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Osteoarthritis (OA) is a common and disabling joint disorder that is mainly characterized

by cartilage degeneration and narrow joint spaces. The role of mitochondrial dysfunction

in promoting the development of OA has gained much attention. Targeting endogenous

molecules to improve mitochondrial function is a potential treatment for OA. Moreover,

research on exogenous drugs to improve mitochondrial function in OA based on

endogenous molecular targets has been accomplished. In addition, stem cells and

exosomes have been deeply researched in the context of cartilage regeneration, and

these factors both reverse mitochondrial dysfunctions. Thus, we hypothesize that

biomedical approaches will be applied to the treatment of OA. Furthermore, we have

summarized the global status of mitochondria and osteoarthritis research in the past

two decades, which will contribute to the research field and the development of novel

treatment strategies for OA.
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INTRODUCTION

Osteoarthritis (OA), a chronic and progressive cartilage degeneration disease (1) with a high
morbidity and disability rate (2), is characterized by cartilage degeneration, osteophyte formation,
thickening of subchondral bone, synovial inflammation, and meniscal injuries (3). As the global
population ages and the proportion of obese people increases, the morbidity of OA continues to
rise. At present, ∼250 million people suffering from OA worldwide bear a tremendous economic
burden as does society (4). OA tends to occur in the elderly population; cellular senescence is a
contributor to age-related diseases (5), and studies have shown that OA is typical representatives
of age-related diseases (6). Alleviating pain is the main purpose of non-surgical treatment, but this
treatment does not alleviate the progression of OA (7).

Chondrocytes are the only cell type present in mature cartilage and change pathologically when
OA occurs (8). Multiple factors can lead to OA, including inflammatory cytokines, mechanical
stress, ageing, metabolic factors, and other pathological changes, which could increase reactive
oxygen species (ROS) (9), induce oxidative stress in mitochondria, cause mitochondrial DNA
(mtDNA) damage, result in mitochondrial damage, and shorten the life span of chondrocytes
(10). The loss of mitochondrial membrane potential (MMP) leads to a reduction in energy
production, an increase in the permeability of the mitochondrial membrane (11), and the release
of apoptotic factors such as cytochrome C (Cyt-C), apoptosis-inducing factor, and procaspases
from the mitochondria into the cytoplasm. Obvious changes in the morphology and function
of mitochondria have been shown in ageing cells, and mitochondrial dysfunction is a key factor
in cellular senescence (5, 12), demonstrating that mitochondria may be a therapeutic target
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for anti-ageing treatment and reduce the morbidity of OA in
the elderly population (13). In addition, mitochondrial genetics
are indispensable in the pathogenesis of OA. The accumulation
of somatic mutations in mtDNA is a major contributor
to human ageing and degenerative diseases (14). Reducing
mtDNA damage, including the integrity of mtDNA4977, could
optimize mitochondrial function, and maintain the homeostasis
of chondrocytes. Furthermore, the mitochondrial apoptotic
pathway has been implicated in chondrocyte apoptosis in
OA (15). More specific therapeutic strategies on the basis
of an in-depth molecular understanding of OA are thus
essential (16).

With the research and application of stem cells and
exosomes in cartilage repair, biomedical approaches to optimize
mitochondrial function will be the preferred method for
the thorough treatment of OA. Furthermore, gene therapy
is also booming, and we therefore think that biological
measures to modify the disease will be the major approach
for OA treatment. In the present article, we have reviewed
mitochondrial dysfunction mainly in the context of OA
chondrocytes and summarized the endogenous molecular targets
related to mitochondrial function. Moreover, research progress
on exogenous drugs for the treatment of OA by restoring
mitochondrial function in chondrocytes has been reviewed. In
addition, we have described the global status of mitochondrial
and OA research, which may contribute to predicting the
trend in mitochondrial research regarding the treatment of OA.
Furthermore, these findings will be instructive for mechanistic
research on mitochondrial functions in OA, contributing to
fundamental research on the treatment of OA through the
mitochondrial pathway and providing novel strategies for the
clinical treatment of OA.

BIOLOGICAL FUNCTION OF
MITOCHONDRIA

Mitochondria, encapsulated by bilayer membranes, are
remarkably dynamic organelles and considered as the
“powerhouse” of eukaryote cells. Mitochondria not only
generate the energy required for cellular metabolism by oxidative
phosphorylation (OXPHOS), but they also produce heat in
certain specialized cell types, such as brown adipocytes (17).
Approximately 2,000 mitochondria within a eukaryotic cell
occupy ∼20% of the cell volume (12). There are protein
complexes in the inner mitochondrial membrane that transfer
and pump protons through the mitochondrial respiratory chain
(MRC) for ATP production, such as NADH dehydrogenase
(complex I), succinate dehydrogenase (complex II), Cyt-C
reductase (complex III), and Cyt-C oxidase (complex IV).
Pyruvate and fatty acids could be converted to acetyl CoA by
mitochondria, and CoA is metabolized by the citric acid cycle
to produce NADH (18) where energy electrons are used to
produce ATP (19). In addition to ATP production, intermediate
metabolites for biosynthesis, protein modifications, signal
transduction, programmed cell death, bioenergetic metabolism,
the redox state, calcium homeostasis, innate immunity, stem cell

reprogramming, and ageing-related responses (20–22) occur in
the mitochondria (17) (Figure 1).

Recently, more research has focused on mitochondrial
dynamics. The dynamic characteristics consist of mitochondrial
fusion, mitochondrial fission and mitophagy (36), which are
crucial for normal mitochondrial function and are critically
associated with mitochondrial biogenesis and mitophagy
(37). Mitofusins 1 (Mfn1) and Mitofusins 2 (Mfn2) mediate
the fusion of the outer membrane, and optic atrophy 1
(OPA1) mediates the fusion of the inner membrane (38).
Dynamin-related protein 1 (Drp1) and classical dynamin 2
(Dnm2) are the main mediators of mitochondrial fission (39)
(Figure 2). When mitochondrial fission becomes increasingly
dominant, damaged mitochondria undergo mitophagy in
chondrocytes in the context of OA (40, 41), which could
cause mitochondria to fail to produce sufficient bioenergy,
regulate calcium and maintain the redox state. In contrast,
mitochondrial fusion could enhance the biological function of
mitochondria, which could make chondrocytes energetic and
inhibit apoptosis.

