
sensors

Article

Background Light Rejection in SPAD-Based LiDAR
Sensors by Adaptive Photon Coincidence Detection

Maik Beer 1,* , Jan F. Haase 1, Jennifer Ruskowski 1 and Rainer Kokozinski 2

1 Fraunhofer Institute for Microelectronic Circuits and Systems, 47057 Duisburg, Germany;
jan.haase@ims.fraunhofer.de (J.F.H); jennifer.ruskowski@ims.fraunhofer.de (J.R.)

2 Department of Electronic Components and Circuits, University Duisburg-Essen, 47057 Duisburg, Germany;
rainer.kokozinski@uni-due.de

* Correspondence: maik.beer@ims.fraunhofer.de

Received: 30 October 2018; Accepted: 6 December 2018; Published: 8 December 2018
����������
�������

Abstract: Light detection and ranging (LiDAR) systems based on silicon single-photon avalanche
diodes (SPAD) offer several advantages, like the fabrication of system-on-chips with a co-integrated
detector and dedicated electronics, as well as low cost and high durability due to well-established
CMOS technology. On the other hand, silicon-based detectors suffer from high background light in
outdoor applications, like advanced driver assistance systems or autonomous driving, due to the
limited wavelength range in the infrared spectrum. In this paper we present a novel method based
on the adaptive adjustment of photon coincidence detection to suppress the background light and
simultaneously improve the dynamic range. A major disadvantage of fixed parameter coincidence
detection is the increased dynamic range of the resulting event rate, allowing good measurement
performance only at a specific target reflectance. To overcome this limitation we have implemented
adaptive photon coincidence detection. In this technique the parameters of the photon coincidence
detection are adjusted to the actual measured background light intensity, giving a reduction of
the event rate dynamic range and allowing the perception of high dynamic scenes. We present a
192 × 2 pixel CMOS SPAD-based LiDAR sensor utilizing this technique and accompanying outdoor
measurements showing the capability of it. In this sensor adaptive photon coincidence detection
improves the dynamic range of the measureable target reflectance by over 40 dB.

Keywords: light detection and ranging (LiDAR); time-of-flight (TOF); single-photon avalanche diode
(SPAD); CMOS; system-on-chip (SoC); background light rejection

1. Introduction

To bring autonomous vehicles to the road, a fast and reliable high-resolution perception of the
environment is essential. Today, cars include many different driver assistance systems, like adaptive
cruise control, lane assist, or emergency braking. However, all these systems are designed to assist the
driver and make the journey more comfortable. In case of a system malfunction, it is disabled and the
driver has to undertake the task. In self-driving cars there is no human driver to replace non-functional
systems and, therefore, much higher reliability requirements are demanded. Different sensors
are used for environmental perception [1]: ultrasound for short-range applications, like parking
assistance [2,3], 2D cameras for lane assists, and stereo vision and radar for long-range applications,
like collision warning and emergency braking systems [4,5]. Since radar suffers from low angular and
low distance resolution, the most emerging sensor technology for self-driving cars is light detection
and ranging (LiDAR) [6,7]. LiDAR is a technique for high angular and high depth resolution 3D
imaging. LiDAR systems are based on measuring the time-of-flight (TOF) of an emitted and reflected
laser signal in the visible or near infrared spectrum [8]. Due to the short wavelength a high angular
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resolution similar to 2D image sensors can be achieved. High resolution gives several opportunities to
improve the environmental perception by image processing, like the detection and location of small
obstacles, the classification and tracking of objects, or the estimation of their velocity and moving
direction. Especially in safety-critical applications these possibilities can help to increase the reliability
of automated systems. Therefore, LiDAR is seen as the most promising technology for autonomous
driving [9]. Nevertheless, automotive applications impose high requirements on the systems: they
need to be cost-efficient, durable, and operational in all environmental conditions. To reduce cost
and increase durability, solid-state sensors can be fabricated in well-established standard CMOS
technology. Since silicon-based detectors are only sensitive up to a wavelength of around 1100 nm [10],
laser sources between 850 nm and 950 nm are common. Therefore, ambient light coming from the sun
is a major impediment for LiDAR in outdoor applications.

