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Recently, many types of in vitro 3-D culture systems have been developed to

recapitulate the in vivo growth conditions of cancer. The cancer 3-D culture

methods aim to preserve the biological characteristics of original tumors better

than conventional 2-D monolayer cultures, and include tumor-derived orga-

noids, tumor-derived spheroids, organotypic multicellular spheroids, and multi-

cellular tumor spheroids. The 3-D culture methods differ in terms of cancer cell

sources, protocols for cell handling, and the required time intervals. Tumor-

derived spheroids are unique because they are purposed for the enrichment of

cancer stem cells (CSCs) or cells with stem cell-related characteristics. These

spheroids are grown as floating spheres and have been used as surrogate sys-

tems to evaluate the CSC-related characteristics of solid tumors in vitro.

Because eradication of CSCs is likely to be of clinical importance due to their

association with the malignant nature of cancer cells, such as tumorigenicity

or chemoresistance, the investigation of tumor-derived spheroids may provide

invaluable clues to fight against cancer. Spheroid cultures have been estab-

lished from cancers including glioma, breast, colon, ovary, and prostate can-

cers, and their biological and biochemical characteristics have been

investigated by many research groups. In addition to the investigation of

CSCs, tumor-derived spheroids may prove to be instrumental for a high-

throughput screening platform or for the cultivation of CSC-related tumor cells

found in the circulation or body fluids.

S olid tumors grow in a 3-D conformation surrounded by a
variety of non-tumor cells and ECM that collectively

constitute the tumor microenvironment. Under these condi-
tions, tumor cells tend to be exposed to suboptimum growth
conditions, such as hypoxia or low nutrient levels, and influ-
enced by cell–cell contacts or a variety of signals from the
surrounding tumor and non-tumor cells. In conventional 2-D
monolayer cultures, most of these environmental cues are
missing. Hence, it is difficult to faithfully reconstitute the
tumor microenvironment in conventional cultures, and the
biological characteristics of original tumors may be lost
because of the cellular adaptation required for survival
in vitro. With this in mind, many types of in vitro 3-D cul-
ture systems have been developed to recapitulate in vivo
growth conditions and study the broader aspects of tumor
biology.
One of the representative 3-D culture methods for cancer

cells is the tumor-derived spheroid culture. In this culture, pri-
mary cancer cells with stem cell-like features are expanded
in vitro as floating spheres. Here we provide a brief overview
of multiple 3-D in vitro culture systems of cancer cells and
describe the major discoveries from studies using tumor-
derived spheroids.

Classification of 3-D Culture Models of Cancer Cells

Three-dimensional culture systems of cancer cells have been
developed for distinct and overlapping purposes. These meth-
ods differ in terms of cancer cell sources, protocols for cell
handling, and the time intervals required for establishing 3-D
cultures. Detailed overviews of these 3-D methods were previ-
ously published.(1–4) Here we describe four representative
methods for the 3-D culture of cancer cells (Table 1).
Organotypic multicellular spheroids and organotypic explant

cultures are intended to faithfully reproduce the tumor
microenvironment. In many cases, these cultures are estab-
lished after gentle mechanical dissociation of cancer tissues.
Cancer cells cultivated by this method are surrounded by non-
tumor cells and stromal components that normally exist in the
tumor microenvironment. As a result, cancer cells cultivated
with these methods generally retain many histological features
and the cellular heterogeneity of the primary cancer. Several
variations of these methods, such as cancer tissue-originated
spheroids, involve the mild dissociation of cancer tissues with
mild enzymatic treatments to isolate heterologous cancer
spheroids.(5) Notably, cancer tissue-originated spheroids largely
maintain the histological features of original cancers in the
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absence of non-tumor cells and are capable of propagation
after mechanical dissociation.
Multicellular tumor spheroids are typically established from