In normal chondrocytes, mitochondria play a role in
regulating signaling by modulating the redox state, supplying
cofactors for biochemical reactions, such as molecular
chaperones to facilitate protein folding, and generating ligands
for signal transduction, such as AMPK signaling and calcium
signaling (17, 42, 43). Calcium stored in mitochondria is helpful
for maintaining calcium homeostasis in cells, and mitochondria
are dedicated to transport extracellular matrix (ECM) calcium
(12, 44). The mineralization of cartilage has been confirmed
to involve calcium phosphate-containing granules, which are
known as “matrix vesicles” (45). Moreover, Professor Alexandra
E. Porter and colleagues found that mitochondrial granules
contribute to the transport of clusters of calcium and phosphate
ions to the ECM to facilitate mineralization, and Professor
Lehninger AL suggested that mitochondria could release calcium
phosphate to the ECM to take part in bone formation (46, 47).
In addition, Professor Brian Glancy and colleagues showed
that calcium activated nearly every step within the electron
transport chain (ETC) (48) and activated enzymes, such as
NADH, Cyt-C, complex III, and complex IV, in the pathways of
oxidative metabolism in mitochondria (49, 50). Furthermore,
mitochondria could regulate and balance the apoptosis by
initiating cell death (17).

MITOCHONDRIAL DYSFUNCTION IN
OSTEOARTHRITIS

Mitochondrial dysfunction mainly manifests as decreased ATP
production, increased oxidative stress, calcium dysregulation,
increased permeability of the mitochondrial membrane, and
mtDNA alternations, which result in cartilage degeneration.
Chondrocyte damage occurs and is mainly reflected in the
increases in MMP-3, MMP-13, NO, and inflammatory injury
with an imbalance between catabolism and anabolism of
extracellular matrix (51), including reductions in aggrecan and
collagen II, which eventually induce OA (Figure 3).
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FIGURE 1 | Mitochondrial biological function. Mitochondria are not only the organelle for ATP production and signal transduction, but they can also maintain the redox

state and calcium homeostasis, regulate programmed cell death, and perform bioenergetics metabolism, stem cells reprogramming, ageing-related responses, innate

immunity, and biosynthesis.

FIGURE 2 | Schematic diagram of mitochondria and mitochondrial dynamics. Major components of mitochondria include outer membrane, inner membrane, cristae,

matrix, and mtDNA. Mitochondrial fusion is mediated by Mfn1, Mfn2, and OPA1. Mitochondrial fission is mediated by Drp1, Dnm2. Damaged mitochondria will

undergo mitophagy.
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FIGURE 3 | Mitochondrial changes and chondrocyte damage in OA. Alternations in mitochondrial DNA and mitochondrial dynamics cause a series of mitochondrial

changes. Excessive oxidative stress, respiratory chain defects and imbalance of mitochondrial dynamics result in mitochondrial dysfunction, which could promote

chondrocyte damage, including inflammatory injury, imbalance between anabolism and catabolism of the extracellular matrix, and an increase in apoptosis of

chondrocytes.

Decreased ATP Production
Mitochondrial dysfunction can lead to a decrease in the activity
of respiratory chain complexes I, II, III, and V, the loss of
MMP, and decreases in OXPHOS in OA chondrocytes (52),
which could induce chondrocytes to release interleukin-1β (IL-
1β) and lead to inflammation (12). Two primary mechanisms
of ATP production include substrate phosphorylation in
the glycolytic pathway and in the tricarboxylic acid (TCA)
cycle and OXPHOS occur at the inner membrane (53).
ATP production is driven by the transmembrane proton
gradient. An inflammatory response in chondrocytes with the
upregulation of cyclooxygenase 2 (COX-2) and prostaglandin
E2 (PGE2) production could be generated by ETC dysfunction
(54). Both TNF-α and IL-1β inhibit the activity of ETC
complex I (55), which induces decreases in ATP production
and MMP. Inhibiting the ETC thus could decrease ATP
synthesis (56).

Increased Oxidative Stress
Mitochondrial dysfunction maintains a positive regeneration
circle with oxidative stress, increased ROS, and mtDNA damage,

which are regarded as hallmarks of chronic degenerative diseases
(57). The accumulation of ROS and mtDNA damage can
activate the nuclear factor-κB (NF-κB) pathway, which is the
main regulator of inflammation (57). Avascular and hypoxic
tissue are always used to describe cartilage, and chondrocytes
are the only cell types in articular cartilage that maintain the
balance of extracellular matrix (ECM) synthesis and degradation
(58). ROS, as by-products of oxidation-reduction reactions,
are generated in the MRC (59). A lower level of ROS is
beneficial for maintaining chondrocyte homeostasis, and a
higher level of ROS induces the depolarization of mitochondrial
membrane, which could lead to sustained ROS production
(60). An initial theory suggested that ROS have deleterious
effects on ageing and degenerative diseases (61). Accumulating
evidence has demonstrated that increased oxidative stress and the
overproduction of ROS, including superoxide anion, hydrogen
peroxide (H2O2), and nitric oxide (NO), play pivotal roles
in the pathogenesis of OA (10, 62). The overproduction and
accumulation of ROS and ATP deficiency decrease mitogenesis
and break the redox balance. DNA and especially mtDNA could
be injured (63). Oxidative stress could damage the mitochondrial
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respiratory chain protein complexes in chondrocytes (12).
Due to the accumulation of ROS in chondrocytes, the
decrease in collagen and glycosaminoglycan synthesis and the
enhancement of metalloproteinases and aggrecanases induce
chondrocytes to undergo a switch from anabolic to a catabolic
gene expression, which results in cartilage breakdown (34).
Furthermore, the depletion of superoxide dismutase 2 (SOD2),
the major mitochondrial antioxidant protein, occurs in early
cartilage degradation and could exacerbate inflammation and
enhance ROS, contributing to OA progression (64, 65).
Mitochondria are the dominant intracellular organelles in charge
of the generation of ROS (66). ROS overload induced by
oxidative stress results in the loss of MMP by stimulating the
mitochondrial permeability transition pore (PTP) (67). High
levels of cholesterol are naturally present in the cell membrane
of chondrocytes, and chondrocytes could produce their own
cholesterol and synthesize all the indispensable proteins for
cholesterol biosynthesis (68, 69). Hypercholesterolemia animal
models with changes in cartilage have been studied by Mao
et al. (69), and the researchers demonstrated the direct effect
of high cholesterol on cartilage degeneration and chondrocyte
hypertrophy. When exposed to the synovial fluid with raised
cholesterol levels, chondrocytes could be damaged because of
the changes in the fluidity of the cell membrane and activation
of membrane lipid signaling pathways (70). There is a close
relationship between increased cholesterol oxidation products
and mitochondria-derived oxidative stress, which leads to
increased production of mitochondrial ROS (69), and Mao et al.
showed that the cholesterol-lowering drug and themitochondria-
specific antioxidant have protective effects on attenuating OA
symptoms caused by high cholesterol, such as atorvastatin
and Mito-TEMPO.