Different methods for the rejection of high ambient light are used in LiDAR systems. A basic
approach is the use of optical bandpass filters adapted to the wavelength of the illumination
source [6,11]. These filters remove most of the background light. Since commercial laser sources exhibit
a certain emission bandwidth, fabrication induced variation, and temperature dependence, the filter
bandwidth has to be chosen carefully to not sacrifice available laser power [12]. Another common
approach to reduce the influence of high ambient light is the accumulation of multiple time
measurements. If several single timestamps are collected in a histogram, the events pile up at
the arrival time of the reflected laser pulse allowing a more reliable distance determination [13].
Obviously, increasing the number of accumulated timestamps improves the quality of the measurement,
but lowers the frame rate at the same time. Therefore, a trade-off between frame rate and reliability has
to be made. Another approach to cope with strong background light is the use of scanning lasers which
illuminate only a single spot or line of the target scene at once [14]. In this technique the field-of-view
of the laser source is much smaller compared to flash illumination allowing a higher optical power
density and, hence, an easier distinction between laser signal and background light. Nevertheless,
LiDAR systems based on scanning lasers are more expensive and less durable due to the need for
beam steering, which can be realized by mechanical mirrors, micro electromechanical systems [15],
or phase arrays [16].

In this paper we present a technique to improve the measurement performance at high ambient
light. This technique can be implemented in addition to the aforementioned techniques for ambient
light rejection and is especially suitable for single-photon avalanche diode (SPAD)-based LiDAR
sensors. By detecting temporal correlated single photons in each pixel, false detections caused by
ambient photons are reduced and, at the same time, an improvement of the signal quality is achieved
allowing for higher measureable distances. Since fixed coincidence parameters as usually used in the
literature [11,17,18] show good measurement results only within a small range of target reflectance
and ambient light intensity, respectively, we use adaptive coincidence detection. In this technique
the parameters of the photon coincidence detection are adjusted to the actual ambient light intensity.
This allows for covering a much higher dynamic range in target reflectance. Applying the parameter
adjustment pixel-individual enables the LiDAR system to capture whole daylight scenes in a single
shot. In this paper we explain the basic limitation induced by high ambient light and show how photon
coincidence detection can improve the measurement. We present a 192 × 2 pixel dual-line SPAD-based
LiDAR sensor fabricated in an automotive-certified 0.35 µm CMOS process with multiple SPADs
in each pixel to detect photon coincidences. For validation of the proposed adaptive coincidence
detection technique a flash LiDAR camera has been developed. The implementation of the coincidence
controlling algorithm along with outdoor measurement results will be presented. The measurements
prove the feasibility of improving the measureable dynamic range of target reflectance by adjusting
the coincidence parameters to the ambient light conditions.
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2. Background Light in SPAD-Based LiDAR

In the direct TOF measurement technique the time between emission and reception of a laser
pulse is measured by a high precision electronical stopwatch as shown in Figure 1 [8]. On-chip time
measurement can be performed by time-to-digital (TDC) or time-to-analog converters. Usually the
time measurement starts with the emission of the laser pulse and stops at the first detected photon.
Since the received optical power of the reflected laser signal scales inversely quadratic with the distance,
highly sensitive photodetectors are required for long range and low emission power applications [19].
SPADs use avalanche multiplication, which is a prompt process, to obtain a large signal response
to the faint reflected light. This allows the detection of single photons with a time resolution in the
picosecond range [10]. Therefore, SPADs are eminently suited for long-range automotive LiDAR
applications. Since the statistical fluctuation of the first detected photon arrival time increases with
lower detector sensitivity, higher photon detection efficiency (PDE), defined as the probability to detect
an incident photon, reduces the variance and improves the measurement accuracy. The PDE takes into
account the photon absorption, the avalanche triggering probability and, in the case of pixel arrays,
the fill factor of the sensor [20]. Since no ideal photodetector is available, an additional uncertainty is
added to the TOF measurement. To deal with this problem usually several time measurements are
accumulated in a histogram [16] to increase the probability to capture the first arriving photon and
obtain an accurate measurement. To summarize, if no background light or dark count rate is taken into
account, a higher PDE improves the measurement accuracy and range. Using shorter laser pulses with
higher peak power improves the precision as well, since this also increases the probability to capture a
photon close to the true TOF. However, since achieving narrow laser pulses becomes more difficult for
increasing peak power, there is a certain technical limitation. Furthermore, for many applications eye
safety regulations have to be fulfilled limiting the laser pulse energy and repetition rate [16].
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Figure 1. Operation principle of the direct time-of-flight measurement technique. By a high precision
electronical stopwatch the time between emission and reception of a short laser pulse is captured.