cancer cell lines in conventional media supplemented with FBS,
similar to conventional 2-D cultures. Hence, MCTS may be
methodologically regarded as an extension of the standard 2-D
culture of cancer cell lines. A major difference from 2-D cul-
tures is that cells for MCTS are grown as spheres in a suspen-
sion culture or other conditions that promote cell–cell adhesion.
In contrast to OMS or related methods intended to preserve the
in vivo biological features of cancers, MCTS show little histo-
logical resemblance to the primary cancer. Despite limited histo-
logical resemblance to the primary cancer, cells in MCTS
mimic the metabolic and proliferative gradients of in vivo
tumors and show clinically relevant multicellular chemoresis-
tance.(6) The advantages of MCTS over other 3-D systems, that
is, clonality of cells, ease of maintenance, and simplicity of
genetic manipulation (Table 1), make this method an appropri-
ate tool for high-throughput drug testing.(7)

Tumor-derived organoids were recently developed by Sato
et al.(8) and are rapidly gaining popularity as a powerful
ex vivo model of organogenesis.(9,10) Under specific growth
conditions, including basement membrane matrix (Matrigel),
Wnt agonists, tyrosine kinase receptor agonists, and bone
morphogenetic protein/transforming growth factor-b inhibi-
tors, a variety of tissues were reconstituted in vitro in the
absence of non-tumor cells.(9) In addition, a multistep car-
cinogenesis model was developed by introducing sequential
oncogene/tumor suppressor gene mutations in non-tumor
organoids as an alternative approach to investigate cancer
development.(11)

Tumor-derived spheroids, also known as tumorospheres,(2)

are the main focus of this review. Tumor-derived spheroids are
floating spheres that serve as surrogate systems to evaluate
CSC-related characteristics in vitro. Hence, the main feature of
tumor-derived spheroids is the enrichment of CSCs or cells
with stem cell–related characteristics. This feature is distinct
from other 3-D methods, that is, OMS and patient-derived
organoid cultures, which attempt to faithfully reproduce cancer
tissues, including stem cells and their differentiating progenies.
Methodologically, tumor-derived spheroids are similar to
MCTS in terms of the formation of free-floating spheres. In
some cases, the serum-free culture conditions of tumor-derived
spheroids were used for MCTS cultures to faithfully reproduce
stem cell-like states.

Cancer Stem Cells and Spheroid Cultures

Prevailing CSC models posit that cancer cells are hierarchically
organized and that CSCs, which comprise a fraction of cancer
cells, are capable of generating entire cancer structures due to
their potential for self-renewal and differentiation. However, the
identification of CSCs from solid tumors remains evasive, mainly
because of the lack of cell-surface markers and plasticity of
CSC-related phenotypes. As a result, the identification of CSCs
relies on functional assays that determine the capability of CSCs
to generate tumors through self-renewal and differentiation, espe-
cially in vivo tumor-formation assays after transplantation into
immunocompromised mice and lineage-tracing assays of in vivo
tumors generated in genetically engineered mice (Table 2).
In the 1990s, Dick and his colleagues(12)discovered CSCs in

hematopoietic cancers. Subsequent studies reported that cells with
CSC-like properties were present in solid tumors, including
glioma, colon cancer, and breast cancer.(13) These findings
prompted researchers to establish methods to propagate CSCs in
solid tumors in vitro. Because it had been known that normal neu-
ral cells can be propagated in sphere cultures, it is not surprising
that spheroid cultures of cancer cells were first achieved with
glioma CSCs in vitro.(14) Following these studies, spheroid cul-
tures were established from cancers of breast, colon, ovary, and
prostate (see below). Although there are some reservations as to
the extent of which sphere formation reflects the CSC pheno-
type,(15) the capability to form spheroids in vitro is regarded as a
convenient surrogate to evaluate the functionality of CSCs
because of the propensity of stem cells to propagate as spheroid
bodies.(16) Thus, tumor-derived spheroid cultures have been clo-
sely tied to in vitro studies of cancer stemness and regarded as
one of criteria for CSCs.(17)

Eradication of CSCs is likely to be of clinical importance
due to their association with the malignant nature of cancer
cells. It was hypothesized that CSCs are related to the
chemoresistance and metastasis of cancer, and some reports
indicate that CSCs show higher resistance to chemotherapeutic
agents than most tumor cells.(18,19) Hence, a great deal of
research on tumor-derived spheroids has been directed toward
investigating the chemoresistance of CSCs with the hopes of
elucidating the refractory nature of solid cancers.