Calcium Dysregulation
Calcium, a ubiquitous intracellular secondmessenger, is involved
in numerous cellular processes (71, 72). Calcium overload
can lead to ROS overproduction, mitochondrial depolarization,
MMP damage, and apoptosis (73). The maintenance of
intracellular calcium homeostasis is achieved by mitochondrial
uptake of calcium through a uniport transporter and the release
of calcium through the inositol-1,4,5-trisphosphate receptor
(IP3R), the sodium/calcium exchanger, or through the PTP,
which is stimulated by excessive calcium in the mitochondrial
matrix (72, 74). The PTP is a large conductance channel in
the inner membrane of mitochondria (75), and both high levels
of calcium and ROS can activate the PTP opening (76). The
PTP makes the membrane non-specifically permeable to any
molecule up to 1.5 kDa, including protons, and the mitochondria
cannot maintain a pH gradient or MMP any longer (77, 78).
The PTP leads to the collapse of MMP, leading to mitochondrial
swelling and release of calcium and Cyt-C, ultimately stimulating
apoptosis (8, 72). Calpains are calcium-activated proteases that
could destroy the sodium/calcium exchanger and result in
calcium overload and cell death (79). Furthermore, calcium
overload and the activation of BAX by calpains lead to
mitochondrial depolarization (72, 80).

Increased Permeability of the
Mitochondrial Membrane
Chondrocyte apoptosis induced by inflammation, oxidative
stress, and increased mitochondrial membrane permeability
(81) is positively associated with the degree of cartilage damage
(82, 83). The collapse of the MMP leads to mitochondrial
depolarization (8), which causes mitochondrial swelling,
outer mitochondrial membrane collapse, and release of
Cyt-C (84, 85). The BAX/mitochondrial Cyt-C/Caspase
signaling pathway is shown to be associated with chondrocyte
apoptosis (31). The downregulation of Bcl-2, the increase
in expression of BAX, Caspase-3, and Caspase-9, and the
increase in permeability of mitochondrial membrane can
promote the outflow of Cyt-C from mitochondria into the
cytoplasm and the inflow of BAX from the cytoplasm into
mitochondria, increasing chondrocyte apoptosis. When
damaged by various oxidative stimuli, the initiation of
chondrocyte apoptosis induced by increased ROS is promoted
(10, 15, 86). Studies have shown that mitochondrial dysfunction
with reduced MMP and increased mitochondrial membrane
permeability could promote the migration of Cyt-C from
the mitochondrial matrix to the cytoplasm (87), which could
induce apoptosis due to the activation of caspases and increase
the BAX/Bcl-2 ratio (88). Moreover, the level of ROS in
mitochondria is significantly increased (89), which could induce
oxidative stress, destroy cartilage homeostasis, and increase
chondrocyte apoptosis (60). The balance of mitochondrial
dynamics could inhibit the apoptosis induced by oxidative
stress (90, 91).

mtDNA Mutation
In addition to mitochondrial dysfunction, the inheritance of
mitochondria also acts as a pivotal role in the process of
OA (92). mtDNA, a 16,569 bp circular and double-stranded
molecule, encodes 13 protein subunits for the respiratory
chain and 24 RNA components (22 tRNAs and 2 rRNAs)
for mitochondrial protein synthesis (93). Chondrocytes from
OA patients exhibit higher levels of mtDNA damage than
chondrocytes from normal individuals (94). mtDNA damage
could be caused by the increased ROS burden of aged
chondrocytes (63, 95). At the same time, the accumulation of
mtDNAmutations above a critical level could lead to dysfunction
of the respiratory chain and increased ROS production, which
could promote excessive chondrocyte apoptosis and enhance
inflammatory responses (8). mtDNA haplogroups modulate
crucial functions such as ATP production, oxygen consumption,
ROS generation, and the expression of mitochondrial and
nuclear genes (96). mtDNA haplotype J is associated with a
lower risk of knee osteoarthritis (KOA) compared to that of
mitochondrial mtDNA haplotype H (97). The mtDNA haplotype
may be a biomarker for OA diagnosis and prognosis, and
be closely involved in the OA phenotype (98). Therefore, the
pattern of latent drugs that mimic the physiological effects
of mtDNA haplotype J may be a potential treatment strategy
for OA (99).
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ENDOGENOUS MOLECULAR TARGETS TO
REVERSE MITOCHONDRIAL
DYSFUNCTION

The vital role of mitochondrial changes in the development of
OA has been demonstrated (8, 12, 52, 100), and endogenous
molecular targets that optimize mitochondrial dynamics
and morphology will turn into potential targets for OA
treatment (Figure 4). AMPK, Sirtuin, PGC-1α, PINK1,
PARKIN, and Nrf2 are endogenous molecules, and the
activation of AMPK/SIRT1/3/PGC-1α, AMPK/SIRT3/SOD2,
and AMPK/SIRT3/Parkin/PINK1 signaling could promote
mitochondrial biogenesis and reduce oxidative stress,
contributing to balancing mitochondrial dynamics and
improving MMP. Moreover, upregulating OPA1, Mfn1,
and Mfn2 and downregulating Drp1 and Dnm2 through GPS2
could promote mitochondrial fusion to enhance mitochondrial
biological functions.