Unfortunately, background illumination and dark counts are always present in real LiDAR
systems; especially in outdoor applications high background light is present. Since background
photons impinge the sensor during the whole measurement cycle starting right at the laser pulse
emission, there is a certain probability for background photons to arrive at the detector before the
reflected laser pulse and cause false detections [21]. The probability of such false detections depends
on the distance of the object to be measured, as well as on the background light photon detection rate.
To show the effect of high ambient light, we take a look on the detection probability of the first photon.
With the time dependent photon detection rate R(t) the probability density function (PDF) of the first
event can be calculated according to [21]:

P1(t) = R(t)

1−
t∫

0

P1(τ)dτ

. (1)

In laser light, as well as sunlight, the photon inter-arrival times are exponentially distributed [22].
This can be obtained from (1) by assuming a constant photon rate. For the following examples we
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assume constant ambient and laser light intensities. The calculated PDF depends on the photon
detection rates of the sensor only. The mentioned photon detection rates are defined as the rate of
actually-detected photons. Assuming appropriate circuitry, the SPAD generates a digital pulse for
each detected photon and, therefore, the rate corresponds also to the signal pulse rate. The rate
takes into account the applied laser source, the geometrical metrics of the sensor, the used optics or
filters, the target conditions, and SPAD characteristics. In Figure 2 the calculated probability density
according to Equation (1) for the first photon detection as a function of time is shown. In the example
a total measurement range of 100 ns, a pulse width of TP = 10 ns, and a TOF of TTOF = 67 ns,
which corresponds to an object distance of 10 m, are assumed. For Figure 2a photon detection rates of
RB = RL = 10 MHz are used for the laser pulse and ambient light. In this case the laser pulse can be
clearly separated from the background noise. Figure 2b shows the same situation with photon rates
of RB = RL = 30 MHz corresponding to a three times higher PDE or target reflectance. In this case
the laser pulse is much smaller in comparison to the ambient noise and, therefore, more difficult to
locate. Since the photon counts in each bin of the histogram are binomial-distributed, which can be
approximated by the Poisson distribution for low bin-wise detection probabilities, the expected values
and probability, respectively, directly correspond to the variance of the bin count. For this reason the
laser pulse in Figure 2b is more difficult to locate even if the step size in probability density at the pulse
time-of-arrival is comparable to Figure 2a.
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Figure 2. (a) Probability density of the first photon detection for measurement duration of 100 ns,
a pulse width of 10 ns, and a TOF of 67 ns. The photon rates are assumed to be 10 MHz for the laser
pulse and background light; and (b) the probability density for photon detection rates of 30 MHz
achieved by increasing the PDE or target reflectance by a factor of three.

The probability for the time measurement to be stopped before the reflected laser pulse returns,
which means the system is unable to capture the true TOF, is given by the integral of the PDF from zero
to the TOF. Since this probability increases with the object distance and ambient photon detection rate,
higher ambient photon rates are tolerable at shorter distances, and vice versa [21]. In the examples
the probabilities of false detections are calculated as 48.8% and 86.6%, respectively. Based on the
PDF according to Equation (1) we have defined a signal-to-noise ratio (SNR) of the first-photon
direct TOF measurement. It is given by the number of detected signal photons over the standard
deviation of all photons detected during the pulse arrival time. Plotted versus the target reflectance
(i.e., constant distance), the SNR has a clear maximum at:

RB = 1/TTOF (2)

where TTOF is the TOF of the emitted laser pulse [23]. Depending on the application, as well as the
optics of the LiDAR system, an improvement of the SPAD PDE is not required as long as this optimum
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background photon detection rate is obtained. Obviously, to obtain the optimum photon detection
rate the sensor’s sensitivity can be adjusted in other ways, such as by using different apertures or gray
filters. Nevertheless, a higher PDE can enable improvements on the system: specific detection and
ambient light rejection methods may require a higher photon detection rate and, therefore, need a
higher detector PDE. In first-photon direct TOF measurement systems a trade-off in sensitivity is
required: a higher PDE improves the range and precision, but increases the amount of false detections
caused by high background light.

In conclusion, for applications at high ambient illumination the ambient photon detection rate
must not exceed a certain level. Since the best measurement results are achieved at a certain distance
dependent ambient photon detection rate according to Equation (2), a higher PDE, which increases the
ambient photon rate, could result in a loss of measurement performance if the ambient photon rate is
thereby increased above the optimal level. To counteract the high ambient photon rate due to high PDE
or high ambient illumination, the rate has to be kept on the optimal level by rate adjustment. In our
sensor this is achieved by photon coincidence detection whereas the parameters of the coincidence
detection are adjusted to the actual ambient photon detection rate.