Spheroid Cultures From Primary Cancers

The sources and types of cancer cells for tumor-derived spher-
oids vary. However, the general procedures for the in vitro

Table 1. Representative methods for 3-D cultures of cancer cells

Types of 3-D culture models
Organotypic multicellular

spheroids

Multicellular tumor

spheroids

Tumor-derived

organoids

Tumor-derived

spheroids

Source of tumors Tumor tissues Cancer cell lines Dissociated tumor

tissues

Dissociated tumor

tissues

Clonality of cancer cells Polyclonal Monoclonal Polyclonal/

monoclonal

Polyclonal/

monoclonal

Presence of non-tumor niche cells + � � �
Presence of serum in culture media + + � �
Histological preservation of original

tumors

++ � + �

Enrichment of CSC-like cells � � � +

Genetic manipulation � ++ + +

Application for high-throughput drug

screening

� ++ � �

CSC, cancer stem cell.
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expansion of CSCs as spheres are similar and based on the
unique property of stem/progenitor cells to survive and grow in
the form of spheroid bodies in serum-free media. Tumor tissues
are typically subjected to mechanical/enzymatic dissociation, fil-
tration, or flow cytometry to obtain single-cell suspensions.
Next, these cells are suspended in serum-free media supple-
mented with growth factors, such as epidermal growth factor
and fibroblast growth factor, in non-attachment plates (Fig. 1).
Using spheroid culture methods, putative CSCs or cancer

cells with stem cell-like properties have been isolated and
expanded from tumors. However, the parameters used for these
experiments did not necessarily follow the rigorous experimen-
tal conditions defined for CSC cultivation, and thus, the results
should be carefully interpreted. For example, cell density is a
critical parameter to evaluate self-renewal because a higher
density tends to cause cell aggregation and compromise clonal
conditions for cell growth. Passage numbers may also affect
the results because initial cell populations capable of spheroid
formation may include transient amplifying cells.(16) In many
reports, these parameters were not mentioned in spite of their
importance to evaluate the CSC-related characteristics.

However, sphere size may merely reflect the proliferation rate
of other cells rather than CSC traits, although this parameter
was often used as one of the criteria for CSCs. Because of
these variations in experimental parameters, it is difficult to
compare the results from different studies, especially those on
different cancer types. Nevertheless, it is likely that the find-
ings described below will serve as a starting point for future
in vitro studies of CSCs and related cells.

Glioma spheroids (neurospheres). The in vitro neurosphere
assay was initially developed by Reynolds and Weiss(20) to
quantify the activity of non-tumor neural stem cells derived
from the adult mouse brain. The established neurospheres
maintained the capacity to produce mature classes of neural
cell types and showed multilineage differentiation after trans-
plantation in vivo.(21,22) Subsequently, long-term neurosphere
cultures were established from human specimens and showed
the capability for migration and differentiation following trans-
plantation into immunocompromised rats.(23) Human neuro-
sphere formation was facilitated by the selection of neural
stem cells with the stem-cell marker of central nervous system
lineages, CD133.(24)

Fig. 1. General protocols for the establishment of
tumor-derived spheroids. CSC, cancer stem cell.