AMPK
Adenosine 5′-monophosphate (AMP)-activated protein kinase
(AMPK), the serine/threonine kinase, is a key regulator to adapt

to changes in energy demand (101). When in a hypoxic state,
AMPK can be activated and phosphorylate multiple downstream
targets, promoting the inhibition of ATP-consuming pathways
and the activation of the ATP-producing pathway (101, 102).
Dysregulation of AMPK has been associated with a variety of
age-related diseases related to mitochondrial dysfunction and
imbalance of cellular energy, including diabetes, atherosclerosis,
cardiovascular disease, cancer, neurodegenerative diseases, and
OA (103, 104), suggesting the translational potential of
pharmacological AMPK activators to limit OA progression
(52, 102). In chondrocytes, activation of AMPK suppresses
NF-κB activation, oxidative stress, and multiple inflammatory
and catabolic responses (104). Moreover, AMPK could regulate
both mitochondrial biogenesis and mitophagy to balance
mitochondrial dynamics (52).

Sirtuin
AMPK activity regulates energy metabolism via downstream
mediators, including the nicotinamide adenine dinucleotide
(NAD+)-dependent deacetylases Sirtuin1 and Sirtuin3 (SIRT1
and SIRT3, respectively). The key role of AMPK in the treatment
of OA through the mitochondrial pathway and mitochondrial

FIGURE 4 | Mitochondrial pathways for the treatment of OA. The activation of AMPK-SIRT-3/ SIRT1-PGC-1α, AMPK-SIRT-3-SOD2, and

AMPK-SIRT-3-PINK1/PARKIN signaling could promote mitochondrial biogenesis and mitochondrial fusion and reduce oxidative stress, which contribute to optimize

mitochondrial function and then maintain chondrocyte homeostasis.
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acetylation-induced OA has been identified, while SIRT3 is
the main deacetylase in mitochondria, and SIRT3 activation
can protect cells by regulating mitochondrial dynamics and
mitophagy. SIRT1/3 and AMPK regulate each other (105).
Increasing evidence shows that SIRT1 is significant in promoting
mitochondrial dysfunction and OA progression (83). It has been
proven that SIRT1 enzymatic activity is necessary for cartilage
homeostasis (64, 65). The loss of SIRT1 in chondrocytes also leads
to increases inMMP-13, apoptotic markers, and NF-κB, resulting
in the accelerated OA development (83, 106). Upregulation of
SIRT1 can inhibit the activation of COX-2, MMP-13, and NF-
κB-induced TNF-α and decrease the upregulation of MMP-
13 and acetylation of NF-κB p65 induced by IL-1β (83,
107). SIRT1 is a strong inducer of autophagy (108), which is
reduced in OA, and therapeutic enhancement of autophagy
is chondroprotective in vitro and in vivo (52, 109, 110). The
NAD+-dependent deacetylase Sirtuin3 is the major deacetylase
in mitochondria (111), contributing to the regulation of the
mitochondrial antioxidant system and adenosine-triphosphate
(ATP) production (112). Depletion of the mitochondrially
localized antioxidant superoxide dismutase 2 (SOD2) promotes
mitochondrial dysfunction and increased production of ROS
(64, 65). A study showed that mitochondrial acetylation could
promote the development of OA, while SIRT3 could enhance the
antioxidant capacity of chondrocytes by enhancing the activity
of SOD2 (113). Moreover, SIRT3 could activate and enhance the
activity of AMPK in chondrocytes, which could reduce the loss of
mtDNA4977 and maintain mtDNA integrity, thereby improving
the function of mitochondria and protecting chondrocytes (28).
Studies have shown that mitophagy can eliminate damaged
mitochondria isolated by mitochondrial fission, which is a
cytoprotective mechanism to maintain mitochondrial stability
and quality (114). Moreover, the relationship between mitophagy
and OA has been confirmed (60, 115). SIRT3 depletion can
reduce mitophagy (116) and SIRT3 activation protects cells by
regulating mitochondrial dynamics and mitophagy (117). Drugs
that can activate SIRT3 may therefore be potential treatments for
OA through the mitochondrial pathway.

PGC-1 α

The mitochondrial biogenesis master regulator peroxisome
proliferator–activated receptor γ coactivator 1α (PGC-1α) acts
by inducing the transcription of nuclear respiratory factors
(NRFs) (e.g., NRF-1 and NRF-2) (52), thereby increasing the
expression of mitochondrial transcription factor A (TFAM)
and other nuclear-encoded mitochondrial respiratory complex
subunits (118, 119). TFAM is induced to translocate to
mitochondria, which stimulates mitochondrial DNA replication
and mitochondrial gene expression, thus stimulating the
biogenesis of mitochondria (52, 118). It is well-known that SIRT1
and its substrate PGC-1α regulate aspects of energy metabolism
through mitochondria (83). PGC-1α activity is regulated
by phosphorylation and NAD 1-dependent deacetylation via
metabolic biosensors AMPK, SIRT1, and SIRT3 (52, 120).
Furthermore, Zhao et al. showed that PGC-1α is essential for
mediating AMPK activity to block catabolic responses and
suppress oxidative stress in chondrocytes (118).

Parkin/PINK1
Autophagy is closely related to apoptosis in the pathogenesis of
numerous degenerative diseases, and studies have shown that
autophagy is inhibited in OA chondrocytes (121). Autophagy
is a mechanism of intracellular catabolism through which cells
can remove dysfunctional organelles and macromolecules to
prevent the occurrence of cell stress, preventing mitochondrial
dysfunction (122). Lotz et al. called the process mitophagy,
which eliminates damaged mitochondria and prevents oxidative
stress (123). Parkin, an E3 ubiquitin ligase and mitochondrial
outer membrane (OMM) protein, operates in conjunction with
PTEN-induced kinase 1 (PINK1), and phosphorylation of Parkin
by PINK1 transforms it into an active phospho-ubiquitin-
dependent E3 ligase, which can respond to the loss of MMP
(19M) to eliminate damaged mitochondria (124). The evidence
that Parkin-mediated clearance of damaged mitochondria limits
the generation of ROS and prevents the induction of oxidative
stress in OA chondrocytes was first demonstrated byMohammad
et al. (60).