3. Photon Coincidence

To reduce the amount of false photon detections in real-time without sacrificing range and
precision, photon coincidence detection can be applied. In this technique the measurement is
not stopped by the detection of a single photon, but only if at least a defined number of single
photons—called coincidence depth—is detected within a defined timespan—called coincidence
time. Since the laser photons are confined to the pulse width whereas the background photons
are approximately equally distributed in time, the ability to differentiate between ambient and laser
signal is improved [24,25]. Compared to the case of narrowing the aperture or using a gray filter,
this technique improves the range of the systems in high ambient light applications. In Figure 3 a
simple circuit for coincidence detection with a coincidence depth of two is shown. Each time a photon
is detected, a pulse corresponding to the coincidence time is generated at the detector output. To find
coincidences the output signals of the detectors are connected by an AND gate. Thus, if the output
pulses overlap, which happens only if the pulses are separated by less than the coincidence time,
the output of the AND gate is set high indicating the detection of a coincidence event as shown in the
timing diagram [26]. This circuit principle can be expanded to higher coincidence depths.
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with a width corresponding to the coincidence time overlap, a coincidence event is detected.
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The basic idea of this principle is to apply a certain threshold and stop the time measurement
as soon as the impinging light intensity and photon rate, respectively, exceeds this threshold. In a
best-case scenario this level is set slightly above the ambient light intensity. Since the laser pulse
adds to the ambient light, the received light intensity increases, exceeds the threshold, and stops the
time measurement. Unfortunately, the photons do not arrive in regular intervals but the inter-arrival
time obeys the exponential distribution. Therefore, a total rejection of ambient light is not possible.
However, since low photon rates (i.e., only ambient light) are more reduced than higher photon
rates (i.e., laser pulse with ambient light) this technique increases the ratio of the laser signal and
ambient light event rate (signal-to-background-ratio, SBR) allowing a longer distance range at high
ambient light [23]. An event is an incident used to stop the time measurement. Depending on the
applied detection mechanism, an event can be the detection of a single photon or a photon coincidence
comprising several single photons.

To investigate the effect of photon coincidence detection on the event detection rate, a model
based on statistical calculations has been developed. This model is an advanced version of the model
presented in [23] and additionally takes into account the dead time of the SPADs. The dead time is
relevant since the SPADs are quenched and reset after each single photon detection. Since the SPADs
are insensitive to further incident photons during this phase, the dead time limits the maximum single
photon detection rate. To allow coincidence times below the dead time of the SPAD, multiple SPADs are
combined for the detection of photon coincidences. Therefore, the model is determined from the PDF of
the individual photons detected in an array of dead time afflicted SPADs. In Figure 4 the rate of photon
coincidence detections as a function of the ideal single photon detection rate (i.e., without saturation
effects, like dead time) of the whole array according to our model is shown for an array containing
four SPADs, a coincidence time of 10 ns, and a coincidence depth n between 2 and 4. As expected,
with increasing coincidence depth the rate of coincidence events decreases due to the lower probability
of receiving at least n photons within the coincidence time. For rising coincidence depth a steeper
slope of the curves is observable corresponding to a gain in SBR. To fully eliminate the ambient light,
the slope should be infinity and located between the photon rates of ambient light and ambient with
laser light. Even if an infinite slope is not possible, the steepness of the slope can be increased by
increasing the coincidence depth n as shown in Figure 4. However, higher coincidence depths require
higher single photon rates. Due to the dead time of the SPADs the maximum single photon detection
rate is limited and the curves saturate. Therefore, to increase the range by increasing the coincidence
depth a short dead time is required. On the other hand, a short dead time increases the afterpulsing
probability which counters the benefit of photon coincidence detection.
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Figure 4. Photon coincidence event rate as a function of the single photon detections according to a
statistical coincidence model based on photon inter-arrival times calculated for a coincidence time of
10 ns. The model takes into account the coincidence time, the coincidence depth, the number of SPADs,
and the dead time of the SPADs. Highlighted values illustrate the improvement in SBR.
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As an example arbitrary input values are chosen and highlighted in Figure 4. With a photon rate
of the ambient light and laser pulse of 10 MHz each, we get photon rates of RB = 10 MHz for the
ambient light and RL + RB = RLB = 20 MHz during the laser pulse (i.e., ambient and laser photons).
In this case the SBR given by RL/RB is 1. If photon coincidence with a coincidence time of 10 ns and a
coincidence depth of n = 3 is applied, the ambient event rate reduces to R′B = 23.5 kHz and the event
rate during the laser pulse to R′LB = 158 kHz. The SBR can now be calculated as 5.72. Since the SBR
directly affects the range of the LiDAR system, a higher SBR corresponds to a longer distance range.
In case of zero background light the initial SBR without photon coincidence is infinity and, therefore,
photon coincidence does not improve the range in low ambient light applications. Since the dark count
rate of modern CMOS SPADs is below 10 cps/µm2 [27], it is neglectable compared to the background
light in typical outdoor environments.

