microscope
with 458 nm, 590 nm, and 694 nm filters were used. Images were blind deconvoluted with
NIS-elements (Nikon, Austria). The co-localization was determined on a single cell level
for cell culture experiments and carried out on the whole image for tissue experiments
using ImageJ and the plugin coloc2. The Pearson correlation coefficient was chosen for
quantitative comparison. The size of the AF488 and rhodamine-labeled structures were
determined using a custom-made ImageJ macro. After using the rolling ball background
correction, the Z-stacks were binarized with a combination of global stack comprehending
Otsu auto threshold and a local Otsu auto threshold with an x/y-radius of 10 pixels. The
binary Z-stacks were further analyzed using the 3D manager plugin to determine for each
cell the count, volume, and surface of AF488 and rhodamine-labeled particles. The particle
size of p62 (p62CT and p62NT)-labeled structures in tissue samples was measured with
the particle analyzer in ImageJ after background subtraction using the rolling ball method
and Otsu auto thresholding for binarization.

4.4.5. FRET Microscopy and Analysis

The FRET imaging was performed on an inverted wide-field microscope (Observer.A1,
Carl Zeiss GmbH, Vienna, Austria) equipped with a 40× objective (Plan Apochromat 1,3
NA Oil DIC (UV) VIS-IR, Carl Zeiss GmbH) and a standard GFP/RFP filtercube (HC
493/574 (GFP/DsR)). Illumination of AF488 and rhodamine was performed at 470 or
561 nm excitation using a pE-2 LED-illumination system (CoolLED Ltd., Andover, UK),
and emissions were collected with a beam splitter (T565lpxr) on two sides of the camera.
For simultaneous measurements, AF488 and rhodamine were excited for 500 ms each at
470 and 561 nm and images were recorded with a charged-coupled device (CCD) camera
(Coolsnap Dyno, Photometrics, Tucson, AZ, USA). Data acquisition and control of the
fluorescence microscope setup was performed using the NIS-Elements AR software (Nikon,
Vienna, Austria). A custom-made semi-automated ImageJ-macro was used to select each
cell and measure the AF488 and rhodamine signals for long and short-pass fluorescence
signals. The FRET signals were corrected for bleed-through and crosstalk using single-
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labeled AF488 and rhodamine-stained samples. To determine the static FRET, the AF488 to
rhodamine FRET signals were normalized to acceptor and donor fluorescence.

4.4.6. Triple Co-Localization of K8/18 and p62 with LCO/Ubiquitin

The LSM 510 META (Carl Zeiss, Jena, Germany) confocal laser scanning microscope
equipped with a 32-element photomultiplier tube array detector and 458/488 nm, 590 nm,
and 694 nm filters was used to acquire triple-staining images. Confocal images of K8/18,
p62 (p62CT and p62NT for tissues), and LCO or ubiquitin-labeled cells were analyzed. First,
the K8/18, p62, and LCO or ubiquitin channels were Otsu auto-thresholded. Afterwards,
the thresholded K8/18 and p62 channels were combined by multiplying both channels
to gain information about the regions of K8/18 and p62 co-localization. Next, K8/18 and
p62 co-localization regions were investigated regarding the co-localization with LCO or
ubiquitin using the coloc2 tool in ImageJ. The resulting Manders coefficient was used to
quantify the triple co-localization of K8/18, p62, and LCO or ubiquitin.

4.4.7. Immunostaining of Tissues

Human HCC tissue cryosections (4 µm) were fixed with acetone (10 min), air-dried,
and stained with LCO dyes (provided by P. Nilsson) for 20 min, followed by staining
with antibodies against p62CT, p62NT, and K8/18 (1:100, 1 h incubation). Rinsed with
PBS and incubated with secondary antibodies anti-guinea pig antibody (rhodamine red),
anti-mouse Alexa fluor 488, and anti-mouse Alexa fluor 647 (1:200, 30 min incubation).
Additionally, tissue sections were incubated with DAPI for 5 min prior to mounting.