Nrf2
Nuclear transcription factor erythroid-2-like factor 2 (Nrf2)
plays a chondroprotective role in OA and can suppress
metalloproteinase expression induced by IL-1β (125). Nrf2 is
a redox-sensitive transcription factor that positively regulates
the expression of antioxidant and cytoprotective enzymes,
including HO-1, NQO1, GST, SOD, GPx, and CAT (35, 126).
Nrf2/antioxidant response element (ARE) signal transduction is
one of the crucial antioxidant systems to maintain the redox state
and has been regarded as a strategy to eliminate the damage
caused by excessive ROS production (99, 127). Heme oxygenase-
1 (HO-1), a ARE regulated by Nrf2, has been reported to prevent
diseases caused by oxidative stress as a major therapeutic target
of Nrf2 (128).

EXOGENOUS DRUGS TO OPTIMIZE
MITOCHONDRIA IN OA

The presence of the antioxidant defense system to avoid
mitochondrial dysfunction and excessive chondrocyte apoptosis
is extremely limited (129). Research on exogenous drugs to
improve mitochondrial function in OA based on endogenous
molecular targets is thus necessary (Table 1).

Antioxidants
Appropriate antioxidant strategies and the discovery of
antioxidants are essential to protect chondrocytes against
oxidative stress (86, 130, 131). Recent studies have shown that
melatonin, dihydromyricetin, quercetin, taurine, and diallyl
disulfide all act as antioxidants and are potential drugs for the
treatment of OA.

Melatonin
Melatonin (N-acetyl-5-methoxytryptamine), an amine hormone
produced by the pineal gland of mammals, is a broad-
spectrum antioxidant and free radical scavenger (132).
Melatonin and its metabolites can remove ROS by radical
scavenging and improve the activation of antioxidant enzymes,
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TABLE 1 | Mitochondrial pathways for the treatment of OA.

Potential drugs Cells Methods Mechanism Effects References

Melatonin Chondrocytes

(CHON-001)

In vitro: Co-culture

In vivo: Histological

evaluation

Inhibit PI3K/Akt, JNK,

ERK, p38 and MAPK

Inos↓, COX-2↓, NO↓,

PGE2↓

(23)

Resveratrol Chondrocytes In vitro: Co-culture BAX/mitochondrial

Cyt-C/Caspase

COX-2↓, NO↓, PGE2↓ (24)

DHM TNF-α-treated

chondrocyte and rats

In vitro: Co-culture

In vivo: Histological

evaluation

AMPK/SIRT3/PGC-1α Mitochondrial fusion↑,

antioxidant capacity ↑, ECM

balance↑

(25)

Apple procyanidins Primary chondrocytes

and

chondrocyte-specific

Sod2−/− mice

In vitro: Co-culture

In vivo: Histological

evaluation

AMPK/SIRT1/PGC-1α Integrity of mtDNA↑,

mitochondrial biogenesis↑

and proteoglycan

biosynthesis↑

(26)

25µM Zinc MIA-treated SW1353

chondrocytes

In vitro: Co-culture PINK1-Mitophagy

PI3K/Akt/Nrf2

Mitophagy↑, oxidative

stress ↓

(27)

SIRT3 activator Human and mouse

chondrocytes;

C57BL/6 male mice

In vitro: Co-culture

In vivo: Histological

evaluation

AMPK/SIRT3/SOD2 Integrity of mtDNA4977↑ (28)

Quercetin Chondrocytes from

1-week-old Sprague

Dawley rats; OA rats.

In vitro: Co-culture

In vivo: Histological

evaluation

AMPK/SIRT1; Inhibit

caspase-3

NO↓, MMP-3↓, MMP-13↓

and apoptosis↓

(29)

Puerarin MIA-treated OA rats In vivo: Histological

evaluation

AMPK/PGC-1α Mitochondrial biogenesis↑ (30)

LRWXG ACLT-treated rats In vivo: Histological

evaluation

BAX/mitochondrial

Cyt-C/Caspase

Bcl-2↑, MMP-3↓ and

MMP-13↓

(31)

Ginsenoside Rg1 IL-1β-treated

chondrocytes

In vitro: Co-culture PI3K/Art Caspase-3↓, TIMP-1↑,

MMP-13↓ and Bcl-2↑

(32)

CS H2O2-treated

chondrocytes

In vitro: Co-culture Increase MMP MMP↑, Caspase-3↓ and

Caspase-9↓

(33)

200µM taurine H2O2-induced

chondrocytes

In vitro: Co-culture Regulate Nrf2,

miR-146a and miR-34a

Bcl-2↑, BAX↓ (34)

DADS C2812 chondrocytes In vitro: Co-culture Enhance Nrf2 GPx1↑, GPx3↑, GPx4↑,

CAT↑, SOD1↑, BAX/Bcl-2↓

and Caspase-3↓

(35)

thus regulating inflammation, proliferation, apoptosis and
metastasis (133). Various experiments have demonstrated that
melatonin can inhibit the phosphorylation of PI3K/Akt and
MAPKs (23) and inhibit the loss of MMP and the release
of mitochondrial Cyt-C (134). Kim et al. (23) demonstrated
that melatonin acts as a potent inhibitor of H2O2-induced
inducible nitric oxide synthase (iNOS) and cyclooxygenase-
2 (COX-2) gene expression while also suppressing the
production of NO and PGE2 in human chondrocytes,
and the researchers thought that the inhibitory effect of
melatonin on cartilage degeneration may be associated with the
SIRT1 pathway.