Table 2. Common experimental methods used to evaluate the major criteria for cancer stem cells (CSCs)

Criteria for CSCs

Experimental system

Tumor formation assays Lineage tracing experiments

CSC

Flow cytometry analyses Tumor-derived spheroids

In vivo tumorigenicity + + � �
Self-renewal + + � +

Capable of differentiation + + � �
Expression of specific CSC markers + + + +

Capable of spheroid formation � � � +
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Using the techniques used to isolate normal neural stem
cells, Dirks and his colleagues(14)established neurospheres from
human brain tumors. As is the case for normal neural stem
cells, CD133-positive cells from tumors were responsible for
neurosphere formation, and the CD133-positive sphere cells
showed CSC-like characteristics, that is, self-renewal, prolifer-
ation, and differentiation capacities.(14) Interestingly, it was
reported that adherently growing CD133-negative cells show
stem cell-like properties in a subset of primary glioblastomas,
suggesting the existence of at least two different types of
CSCs.(25)

Cancer stem cells maintained as neurospheres represent a
more reliable model system than cancer cells grown under
standard serum-containing culture. Indeed, neurosphere CSCs
more closely mimic the genotype, gene-expression profile, and
biology of parental tumors.(26,27) In addition to CD133, several
other surface markers were used to distinguish neurospheres
from glioblastoma CSCs.(28) Neurospheres have been used to
investigate stem cell-specific therapeutic targets(29,30) and were
adapted to in vitro assays to test the efficacy of therapeutic
compounds.(31)

Mammalian cancer spheroids (mammospheres). Using the
experimental protocol for neurosphere establishment, Wicha
and his colleagues(32) established a non-adherent “mammo-
sphere” from human mammary epithelial cells. The established
mammospheres were enriched for early progenitor/stem cells
and able to differentiate along all three mammary epithelial
lineages. After the identification of CSCs from breast can-
cer,(33) similar protocols for the mammosphere culture were
used to establish a long-term mammosphere culture from
breast cancer.(34–36) The established sphere cells represent can-
cer-initiating cells because they expressed stem-cell markers
and were capable of forming xenograft tumors in immunocom-
promised mice.(34) Mammospheres were also established from
metastatic cells(37,38) and ductal carcinoma in situ.(39)

Mammospheres have been used to examine intertumoral
heterogeneity(40,41) and determine the proliferative roles of the
interleukin-8/C-X-C motif chemokine receptor 1/2-mediated
pathway(38) and insulin-like growth factor 2 pathway.(42) In
another study, established mammospheres were used to

examine the specific effects chemical compounds have against
CSCs.(43) Mammosphere assays were also used for a mouse
breast cancer model of Erb-B2 receptor tyrosine kinase 2 ex-
pression(44) and p53-deficiency.(45) An investigation of the
Wnt/b-catenin signaling pathway(46) and Sox2 expression(47)

was carried out using mouse mammospheres.
Colorectal cancer spheroids (colonospheres). Cancer spheroids

from primary colorectal cancer were first established from
CD133-positive colon cancer cells cultivated in serum-free
medium. The cultivated sphere cells maintained the ability to
faithfully reproduce the same histopathological features of the
original tumor in immunocompromised mice.(48) These
“colonospheres” were used to investigate CSC-related charac-
teristics, such as chemoresistance,(49–53) metastatic capacity,(54)

and tumorigenicity at single-cell levels.(55) In addition, the
colonospheres were used to evaluate the chemosensitivity of
novel compounds targeting the Wnt pathway.(56)

Through the systematic search for compounds that regulate
the proliferation of colon cancer spheroids, we showed that the
inhibition of ROCK markedly improved the efficiency of
sphere formation.(57) The improved efficiency was at least in
part attributed to the induced expression of CSC marker
CD44v.(57) The established sphere cells were capable of faith-
fully reproducing the original tumors (Fig. 2).(56,57)

Ovarian cancer spheroids. Ovarian spheroids initially
attracted attention due to their morphological resemblance to
multicellular aggregates in cancerous ascites(58) rather than
their relevance to CSCs. Spheroid growth in ascites can be
attributed to a specific environment of malignant ascites that
encourages spheroid formation.(59) Dissemination to the sur-
faces of the peritoneum and other organs within the peritoneal
cavity is the most common metastatic pattern of ovarian can-
cers, and aggregated spheroids may play an essential role
through their attachment to the surface of other organs and
subsequent formation of multiple disseminated tumors.(60,61)