As can be recognized in Figure 2, even if the ambient light intensity is constant, the maximum
range is only achieved if the event detection rates are chosen deliberately by adjusting the light
reception mechanism. If the event rates are too high, mostly ambient events are detected. On the other
hand, if the rates are too low, almost no events are generated by the reflected laser signal. In both cases
the laser signal cannot be located in the histogram and the distance measurement fails. Since the event
rates change due to different target reflectance and ambient light conditions, a fixed ratio between light
intensity and event rate works well for a specific target object only. To cover a wide range of different
targets the coincidence parameters in the presented sensor are designed to be variable. By adjusting
these parameters based on the present background light and target conditions, the resulting event rate
of the background light R′B could be kept constant. According to Figure 4 a resulting event rate of
1 MHz can be achieved up to a single photon rate of around 100 MHz. This gives an improvement
in dynamic range of 40 dB. By adjusting other coincidence parameters like coincidence time as well,
the dynamic range can be further improved. Adaptive photon coincidence parameter adjustment
allows a much better measurement performance at varying target conditions. Since the parameters can
be adjusted in each pixel individually, scenes with high dynamic range can be captured in a single shot.

4. CMOS Flash LiDAR Sensor and Camera

With CMOS integrated SPADs the photodetector can be integrated along with the control and
processing electronics on a single chip. This allows the realization of application specific sensors
with dedicated CMOS circuitry. Additionally, system-on-chip sensors are more durable and can be
fabricated more cost-efficiently than sensors built in other technologies or compound sensors. In this
technology a LiDAR sensor [28] based on CMOS SPADs [10] has been developed and fabricated.
The sensor in Figure 5a has two lines with 192 pixels each, integrated in-pixel circuitry for active
SPAD quenching and reset, adjustable photon coincidence detection circuitry, in-pixel flash TDC with
a temporal resolution of 312.5 ps, and readout electronics.
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As shown in the pixel block diagram in Figure 6, each pixel of the sensor contains a digital
silicon photomultiplier (dSiPM) with four vertically-arranged SPADs with a diameter of 12 µm and
a fill factor of 5.32%. The SPADs exhibiting a PDE of 2% at 905 nm, a dark count rate of 10 Hz,
and a dead time of 20 ns are connected by logical circuits for the detection of photon coincidences.
To allow coincidence depth adjustment logical circuits for different depths connected to a multiplexer
are used. The operational principle of these circuits is analogously to the circuit shown in Figure 3,
but for different depths and with four inputs each. In timing mode the output of the multiplexer is
connected to the TDC and triggers it as soon as the required number of single photons is detected.
The coincidence time is defined by the width of the input pulses of the logic circuits which can be
varied by an integrated pulse shaper with variable width. The pulse width is identical for all four
SPADs and can be set to four values between 1.5 ns and 16 ns in our sensor. An additional parameter
to adjust the resulting event rate is the number of SPADs used for the coincidence detection, which can
be adjusted by disabling the reset of the SPAD. Since the number of used SPADs has to be at least equal
to the set coincidence depth and without applied coincidence (depth = 1) the coincidence time has no
effect, overall 28 different coincidence parameter sets are available.
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Figure 6. Block diagram of the sensor pixel. Each pixel uses four SPADs for the detection of photon
coincidences. The coincidence time is adjusted by a variable pulse shaper and the coincidence depth by
choosing one of the four different logical circuits processing the four SPAD outputs.

For measurements and demonstration of the sensor we have built the flash LiDAR camera “Owl”.
The camera shown in Figure 5b integrates the sensor with corresponding lens, an FPGA for sensor
control and data readout, and two pulsed laser sources. The beam shaping optics of the laser sources
are designed to match the field-of-view (FOV) of the two sensor lines. The lasers emit at 905 nm
wavelength with 75 W peak power, 10 kHz pulse repetition rate, and 15 ns pulse width resulting in
a mean optical emission power of 11.25 mW. The camera uses a 12 mm lens resulting in a FOV of
36◦ × 1◦ for each line of the sensor. With 192 pixels we end up with a pixel FOV of around 0.2◦ × 1◦.
In the typical operation we accumulate 400 single timestamps for distance determination resulting in a
frame rate of 25 fps. For visualization of the measurement results, a webcam is mounted on top for
2D image acquisition allowing a superposition of the 3D and 2D data. Since the sensor features an
event counting mode, it is able to generate 2D images as well, but two single lines are less descriptive.
For future area sensors the webcam will be dispensable.

In addition to 2D image acquisition, the event counting mode is used to gain information about the
ambient light intensity and event rate, respectively. In counting mode an integrated eight-bit counter
is used allowing counting up to 255 events in a single measurement. In counting mode the output of
the coincidence detection circuit, which triggers the TDC in the time measurement, is directly fed to
the counter as shown in Figure 6. In this way the event rate is measured using the same coincidence
settings as applied in the time measurement. Since the width of the counting window is known, the
number of counted events directly corresponds to the event rate. To prevent a reduction of the frame
rate, background light event rate measurements are performed between two consecutive laser pulses.
The time window for event counting has to be chosen carefully to avoid counter overflow. Since the
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number of counted events is Poisson distributed, multiple measurements can be executed between
each laser pulse to reduce the variance of the rate measurement. The measured event rates act as input
signal for the adaptive photon coincidence processing. The algorithm adjusts the photon coincidence
parameters to keep the resulting ambient light event rate R′B at an optimal level.