Dihydromyricetin
Dihydromyricetin (DHM), which is mainly composed of
flavonoids, can scavenge free radicals and has anti-inflammatory
and antioxidative effects (135). SIRT3 can be activated by
DHM through the AMPK/SIRT3/PGC-1α signaling pathway
and can enhance mitochondrial fusion, maintain mitochondrial
function and the homeostasis of chondrocytes, improve the
antioxidant capacity of chondrocytes, and increase aggrecan and
collagen II levels (25). DHM can also promote mitophagy to

protect chondrocytes by activating SIRT3, which provides a new
treatment strategy for OA.

Quercetin
Quercetin, a flavonoid compound, is widely found in vegetables
and fruits and possesses antioxidant properties. Studies have
revealed that quercetin is a potent anti-atherosclerotic drug as
a result of its anti-inflammatory and antioxidative capacities
(136). A study showed that quercetin could be used for
the treatment of OA rats and demonstrated that quercetin
could reverse mitochondrial dysfunction, improving MMP,
oxygen consumption, and ATP production. The induction
of glutathione (GSH) and glutathione peroxidase (GPX) by
quercetin eliminated excessive ROS, which reduced or even
abolished oxidative stress (29). Moreover, quercetin inhibited
the accumulation of nitric oxide (NO), matrix metalloproteinase
3 (MMP-3), and MMP-13 produced by inflammation through
AMPK/SIRT1 signaling, playing a key role in the inhibition
of extracellular matrix degeneration. Quercetin also decreased
chondrocyte apoptosis by inhibiting the caspase-3 signaling
pathway (7). Therefore, quercetin is a potential therapeutic drug
for OA that acts through the mitochondrial pathway.
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Taurine
Taurine (2-aminoethane sulfonic acid), another antioxidant
that is highly effective in attenuating free radical toxicity, has
been identified (137). Taurine can ameliorate ROS-induced
chondrocyte damage and exert chondroprotective properties,
including the deposition of extracellular matrix components and
proliferation of chondrocyte (138). Sara et al. (34) showed that
200µM taurine could reduce mitochondrial superoxide anion
production by activating Nrf2 and promote an increase in anti-
apoptotic Bcl-2 and a reduction in proapoptotic BAX to inhibit
chondrocyte apoptosis (139). In addition, the regulation of miR-
146a and miR-34a expression in OA chondrocytes was first
demonstrated. Taurine may be a potential drug for OA.

Diallyl Disulfide
Diallyl disulfide (DADS), a main component of garlic with
antioxidant and anti-inflammatory properties (35, 140), could
reduce pro-inflammatory cytokines expression, such as TNF-
α, IL-1β, inducible nitric oxide synthase (iNOS), and COX-
2 (35), by inhibiting the nuclear factor-κB (NF-κB) signaling
pathway (141). Moreover, the pivotal etiological role of apoptosis
in cartilage degeneration and the antioxidant and anti-apoptotic
properties of DADS were considered (126, 140), the mechanism
of DADS in oxidative stress and consequent apoptosis induced
by IL-1β in C2812 human chondrocytes was studied by
Hosseinzadeh et al. (35). The findings demonstrated that
DADS protected C2812 chondrocytes against oxidative stress
and reduced ROS and NO production by enhancing Nrf2
nuclear translocation. In addition, DADS markedly enhanced
the expression of GPx1, GPx3, GPx4, CAT, and SOD1 and
decreased the ratio of BAX/Bcl-2 and Caspase-3 activation to
inhibit apoptosis (35). DADS could therefore be extracted and
developed a potential drug for OA, and an interesting perspective
emerged that a diet rich in garlic might be beneficial to reduce
both the incidence and progression of OA.

Inhibiting the Mitochondrial Apoptotic
Pathway
Resveratrol
The natural polyphenolic compound resveratrol (polystilbene,
C14H12O3), a non-flavonoid polyphenol compound with
anti-inflammatory and antioxidative properties, is mainly
derived from grape leaves, grape skin, and various fruits (142).
Mitochondrial dysfunction increased the inflammatory response
to cytokines in human chondrocytes and resveratrol significantly
reduced the inflammatory response (143). Resveratrol alleviated
the chondrocyte damage induced by interleukin-1β (IL-
1β) through the NF-κB signaling pathway (144). Moreover,
resveratrol has been regarded as a potent activator of SIRT1,
which can prevent human chondrocyte apoptosis under cellular
stresses, including nutritional stress, catabolic stress, and
mechanical shear stress, by promoting Bcl-2 translocation to
mitochondria and inhibiting BAX translocation to mitochondria
(145). The optimization of mitochondrial function in animal
models and protection against IL-1β-induced chondrocyte
apoptosis can be achieved by resveratrol (24).

Xanthan Gum
Xanthan gum (XG), an extracellular acidic polysaccharide,
is released by the fermentation of Xanthomonas (146, 147).
Studies have shown that the BCL2-associated X protein
(BAX)/Cyt-C/Caspase signaling pathway contributes to cartilage
degeneration (88). A low range of molecular weights of XG
(LRWXG) has been applied for rabbit OA treatment (31).
In this study, the inhibition of cartilage matrix destruction
and the protection of subchondral bone were demonstrated.
In addition, LRWXG could inhibit the formation of small
pores in the mitochondrial inner membrane and inhibit the
swelling and rupture of the mitochondrial outer membrane,
which could stabilize membrane potential and the permeability
of the mitochondrial membrane. Moreover, activation of Bcl-
2 and inhibition of BAX activity were achieved by LRWXG.
Both of these factors could reduce the translocation of Cyt-
C from mitochondria to the cytoplasm (31). The decrease in
Cyt-C in the cytoplasm downregulated Caspase-3 and Caspase-
9 in chondrocytes, which reduced the formation of apoptotic
bodies and decreased chondrocyte apoptosis. Xintian Shao, the
author of the study, therefore thought that LRWXG could inhibit
chondrocyte apoptosis by conditioning the BAX/mitochondrial
Cyt-C/Caspase signaling pathway and protect chondrocytes
from degeneration.

Chondroitin Sulfate
Chondroitin sulfate (CS), a glycosaminoglycan that is widely
extracted from animal and fish cartilage, is an essential
component of the extracellular matrix (148). A study indicated
that carp chondroitin sulfate increased MMP and inhibited the
levels of Caspase-3 and Caspase-9 by reducing mitochondrial
fission, which decreased chondrocyte apoptosis (33). It appears
that chondroitin sulfate also has the potential to treat OA through
the mitochondrial pathway.