4.4.8. Statistical Analysis

Graphs and statistical analyses were performed using GraphPad Prism 7 (San Diego,
CA, USA). Student’s t-tests were performed on qRT-PCR and Western blot data; p < 0.05
was considered significant. One-way ANOVA was performed for scoring of p62 aggregate
size, p-values (* p ≤ 0.05). Kolmogorov–Smirnov tests were performed for co-localization,
particle size, and FRET analysis p-values (* p ≤ 0.05).

5. Conclusions

This is the first demonstration of the expression of different p62 isoforms in human
liver and their functional relevance in protein aggregation and interaction with keratin
both in vitro and in human liver tissues.

1. p62-H1 and p62-H2 isoforms have different properties in protein aggregation;
2. p62-H2 forms larger aggregates in CHO-K1 and PLC/PRF/5 cells and is present in

IHBs in human liver diseases;
3. p62-H1 forms smaller aggregates in vitro and is present together with p62-H2 in

MDBs in human liver disease;
4. p62-H2 and p62-H1 differ in their ability to acquire cross-β-sheet conformation in

protein aggregates.

Consequently, the role of different p62 isoforms should be considered in future studies
concerning p62 in protein homeostasis and protein aggregation diseases.
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Abbreviations

p62-H1 Human p62 isoform-1
p62-H2 Human p62 isoform-2
p62∆SH2 SH2 region deleted p62
MEF Mouse embryonic fibroblasts
p62WT MEFs p62 wild-type mouse embryonic fibroblasts
p62KO MEFs p62 total knockout mouse embryonic fibroblasts
keratin 8 K8
keratin 18 K18
MDBs Mallory–Denk bodies
IHBs Intracytoplasmic hyaline bodies
PB1 Phox and Bhem1p
LIR LC3 interacting region
UBA Ubiquitin associated
TRIM5α Tripartite motif-containing protein 5 alpha
FRET Förster resonance energy transfer
p62 TV1 p62 transcript variant 1
p62 TV123 p62 variants 1, 2, and 3
RIPA Radioimmunoprecipitation assay
FBS Fetal bovine serum
LCOs Luminescent conjugated oligothiophenes
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(B) Comparison of human p62 isoforms using UniProt and Clustal Omega multiple sequence alignment tools and a qPCR
primer design strategy along with the primer sequences and positions. The start of the translation of p62-H2 is indicated
in blue.
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cells transfected with empty vector or p62-H2 compared with non-transfected cells to assess relative ratios of transfected 
p62 expression to endogenous p62; (C) Western blots using p62CT antibody and (D) β-tubulin as a reference; (E) densito-
metric analysis of Western blots (C,D) for p62 isoform concentrations normalized to β-tubulin. 

Figure A3. The expression of the p62 isoform in human liver and transfected cells: (A) Western blot using the p62CT
antibody, which recognizes both isoforms in three independent human liver samples (40 µg/lane); (B) Western blot using
the p62NT antibody that recognizes the full-length p62-H1 but not p62-H2; (C–E) Western blots performed with CHO-K1
cells transfected with empty vector or p62-H2 compared with non-transfected cells to assess relative ratios of transfected p62
expression to endogenous p62; (C) Western blots using p62CT antibody and (D) β-tubulin as a reference; (E) densitometric
analysis of Western blots (C,D) for p62 isoform concentrations normalized to β-tubulin.
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Figure A4. The Impact of p62 isoforms on aggregate properties. The CHO-K1 cells were transiently (co-)transfected (TF)
with K8, K18, p62-H1, p62-H2, K8 + p62-H1, K8 + p62-H2, K18 + p62-H1, and K18 + p62-H2 and stained for double-label
immunofluorescence microscopy with antibodies against p62 (red) and K8/18 (green). Confocal 3D Z-stacks were used to
determine the count per cell, the volume and surface of keratin 8 and 18 as well as endogenous p62 and transiently (co-
)transfected p62-H1 and p62-H2 aggregates, respectively. The results shown originate from three independent preparations
on three different days (n = 60). The data are shown as scatterplots with each dot representing the weighted mean of all
cells within each imaged Z-stack with the global mean +/− SEM in red. Using the Kolmogorov–Smirnov test for normality,
the results were found to be not normally distributed. Accordingly, significant differences were assessed via repeated
Kruskal–Wallis tests and presented as specific p-values (* p ≤ 0.05).
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