For the implementation of the adaptive coincidence controlling algorithm levels with associated
parameters resulting in a decreasing event rate are defined. This is necessary, since increasing the
coincidence depth for coarse event rate adjustment and the coincidence time for interpolation results
in a non-monotonic behavior of the event rate. The defined coincidence levels and their associated
parameters are shown in Table 1. In Figure 7 the resulting event rates of the coincidence levels in
Table 1 according to our theoretical model are plotted. The parameters are chosen to get a decreasing
resulting event rate in the range from 1 MHz to 10 MHz if the coincidence levels are passed through
in ascending order. Due to the different slopes the curves, which depend on the coincidence depth,
they intersect at certain points. Therefore, the parameters have to be chosen according to the desired
target range of the ambient event rate.

Table 1. Coincidence parameters of the chosen coincidence level for decreasing event rate.

Coincidence Level 0 1 2 3 4 5 6 7 8 9 10 11

Coincidence Depth 1 1 1 1 2 2 2 2 2 2 3 4
Coincidence Time (ns) - - - - 16 16 8 16 8 4 4 8

Number of SPADs 4 3 2 1 4 3 3 2 2 2 3 4

Assuming the distance measurement works well within the defined range of the event rate,
the adaptive photon coincidence detection increases the measureable dynamic range in ambient light
conditions and target reflectance by more than 40 dB from 20 dB to over 60 dB. Due to the different
slopes of the curves, the step size between the coincidence levels depends on the current single photon
detection rate. To reduce the step size between the levels, the coincidence parameters need to be varied
in finer steps. Since the coincidence depth can only attain integer numbers, this is only possible for the
coincidence time. Unfortunately, this requires more complex circuitry.
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Figure 7. Resulting event rate versus the single photon detection rate according to our theoretical
model for the coincidence levels in Table 1. The chosen parameters result in a decreasing event rate
between 1 MHz and 10 MHz if passed through in ascending order.

In Figure 8 the flow chart of the current coincidence adjustment algorithm implementation is
shown. The first step is measuring the current ambient event rate. In our sensor this is done by using
the event counting mode. Since the laser cycle time is 100 µs and the measurement window 1.28 µs,
the ambient can be measured in-between consecutive laser pulses without losing frame rate. Next,
the measured ambient event rate is compared to the previously defined target range. If the event rate
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is within the target range, no adjustment of the coincidence parameters is necessary and the distance
measurement continues with unchanged settings. If the measured event rate is outside the target
range, the parameters are adjusted depending on the actual event rate. In case the event rate is too
high, the rate is reduced by increasing the coincidence level. If the rate is too low, the coincidence level
is decreased. According to Equation (2) the target range of the event rate has to be chosen according to
the desired range of the LiDAR system.
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Figure 8. Flow chart of a possible coincidence adjustment algorithm. After the ambient event rate is
measured, the coincidence level is increased or decreased if it is outside the defined rate range.

In the presented realization the coincidence levels are varied by one step in each cycle only.
A cycle corresponds to one frame, which is 40 ms in the typical setup of the camera. Therefore,
in fast-changing environments this kind of coincidence adjustment could be too slow to allow a reliable
real-time distance measurement. Assuming a large change in reflectance, the system takes 10 cycles
corresponding to 0.4 s to adjust the coincidence settings. To increase the adjustment speed, the step
size of the parameter adjustment could be increased in case of high divergence between the actual
and target event rates. Another method for the parameter adjustment is to use a look-up table. Here,
the best suitable coincidence level is directly chosen based on the measured ambient event rate. For this
method the coincidence has to be turned off during the counting mode or the look-up table has to
include all possible coincidence levels. This reduces the settling time down to just a single cycle.

5. Measurements

The first measurement is to compare the theoretical coincidence model to actual measurements.
In Figure 9 the theoretical model and the measurement of the ambient event rates is plotted for the
coincidence levels 4 (CL4) and 9 (CL9). For level 9 a good agreement over the whole measurement
range can be observed, whereas for level 4 the discrepancy increases at higher photon detection
rates. Since the theoretical model does not include the effects of the photon coincidence detection
circuit, this behavior is as expected. According to Table 1 in level 9 only two SPADs are used and the
coincidence time is set to 4 ns. With these settings an overlap of the pulses generated by the single
SPADs is quite unlikely since the dead time is 20 ns and, hence, much longer than the coincidence time.
Otherwise in level 4, where four SPADs are activated and the coincidence time of 16 ns is almost as
long as the dead time. Therefore, an overlap of the single pulses is much more likely. Since in case
of overlapping pulses the output of the coincidence detection circuits stays high, no further events
are recorded by the counter. This effect reduces the actual measured event rate at high single photon
detection rates as shown in Figure 9. To improve the coincidence controlling algorithm the effect of
the coincidence detection circuits has to be included in the theoretical model or the resulting event
rates for the different coincidence levels have to be acquired by measurements instead of using the
theoretical model.