Ginsenoside Rg1
Ginsenoside Rg1 (Rg1) is one of the most active components in
ginseng along with steroidal saponin (149). The therapeutic effect
of Rg1 on nervous system diseases and cardiovascular diseases
has been reported, which inspired Huang et al. to investigate
whether Rg1 protected chondrocytes (32). Their findings
showed that Rg1 could enhance Bcl-2 expression, advance
tissue inhibitor of metalloproteinase-1 (TIMP-1) expression,
inhibit Bax activity, inhibit MMP-13 synthesis, and inhibit
Cyt C release from mitochondria to the cytosol through
enhancing phosphatidylinositol 3-kinase (PI3K)/Akt signaling,
which inhibited Caspase-3. The inhibition of Caspase-3 led to the
inhibition of chondrocyte apoptosis and protected chondrocytes.
Rg1 may thus be a potential treatment for OA treatment through
the PI3K/Akt/mitochondrial signaling pathway.

Enhanced Mitochondrial Dynamics
Apple Polyphenols
Apple polyphenols from immature apples, compounds
composed of several polyphenols, exert anti-allergy, anti-
fatigue and life-extending effects (26, 150). Masuda et al.
investigated the role of apple polyphenols in protecting
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chondrocytes and improving OA (26). Their findings showed
that apple polyphenols could enhance mitochondrial biogenesis
by promoting the integrity of mtDNA and mitochondrial fusion
through AMPK/SIRT1/PGC-1α signaling. Moreover, apple
polyphenols could promote proteoglycan biosynthesis. In an
in vivo study, apple procyanidins protected against articular
cartilage degeneration and prevented the development of knee
OA in chondrocyte-specific Sod2-/- mice (26). Based on these
results, we can conclude that apple polyphenols may be potential
drugs for treating OA.

Puerarin
Puerarin, an isoflavone derivative, is isolated from the
Chinese medicine Pueraria and possesses antioxidative,
anti-inflammatory, anticancer and vasodilating effects (151).
The ability of puerarin to restore mitochondrial dysfunction
has been confirmed (152). Furthermore, puerarin could reduce
mitochondrial dysfunction and damage to chondrocytes by
increasing mitochondrial biogenesis and restoring mitochondrial
function through the upregulation of AMPK/PGC-1α signaling,
which protected chondrocytes in OA (30).

Zinc (25µM)
In a study of metformin for the treatment of OA, Chenzhong
Wang found that metformin could improve the expression
of SIRT3 in chondrocytes and activate the PINK1 (PTEN
induced putative kinase 1)/Parkin signaling pathway and
could ameliorate mitochondrial function and protect
chondrocytes from OA by promoting mitochondrial fusion
and eliminating dysfunctional mitochondria through mitophagy
(89). Huang et al. showed that 25µM zinc could protect
chondrocytes injured by monosodium iodoacetate (MIA)
through the PINK1-dependent selective mitophagy pathway,
which indicated that 25µM zinc was protective against
OA (27).

GLOBAL STATUS OF MITOCHONDRIAL
AND OSTEOARTHRITIS RESEARCH

We collected 361 papers, and the dataset from Jan. 2000 to
Dec. 2019 was derived from the Web of Science (WOS) Core
Collection, which is regarded as the optimum database (153).
The search terms were as follows: [(TS = (mitochondria∗

AND osteoarthritis)] OR [TS = (mitochondrion∗ AND
osteoarthritis))] AND (Language = English) AND (Document
type = Article AND Review). The logistic growth model f(x)
= a/[1 + eb−cx], where x is the year and f(x) represents the
cumulative quantity of papers by year, was used to model the
cumulative volume of documentation because of its great fitness
and ability to predict future trends (154). VOS viewer (Leiden
University, Leiden, Netherlands) were tools used to develop the
co-occurrence analysis map (155).

Global Status
Variations in the quantity of academic publications in a certain
research field are a significant indicator of the development trend
(155). Determining the number of papers within a period of

time and guiding multivariate statistical analysis are conducive
to the research level and future trends (155). The global status
of mitochondrial and osteoarthritis research has demonstrated
that research on mitochondria and OA has been a popular topic
in the field. An total of 361 papers from 2000 to 2019 were
obtained from the WOS database on the basis of the search
formula. Over the past 20 years, there has been a growing trend
in global publications, which showed that the relative research
on mitochondria and OA increased and the total number
of publications significantly increased (Figure 5C). Moreover,
Figure 5D shows the logistic regression model meeting curves
f(x) = 330/[1 + e328.2543−0.1618x] of the quantity of papers on
mitochondria and OA research in the future per year. The top
20 productive countries are listed in Figure 5B due to the total
quantity of papers per country. China was the largest contributor
with the highest number, and Figure 5A shows the top 25
countries that made the greatest contributions to mitochondrial
and OA research globally. The darker the color, the greater the
quantity of papers.

Co-occurrence Analysis
The purpose of co-occurrence analysis is to determine the
relevance of items according to the quantity of projects that
appear together and describe the internal relationships and
structure of an academic field, and reveal the research frontiers
(156). The development of scientific research and programs
could be monitored and followed closely as popular topics
and directions were identified through co-occurrence analysis
(155, 157). Keywords were analyzed by VOS viewer, and
277 identified keywords are shown in Figure 6. The larger
the spheres, the greater the frequency. It was obvious that
“Apoptosis,” “Chondrocytes,” “Oxidative,” “Nitric-oxide,” and
“Autophagy” had the highest frequency and may be the main
research themes in the past two decades. In addition, the
blue color means that the keywords occurred early, and red
colored keywords occurred later. We found that “Phenotype,”
“SIRT3,” “PCG-1α,” “AMPK,” “FOXO transcription factors,”
“Mitophagy,” “Acetylation,” “Nrf2,” and “Repair,” which were red
colored, occurred recently, which may mean that research on
mitochondria and osteoarthritis will focus onmechanistic studies
and cartilage repair.