Bapat et al.(62) first reported a spheroid culture from cancer
cells in ascites derived from ovarian cancer patients. These
spheroids were maintained in vitro using 5% FBS and showed
that they were capable of forming tumors in mouse xenograft
models. Subsequently, spheroid cells were established from

Fig. 2. Evaluation of cancer stem cell (CSC)-
associated phenotypes of colon spheroids derived
from colorectal cancers. The CSC-associated
phenotypes were validated based on CSC marker
expression, flow cytometry, in vivo tumorigenicity,
in vitro spheroid formation, and in vitro
differentiation.
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primary ovarian cancer tissues using serum-free media.(63) In
addition to spheroid cultures, several groups reported ovarian
CSC-like cells using attached culture methods.(64,65) Although
these studies were carried out under different culture condi-
tions, the tumorigenicity of the established cells was validated
in all cases.
CD44 was initially identified as a CSC marker for a subset

of ovarian cancers(63,64) and preferentially expressed in spheres
derived from ovarian tumors.(63,65) Subsequently, ALDH and
CD133 were found to serve as major biomarkers that can
enrich tumorigenic cells from ovarian cancer.(66–69) In fact, the
ovarian cancer spheroid cells preferentially expressed these
markers(67) and required ALDH activity for their proliferation.
The differences among the observed markers may be attributed
to the heterogeneity of ovarian cancer CSCs.
We reported that ROCK inhibition in ovarian cancer spher-

oids, similar to that in colon cancer spheroids, promoted cell
survival and propagation.(70) The spheroids showed characteris-
tics as CSCs, including expression of CSC markers, capability
for differentiation, and tumorigenicity.(70) Unlike the cases in
colorectal cancer spheroids, the dependence on ROCK inhibi-
tion was not mediated by CD44v, but rather by expression of
other CSC markers, such as ALDH1A1 and Sox2.(70)

Prostate cancer spheroids (prostaspheres). Investigation of the
culture conditions for normal prostate stem cells revealed that
they could be expanded as spheres (prostaspheres) in the pres-
ence of Matrigel.(71) The sphere cells from prostate cancer
showed an extensive self-renewal capacity and capability of
multilineage differentiation.(71) Prostate sphere-forming cells
were associated with basal cell types (Sca-1+) that express
Trop2(72,73) and p63-expressing basal cells,(74) or with
increased nuclear factor-jB signalling.(75) Using a similar pro-
tocol, cancer spheroids were expanded from tumors derived
from mouse prostate cancer models and used to establish
coculture models with cancer-associated cells.(76,77)

Future Application of Tumor-Derived Spheroid Culture

Our knowledge of the biological nature of solid-tumor CSCs has
greatly expanded over the last decade, at least in part through
research on tumor-derived spheroids in vitro. By exploiting the

knowledge gained from emerging in vitro cultivation methods,
such as tumor-derived organoids, it may be possible to establish
better methods for the in vitro cultivation of CSCs. Furthermore,
the refinement of culture protocols may allow for the use of
tumor-derived cultures as a high-throughput screening tool to
identify molecules that inhibit CSC proliferation.
Another potential use for tumor-derived spheroid cultures is to

expand this method to cultivate CSCs from other types of clini-
cal specimens, such as metastatic foci or body fluids (e.g.,
ascites, pleural fluid, and circulating blood). Notably, the spher-
oid cultivation of CSCs from the circulating blood of breast and
lung cancer patients has attracted attention as a novel technology
to isolate and expand circulating tumor cells in vitro.(78–80) In
conjunction with emerging liquid biology research, the isolation
and expansion of CSC-related cells through sphere formation
may be a powerful technology to investigate the original tumors
without highly invasive clinical procedures.
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