The further measurements are performed with our 192 × 2 pixel LiDAR sensor mounted in the
camera “Owl”. The lens and laser sources are chosen according to the description in the previous
section. In the outdoor measurements we use Lambertian targets with different reflectance levels.
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Figure 9. Theoretical coincidence model versus measurement. For a low number of active SPADs and
short coincidence time (CL9), the influence of the detection circuits is small and a good agreement is
achieved. If more SPADs are used and the coincidence time is close to the dead time (CL4), the measured
event rates saturate at higher photon detection rates due to the detection circuit.

In the next measurement we investigate the effect of varying target reflectance on the system
performance. Since the received photon rates of the ambient light and laser signal are proportional
to the reflectance, we expect good performance without coincidence only for a limited dynamic
range. As a measure of performance, the parameter success probability, defined as the probability to
measure the true distance with a maximum deviation of 10%, is calculated from 1000 single distance
measurements, whereas each distance is obtained from a histogram filled with 400 timestamps.
Obviously, the algorithm to extract the distance from the filled histogram has a major influence on
the measurement performance. However, to show the influence of the ambient event rate on the
measurement, only the quantitative shape of the measurement curve is of interest and, therefore,
an arbitrary algorithm can be applied. We simulate the change in reflectance by adjusting the reception
optics aperture. This affects only the absolute intensities of the ambient light and laser while the SBR
is kept constant. Figure 10 shows the success probability for an 80% reflectance white Lambertian
reflector measured outdoor at 100 klx ambient sunlight without applied photon coincidence and
theoretical PDFs for selected values. Since the bin width of 312.5 ps corresponds to a distance of 4.7 cm,
the target distance of 10 m corresponds to bin number 212. For high reflectance and photon rates,
respectively, the sensor is triggered in almost any measurement by ambient photons. Since the first
detected photon stops the time measurement, the sensor is blind at the reception of the laser pulse and
a reliable distance measurement is not possible. The probability of measuring the correct time, given by
the integral of the PDF over the pulse width, is only 2.92% (PDF C). In the case of low reflectance and
photon rates, respectively, also the laser signal is suppressed and only very few signal photons are
detected. Similar to the case of high reflectance the probability of a correct time measurement is only
2.88%. Due to the low number of received photons, the noise is high and the laser pulse cannot be
located reliably in the histogram (PDF A).

Assuming a minimum required success probability of 80%, only within a dynamic range of
around 12 dB of the ambient photon rate RB a reliable distance measurement is possible. In this case
the probability of a correct measurement is 13.9% and, thus, much higher than in the other cases
(PDF B). In the measurement the target distance was 10 m giving an ideal ambient event rate of
RB = 15 MHz according to Equation (2). The result of the measurement shows a good agreement,
even if the maximum can be found at around 12 MHz due the low number of measured points.
As mentioned before, typical target scenes in outdoor applications exhibit a high dynamic range in
reflectance far above 12 dB and, therefore, the detection rates have to be adjusted pixel-wise to allow a
longer range and an accurate measurement of the whole scene.
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Figure 10. Success probability of the distance measurement at 100 klx ambient sunlight without photon
coincidence vs. the background photon rate at constant SBR corresponding to varying target reflectance.
Only for a small range in reflectivity a good measurement performance is achieved.

Next, a dark (i.e., 8% reflectivity) and a bright (i.e., 60% reflectivity) object, 6.5 m distant, at 100 klx
ambient sunlight are measured in a scene to show the capability of the on-chip pixel-wise adaptive
coincidence parameter adjustment. Figure 11 shows the measured scene with the dark and bright
object. The distance is measured with one line of the sensor along the horizontal line.
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Figure 11. Outdoor target scene measured at 100 klx ambient sunlight including a dark and bright
Lambertian target. The distance is measured along the horizontal line in the figure.

In Figure 12a the measured mean distance and standard deviation acquired from 100 single
distance measurements along with the ambient event rate R′B for each pixel of the sensor line is shown.
In this example, the coincidence parameters are identical for the whole pixel line and are set to allow a
measurement of the dark object (i.e., coincidence depth of 2 and time of 16 ns). Since the event rate
reduction is low, the ambient event detection rate R′B at the bright target is too high to allow a reliable
measurement (see Figure 10, PDF C). Instead there is a high probability for the time measurement to be
stopped by ambient light right at the beginning of the reception window. As a result, a distance close
to zero is measured mostly and the standard deviation is quite low. A look at the measured ambient
event rates R′B shows a rate of around 5 MHz for the dark object and around 33 MHz for the bright one.