CONCLUSION AND PERSPECTIVES

Research on mitochondria and OA is currently a popular
topic. Mechanistic research on the relationship between
mitochondria and OA has been launched, and corresponding
research on the treatment of OA has also made excellent
progress. Although articular cartilage deterioration is the main
pathological characteristic of OA, it is now widely accepted
that the entire joint, including the synovium, is involved (158).
The synovium contributes to the general physiological function
of joints and the regulation of the joint microenvironment by
secreting synovial fluid to supply nutrients and lubricate the
cartilage (159). Fibroblast-like synoviocytes (FLSs) are highly
sensitive to hypoxia and reoxygenation (H/R), and IGFBP-3
is overexpressed in cartilage and synovial fluid under H/R
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FIGURE 5 | Global trends and contributed countries on mitochondria and OA research. (A) World map showing the distribution of mitochondria and OA research, in

which the different color depths represent the different numbers of publications in different countries. (B) The sum of publications related to mitochondria and OA

research from 20 countries or regions. (C) The annual number of publications related to mitochondria and OA research in the past 20 years. (D) Model fitting curves of

growth trends of accumulated number of publications on mitochondria and OA research.

conditions (160). The induction of nerve growth factor-induced
gene B (NGFI-B, Nur77) by IGFBP-3 has been confirmed
(161). The mitochondrial membrane permeability could be
enhanced by Nur77, which results in the translocation of
Cyt-C from the mitochondrial matrix to the cytoplasm and
initiates an intrinsic and classic apoptosis pathway: the caspase
pathway (162). Therefore, improving synovitis through the
mitochondrial pathway may be a potential strategy for OA
treatment (163).

Strategies for OA treatment are tiered, and non-
pharmacological methods, including education and
self-management, exercise, weight loss if overweight or
obese, and walking aids as indicated, are widely recommended
and regarded as first-line treatments (3, 164). The most
commonly recommended pharmacological methods in the
guidelines include paracetamol and NSAIDs (3, 165). In
the context of surgery, joint replacement surgery, knee

osteotomy, knee joint distraction and arthroscopic knee
surgery (3), and autologous chondrocyte transplantation
are currently the most effective treatments (166). The
current pharmacological methods used to OA treatment
are largely palliative (3), thus modifying OA progression,
including slowing, halting, and reversing progression,
are critical.

Biotherapy and gene therapy are current research trends
in disease treatment. Stem cells, including mesenchymal
stem cells (BMSCs), umbilical cord stem cells, embryonic
stem cells and induced pluripotent stem cells, are regarded
as exceptional donor cells for mitochondrial transfer,
and numerous studies have confirmed the significance of
mitochondrial transfer in stem cell therapy (167), especially
BMSCs (168). Moreover, transplantation of stem cells has
recently become a research hotspot in treating tissue injury.
Whether stem cell transplantation can optimize mitochondrial
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FIGURE 6 | Co-occurrence analysis of global research about mitochondria and OA. Mapping of keywords in the research on mitochondria and OA. The size of the

points represents the frequency. Distribution of keywords according to the mean frequency of appearance. Keywords in blue appeared earlier than those in yellow and

red colored keywords appeared later.

function in OA is therefore worth exploring. Exosomes,
which are extracellular vesicles 30–150 nm in diameter,
have similar functions as those of derived cells without
apparent side effects in both healthy and diseased cells
(169), and studies have shown that the therapeutic effects
of mesenchymal stem cells (MSCs) can be replicated by
their secreted exosomes (52, 170). MSC-derived exosomes
possess the biochemical potential to restore homeostasis
in bioenergetics, cell number and immunomodulation
(52, 171, 172). Exosomes contain mitochondrial membrane
components and mtDNA (173). Zheng et al. investigated the
ability of primary chondrocyte-derived exosomes to abrogate
mitochondrial dysfunction in degenerated chondrocytes (170).
The results indicated that exosomes from chondrocytes could
reduce the expression of inflammatory cytokines, restore
mitochondrial dysfunction, and reduce macrophage polarization
toward an M2 phenotype, resulting in the repair of injured
chondrocytes. This finding is in accordance with the treatment
of a mouse OA model with chondrocyte exosomes. Collectively,
primary chondrocyte exosomes are potential disease-modifying
therapeutic agents for OA. We therefore thought biomedical
measures would be efficient for the treatment of OA based
on optimizing mitochondrial function. CRISPR/Cas9 is the
most convenient gene-editing tool so far, widely used in
human embryonic stem cells (hESCs) and their derivatives
for basic and clinical research (16, 174). Deng et al. showed
that MSCs without DiGeorge syndrome critical region 8
(DGCR8) could alleviate human MSC senescence and mouse
osteoarthritis (16, 175). More efficient and targeted gene-
editing tools need to be developed, which contribute to
precise genetic and epigenetic regulation, such as activation
or inhibition of target genes in vivo (16). We thus predict
that gene therapy will be a radical therapeutic strategy for
OA treatment.

There are still numerous mechanisms that need to be
further explored. Pain is the main symptom of OA patients

and a major driver of clinical decisions (3, 176); therefore,
whether the new strategy targeting the mitochondrial pathway
for OA has an effect on pain relief is still unclear in the
current study. Microvesicles are popular for research on the
mechanism of OA treatment and whether microvesicles can
promote mitochondrial fusion and biosynthesis to reduce
chondrocyte apoptosis is not known. At the same time, how
drugs that affect the mitochondrial pathway in OA work in
mitochondria, which are subcellular organelles, is unclear. It is
widely accepted that mitochondria and the nucleus are in two-
way communication, and the way mitochondria conduct signal
transduction with the nucleus after exposure to a drug effects
to inhibit cell apoptosis and protect cells is worth studying.
With the continuous investment in mitochondrial and OA
research worldwide, a new strategy targeting the mitochondrial
pathway in OA will have great breakthroughs and will make
a great contribution to the treatment of OA. The day is
coming when we will provide subcellular, cellular, and tissue-
level mechanistic and clinical evidence for the treatment of OA
to provide a more comprehensive and efficient treatment for
OA patients.
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