In Figure 12b the coincidence parameters are adjusted to allow a measurement of the bright object
(i.e., coincidence depth of 4 and time of 16 ns). Here, almost no signal events are received from the
dark target making a measurement hardly possible (see Figure 10, PDF A). In this case the determined
distance is equally distributed over the whole range and, therefore, the deviation is high. The ambient
event rate R′B for the bright target is 3.8 MHz while for the dark object only 15 kHz are measured.
Additionally, an increase of the event rate dynamic range at higher coincidence depth from a factor
of 6.6 (i.e., 16.4 dB) up to a factor of 253 (i.e., 48 dB) is observed. In the low coincidence level case
(Figure 12a) the event rate of the bright target is limited by saturation effects, like dead time. As a
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consequence, the dynamic range of the resulting ambient event rate R′B is not increased by applying
coincidence. A measurement of both targets shows a difference in reflectivity of 16.5 dB. However, it is
shown that achieving high range performance for targets with different reflectance at high ambient
illumination is difficult, if identical coincidence parameters are applied.
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Figure 12. (a) Measured mean distance, standard deviation, and ambient event rate for low ambient
light rejection. While the dark target can be measured properly, the received event rate of the bright
target is too high; (b) Same measurement for a high ambient light rejection. In this case the bright target
can be measured while the dark one cannot.

In Figure 13 the measurement of the scene is shown after applying adaptive photon coincidence
detection. Now both targets in the scene can be measured at once. The adaptive photon coincidence
algorithm adjusts the coincidence parameters pixel-wise based on the actual ambient event detection
rates. The purpose of the parameter adjustment is to get an optimal ambient event rate according
to Equation (2), since at this rate the best measurement performance is achieved. In the shown
measurement the target window of the ambient event rate lies between 5 MHz and 10 MHz. The results
show that the standard deviations for both targets as well as the wall in the background are now as low
or even less than in the previous measurements (Figure 12) and the ambient event rates R′B are within
the defined range. For the bright target, as well as for a part of the dark one the standard deviation is
still high compared to the distance. This is due to the algorithm used for extracting the distance from
the raw data histogram and will be improved by more sophisticated data processing in the future.

The measurement proves that achieving long range in scenes with high dynamic range in target
reflectance and high ambient illumination requires pixel-wise event rate adjustment. The concept of
adaptive photon coincidence detection is one promising possibility to fulfill this task and improve the
measurement performance. For automotive short and mid-range applications distances up to 50 m
are of interest. To extend the range of the shown system several improvements are possible: reducing
the width of the optical bandpass filter from 80 nm down to 10 nm reduces the ambient light by a
factor of 8. Since the laser pulse intensity scales quadratic with the distance, the range increases by
approximately factor 2.5. Another possibility is the usage of laser sources with shorter pulses and
higher repetition rates. And also improvements in the histogram processing by the usage of more
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sophisticated algorithms will extend the system range. Nevertheless, the proposed method of adaptive
photon coincidence detection can be implemented in any LiDAR system based on the direct TOF
measurement to improve the dynamic range.
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Figure 13. Mean distance, standard deviation, and ambient event rate after applying pixel-wise
adaptive coincidence parameter adjustment. This allows a measurement of dark and bright targets in
the same scene at once. The ambient event rates are kept at an almost constant level for all pixels.

6. Conclusions

To enable a reliable distance measurement with CMOS SPAD-based LiDAR systems at strong
ambient illumination, background light suppression is essential. Without the application of any
ambient light rejection method, an improvement of the SPAD sensitivity is not generally beneficial
in the first-photon direct TOF measurement, because higher PDE can imply a higher probability of
unwanted background photon detections and, hence, false measurements. The detection of photon
coincidences reduces the probability for background generated events and improves the ability to
separate between ambient light and laser signal. This allows for a more reliable measurement. Since the
best measurement performance is achieved only for a specific and distance dependent ambient event
rate, the adjustment of the event rate by varying the coincidence parameters enables the sensor to
capture scenes with a high dynamic range in object reflectance. To be applicable in real-world traffic
situations, the parameter adjustment needs to be performed in real time. This can be achieved by
using dynamic step size of the parameter adjustment or a look-up table approach. Since applying
photon coincidence detection reduces the resulting event rates and shows a dead-time induced
saturation, a higher SPAD sensitivity and lower dead-time can further improve the advantages of
photon coincidence detection.
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